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ABSTRACT: In machine-learning-assisted high-throughput defect studies, a
defect-aware latent representation of the supercell structure is crucial for the
accurate prediction of defect properties. The performance of current graph
neural network (GNN) models is limited due to the fact that defect properties
depend strongly on the local atomic configurations near the defect sites and due
to the oversmoothing problem of GNN. Herein, we demonstrate that persistent
homology features, which encode the topological information on the local
chemical environment around each atomic site, can characterize the structural
information on defects. Using the dataset containing a wide spectrum of O-based
perovskites with all available vacancies as an example, we show that
incorporating the persistent homology features, along with proper choices of
graph pooling operations, significantly increases the prediction accuracy, with the MAE reduced by 55%. Those features can be easily
integrated into the state-of-the-art GNN models, including the graph Transformer network and the equivariant neural network, and
universally improve their performance. Besides, our model also overcomes the convergence issue with respect to the supercell size
that was present in previous GNN models. Furthermore, using the datasets of defective BaTiO3 with multiple substitutions and
multiple vacancies as examples, our GNN model can also predict the defect−defect interactions accurately. These results suggest that
persistent homology features can effectively improve the performance of machine learning models and assist the accelerated
discovery of functional defects for technological applications.

■ INTRODUCTION
Understanding the effect of point defects in materials has been a
central area of study in materials science, since defects can
significantly influence the physical and chemical properties of
materials (such as reducing the bulk modulus and inducing
structural phase transitions1−,3 and introducing in-gap defect
states which can further affect their performance in optoelec-
tronic devices and catalysts.4−6 One of the key quantities in
defect chemistry is the defect formation energy,7,8 which can
affect various defect properties, such as the favorable type of
defects and the location of defects in a given host material, the
defect concentration at certain temperature, and defect
migration pathways near surfaces or grain boundaries.9,10

Therefore, fast and accurate predictions of defect formation
energies are crucial to understanding the defect-related
phenomenon in materials, enabling high-throughput screening
of host material with desired defect properties.
To evaluate the defect formation energies, first-principles

calculations based on the density functional theory (DFT) are
often employed.8,11,12 However, this method often involves
large supercell calculations that are computationally expensive.
Therefore, various machine learning methods, along with
physics-inspired descriptors (such as the formation enthalpy,
the energy above hull, the band gap, and the crystal reduction
potential), were proposed to accelerate the predictions of defect
formation energies.13−17 Although these machine learning

models have achieved great accuracy in predicting defect
formation energies, they lack the generalizability to accom-
modate a wide spectrum of materials because they rely on
human-selected features, which are designed specifically for
certain types of materials. Besides, due to themodel architecture,
most reported (shallow) machine learning models cannot
incorporate the local structural information and thus cannot
evaluate the defect formation energies for different symmetry-
inequivalent atomic sites with structural relaxations, restricting
their applications in predicting defect formation energies in
complex materials that can potentially host multiple defects.
Recent years, graph neural networks (GNNs) have shown

remarkable success in predicting various material properties,
including the formation enthalpy, band gap, and bulk
modulus.18 −20 In a GNN model, the input crystal structure is
first converted into a graph, where the nodes and edges represent
the atoms and bonds in the unit cell.21 The graph then passes
through several convolution layers, where the node information
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exchanges between adjacent nodes and aggregate together,
allowing the GNN model to learn the local chemical
environment of each atom and to extract latent representations
of the whole crystal structure, which will be used to make
predictions on material properties. Until recently, few GNN
models have been applied to predict defect formation energies.22
−24 As first attempts to use GNNs to predict defect related
properties, these models incorporated various levels of chemical
information, including the bond angle whichmay help detect the
disrupted chemical bonding network near the vacancies,24 but
their prediction accuracy is currently limited for a diverse set of
materials. The reasons for the poor performance of GNNs on
predicting defect formation energies are 2-fold. First, defect
formation energies highly depend on the atomic configurations
near the defective sites and are independent of the atoms far
from the defective sites, and are thus local properties of the
crystal, contrary to the formation enthalpy or the band gap that
are global quantities of the whole crystal. Second, GNNs suffer
from the oversmoothing problem.25 When passing through
consecutive convolution layers, features between adjacent nodes
will exchange and aggregate, and finally converge to constant
values in a deep GNN model. This could lead to incorrect
predictions especially when the prediction target only depends
on the local atomic configuration. Therefore, in order for GNNs
to accurately predict the defect formation energies, the structural
information about the defects, such as the distance to the defect
site or the number of nearby defects, must be encoded explicitly
in the features of each node. This approach amplifies the
differences in node features between the nodes near and far from
the defect site, which can potentially reduce the oversmoothing
effect of GNN and direct the focus of the neural network toward
the nodes near the defects.
Based on these motivations, we propose to incorporate the

persistent homology features into GNN models to predict the
defect formation energy accurately. Persistent homology
features are generated from the topological invariants of the
homology group associated with the surrounding atomic
configurations near each atom.26,27 These features have already
been applied in topological data analysis and in predicting
(global) properties of molecules and materials, such as the
formation enthalpy.28,29 In this work, we demonstrate that
persistent homology features encode the local structural
information related to defects and can significantly increase
the prediction accuracy of defect formation energies in complex
materials. We show from several toy models that persistent
homology features contain such structural information as the
type and the size of defects, the number of defects around each
atom (within a cutoff radius), and the distance to the defects
from each atom. To verify the efficacy of persistent homology
features, we train various GNNmodels on the dataset containing
around 7700 O-based perovskite defective structures with
monovacancies to predict their neutral defect formation
energies. We find that introducing the persistent homology
features significantly increases the performance of GNNmodels,
with the mean absolute error (MAE) reduced by 55%. Besides,
our model with the persistent homology features and the global
max pooling layers can overcome the convergence issue with
respect to the supercell size reported previously.24 Furthermore,
we also apply the GNNmodel to datasets of a prototypical cubic
perovskite BaTiO3

30 with multiple substitutions and multiple
vacancies. We show that the persistent homology features also
help capturing the defect−defect interaction energies in those
data sets. These results suggest the crucial role of persistent

homology features in extracting local structural information near
defects and in predicting physical and chemical properties
related to defects in complexmaterials usingmachine learning or
deep learning methods.

■ RESULTS
Persistent Homology Features andDefects.A simplicial

complex X is formed by gluing “standard” geometric objects
(simplicies) of various dimensions (such as points, line
segments, triangles, tetrahedrons) together. One of its
homological properties is the d-dimensional Betti number
βd(X), defined as the rank of the homology group Hd(X). Any
nontrivial element in the homology groupHd(X) corresponds to
some d-dimensional cycle (cyclic simplices) that is not
simultaneously the boundary of any (d + 1)-dimensional
chain, namely a d-dimensional “hole”; for example, a circle is a
one-dimensional cycle and encloses a hole, whereas the
boundary of a disk, though also being a one-dimensional cycle,
does not enclose a hole since it is the boundary of the two-
dimensional disk. Therefore, the d-Betti numbers characterize
the number of d-dimensional holes in the simplicial complex and
reflect the connectivity of the simplicial complex (see
Supporting Information I for definitions).31 In the context of
topological data analysis, any set of data points can be converted
into a simplicial complex by connecting the points within some
cutoff radius together. The cutoff radius is allowed to vary (to an
upper bound) so that the underlying pattern behind the given set
of data points can be revealed through the birth, the death, and
the persistence of Betti numbers (see Supporting Information I
for more discussions).,26,32,33

In chemical systems such as molecules or materials, the
atomic configuration near each atom can be naturally regarded
as a point cloud, and the chemical bonding network as a
simplicial complex, allowing for the calculations of persistent
homology features. Previous work introduced atom-specific
persistent homology (ASPH) features as a topological
representation of the crystal structure.29 For each base atom
and each chemical species in the unit cell, we generate a point
cloud which centers at the base atom and includes all other
atoms of the given chemical species within the given upper
bound cutoff radius. The persistent homology features are then
calculated for each point cloud; since crystalline materials are
three-dimensional, only 0-, 1-, and 2-Betti numbers are relevant.
The birth, death, and persistence of these Betti number features
are further characterized by five statistical quantities, including
the minimum, maximum, mean, standard deviation, and the
(weighted) sum, resulting in 35 statistical representations of the
persistent homology features for each atom in the unit cell (for
0-Betti numbers, only its death will be considered). An example
is shown in Figure 1A, where the crossed atom represents the
vacancy in the two-dimensional lattice. The point cloud
centered at the red atom includes the vacancy site, while that
centered at the black atom excludes the vacancy site. The 0- and
1-Betti numbers are calculated for these two point clouds and
their statistical quantities will be collected as the persistent
homology features for these two atoms, respectively.
Since persistent homology features contain information about

holes within a point cloud, we conjecture that these features can
unveil the structural changes induced by defects in materials. In
this work we examine two of the most common defect types,
namely vacancies and substitutions. Vacancies can be regarded
as holes in a material and thus be detected by persistent
homology features, while substitutions, as we will demonstrate
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below, are also encoded in these ASPH features because the
point cloud is constructed for each chemical species around the
base atom.
To verify our hypothesis, we construct a toy model consisting

of a one-dimensional atomic chain with equal interatomic
spacing (1 Å). First, we consider the case without any defect, as
shown in Figure 1B. Since this is a one-dimensional chain, only
the 0-Betti number features are relevant. Therefore, we calculate
the 0-Betti number features for all atoms with the upper bound
cutoff radius to be 3 Å and generate the statistical quantities of
them. As discussed in Supporting Information I, 0-Betti

numbers reflect the connected components in the simplicial
complex. Therefore, all atoms on this one-dimensional chain
have the same features, with both the minimum and the
maximum statistical quantity to be 1 Å, which corresponds to the
interatomic distance. We further consider the case with one
vacancy in the chain, as shown in Figure 1C. For atoms that are
at least 3 Å far away from the vacancy, the point cloud around
them does not contain the vacancy site. Thus, the maximum
death of their 0-Betti number features is 1 Å, above which all
atoms in the point cloud are connected with each other and form
one trivial connected component. On the other hand, for atoms
less than 3 Å away from the vacancy site, the maximum death of
their 0-Betti number features increases to 2 Å which is required
for the two connected components to the left and right of the
vacancy to connect with each other. Therefore, the 0-Betti
number features can help distinguish the atoms close to or far
from the defect site, as determined by the upper bound cutoff
radius.
Apart from vacancies, we also argue that ASPH features are

sensitive to substitutions. By definition, for each atom in the unit
cell, the point cloud which will be used to calculate persistent
homology features is constructed for each chemical species.
Therefore, when an atom is substituted by an exotic species, the
point cloud for this species will contain only two points (the base
atom and the substituted atom), and the critical distance at
which these two points are connected is exactly the distance to
the substitution site. This is confirmed by the above toy model
with one substitution, as shown in Figure 1D. The calculated
features clearly reflect the distance to the substitution from each
atom.
Additionally, in the two-dimensional case, not only the 0-Betti

numbers, but also the 1-Betti numbers are relevant. Here we
calculate the 1-Betti number properties for a two-dimensional
lattice with one vacancy, shown in Figure 1E. In this case, the
death of the 1-Betti number indicates the critical cutoff radius at
which the hole formed by the vacancy is filled, with the critical
cutoff radius to be the diagonal length of the square. More
discussions on other toy models, including two distant vacancies
and multiple element cases, can be found in Supporting
Information I.
Although we only considered the vacancy and substitution

defect in the following numerical tests on perovskite dataset (see
next section), we expect that ASPH features can also reflect
information on other types of defect such as interstitial defect.

Figure 1. (A) A schematic plot of the calculation procedure of atoms-
specific persistent homology features. (B) The calculated statistical
quantity of the death of 0-Betti number features for the one-
dimensional pristine toy model. (C, D) Same as (B), but for the toy
model with one vacancy (C) and with a substitution (D) respectively.
(E) The calculated statistical quantity of the death of the 1-Betti
number features for the two-dimensional toy model with one vacancy.

Figure 2. A schematic plot of the GNN model based on the attention mechanism to predict the defect formation energies. The input defective
structure will be converted into a crystal graph, where node features contain both the elemental features (such as the mass mX, the radius rX, and the
electronegativity χX of element X) and the ASPH features, calculated by constructing the point cloud around each atom and tracking the birth/death/
persistence of the homology features. The graph passes through several graph convolution layers, where features on adjacent nodes exchange and
aggregate. The convoluted node features are gathered together into the global latent representation of the graph which will be used to predict the defect
formation energy.
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The additional atom and chemical bonding can be effectively
captured when constructing the crystal graph, and if the
interstitial atom belongs to an exotic chemical species, its unique
contribution to the local structure will be explicitly reflected in
the ASPH features, similar to the case of substitution defects. As
shown in Supporting Information I, we constructed a two-
dimensional toy model with one interstitial defect, and the
statistical quantities are clearly distinct between atoms close to
and far from the interstitial defect.
Finally, we anticipate that in three-dimensional complex

materials with multiple elements and varying bond lengths and
bond angles, 0-, 1-, and 2-Betti numbers are all nontrivial, and
their statistical quantities can jointly capture the structural
information near the defects, including the number of defects
near each atom, the distance to those defects, and the size of the
vacancies.
Vacancy Formation Energy inO-Based Perovskites.To

numerically verify the capability of persistent homology features
in capturing local structural information on defects and
improving the prediction accuracy of defect-related properties
in complex materials, we construct GNN models to predict the
neutral defect formation energies for various datasets according
to eq 1. These models can be easily adapted to predicting other
defect properties such as charge transition levels and charged
defect formation energies. For these properties, the defect
charge state can be added to the global feature of the crystal and
used to predict charged defect properties through the multilayer
perceptron in the GNN model.24

Our GNN model features a typical model architecture for
graph property prediction, as shown in Figure 2. First, the
defective supercell structure is converted into a graph, where the
nodes and the edges of the graph represent the atoms and the
chemical bonds in the crystal. The node features carry the
atomic information on each atom, including the elemental
features and the ASPH features. In this work, we consider three
types of elemental features: atomic number (only), elemental
properties (including the atomic number, atomic mass, atomic
radius, electron affinity, row and group numbers), and the one-
hot encoding of the elemental type.21 The complexity and
representation capability progressively increase for these three
different options; the atomic number feature has been used to
predict configurational disorder related properties, which
usually involve only few elements,34 while the one-hot encoding
feature was used to predict the formation enthalpies and the
band gaps of a wide range of materials in Materials Project,35

thus used in our work (benchmark results on elemental features
can be found in Supporting Information II). On the other hand,
the edge features represent the bonding properties, which in our
case are simply the bond length expanded in a Gaussian function
basis.21 Note that in other types of higher-order GNN models,
more bonding information on the crystal, such as the bond
direction and the bond angle as well as themultiplet interactions,
can also be included in the graph.36,37

The generated graph then passes through several graph
convolution layers, where each node receives information from
adjacent nodes and aggregate them together. Depending on the
methods to aggregate and update node features, various
convolution layers were proposed previously. In this work, we
consider two convolution layers with the attention mechanism
(the graph attention neural network (GAT)38,39 and the
Transformer network40 and one without the attention
mechanism (the crystal graph neural network (CGCNN).21 In
attention-based neural networks, the importance of an adjacent

node is expressed as the attention coefficient which is calculated
from both the node features of the two nodes and edge features
and reflects the similarity between the two node features
(elemental properties and the persistent homology features) in
the latent space. The node features are then updated by a linear
combination of all adjacent node features weighted by the
attention coefficients. The attention mechanism allows the
GNN model to capture the chemical and structural distinctions
between adjacent atoms and in general leads to better
performance on various tasks.41 In addition to those networks,
we also consider the equivariant neural network (E3NN);42 this
network employs the E(3)-equivariant convolution operation
which utilizes the spatial symmetries in crystals to make accurate
predictions on material properties. In the following, the
convolution layer type is considered a hyperparameter and
optimized through Bayesian optimization (see Methods
section), unless otherwise specified. Finally, after the graph
convolution layers, all node features in the graph are gathered
together through graph pooling layers to produce the latent
representation of the whole crystal, which will be further passed
to a multilayer perceptron network to obtain the defect
formation energy. We will demonstrate below that the choices
of node features, graph convolution layers, and pooling layers
significantly affect the performance of GNN models; for the
tasks related to predicting defect properties, the optimal choices
of themodel architecture are different from typical GNNmodels
used to predict the formation enthalpies or band gaps of bulk
materials.
Now we demonstrate the efficacy of persistent homology

features using the dataset containing O-based perovskite
defective structures. Here we consider all available mono-
vacancies in these structures. To construct our dataset, we
choose all perovskite structures with the chemical formula ABO3
fromMaterials Project,35 excluding those with cations after La in
the periodic table. Most elements after La (such as the f-block
elements, 6p and 6d elements) require further detailed
investigations on the optimal U(J) values that highly depend
on individual perovskite structures within the DFT + U
framework. Besides, excluding structures with those elements
in our dataset does not affect the generalizability of our GNN
models and the overall conclusion of our work. Next we use the
pymatgen-analysis-defects package43,44 to generate the super-
cells to calculate the defect formation energies for each
perovskite structure. The supercells are constructed as nearly
cubic cells with the minimum (maximum) lattice constants
along each direction to be 10 Å (25 Å), so that the interactions
between defects and their periodic images along each Cartesian
direction are minimal. Structures whose supercells cannot be
constructed into the nearly cubic cell within the size range are
discarded. Using the generated supercells, we enumerate all
available symmetry-inequivalent atomic sites and generate the
corresponding vacancy structures (including both cation and
anion vacancies). To obtain the defect formation energies, we
performed single-shot DFT calculations (without atomic
relaxations) on the defective structures, according to eq 1.
While we did not explicitly perform geometry optimizations
when constructing the dataset, GNN models have the natural
ability to capture geometric changes during relaxation processes
through the edge properties, and since ASPH features can be
easily incorporated into various kinds of GNN models that can
capture the structural changes effectively, the lack of atomic
relaxations does not affect our conclusion qualitatively.
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Using the above procedure, our dataset contains around 7700
defective structures derived from around 1100 host (pristine)
structures. As shown in Figure 3A, this dataset contains host

structures from all crystal families, thus representing a
comprehensive array of crystal structures. Besides, our dataset
contains vacancies of all elemental types (before La), and the
numbers of each type of vacancy are shown in Figure 3B; some
of the most common elemental types are also summarized in
Table 1. The various atomic and chemical bonding config-
urations make it challenging for GNN models to learn the
structural information and predict the defect formation energies.

First we present benchmark calculations on our constructed
dataset using two state-of-the-art GNN models, namely the
CGCNN model21 and the higher-order model atomistic line
GNN.45 The latter model also incorporates the bonding angle
using the line graph methods, allowing the model to capture the
disrupted chemical bonding network near the defect sites and to
make more accurate predictions about defect-related proper-
ties.24 Both models used only the elemental features as the node
features and global mean pooling layers. After training and
testing on our dataset, the MAEs of these two GNN models are
1.86 and 1.83 eV, respectively.
The poor performance of these models demonstrates the

challenge of our constructed dataset, but more importantly, the
uniqueness of defect property prediction tasks. First, defect
property calculations often require large supercell structures.
Since GNN models involve graph pooling operations on all
nodes and gather all node features as the global representation of
the graph, the distinct node features of atoms near the defect site,

generated by a disrupted chemical bonding network (as is the
case in atomistic line GNN), are averaged out by the node
features of the numerous atoms located far from the defects in
the supercell. Therefore, the performance of GNN models
generally worsens using larger supercells for defect calculations,
and this trend was reported previously.24 Second, GNN models
suffer from the oversmoothing problems.25 Since the node
features are exchanged between adjacent nodes for each
convolution layer, the node features will exponentially converge
to constant values in a deep GNN model. In our scenario, this
problem will also average out the node features and make the
distinct features carried by atoms near the defect site invisible to
the model. Due to the above two issues, current GNN models
cannot well capture the presence of defects and predict their
properties on a dataset with limited number of data points, and
additional defect-aware features must be added to the GNN
models to better describe the structural information of defects.
Although several chemical descriptors were proposed to

capture the local chemical environment in materials, they are not
readily suitable to represent the local structural changes due to
defects.46 −48 For example, the Coulomb matrix descriptors
capture the local structure through the electrostatic interactions
between nuclei, but they cannot distinguish the presence of
nearby vacancies inherently since it relies on pairwise nuclear
interactions. Another widely used descriptor is the smooth
overlap of atomic positions. However, this method suffers from
the summation of all atoms within the cutoff radius which can
dilute the defect contribution to the whole crystal graph.
To overcome these issues, we choose to explicitly include the

local chemical environment information associated with the
defect site, represented as the ASPH features, into each node
feature of the GNN model. As demonstrated above, the ASPH
features are specifically sensitive to the presence of defects, and
not dependent on any hyperparameter other than the cutoff
radius. Therefore, these additional features can amplify the
differences in node features between atoms located close and far
from the defect sites for a diverse dataset. Besides, since ASPH
features are derived from the statistical quantities of the
persistent homology features, these features are not averaged
out by other atoms that do not contribute to the defect
properties or by the oversmoothing effect (along with proper
choices of graph pooling layers), therefore enhancing the
prediction accuracy of the GNN model.
For each defective structure, we generate the ASPH features

(35 statistical quantities of the birth/death/persistence of Betti
numbers) for each atom in the supercell.29 When generating the
features, the upper bound cutoff radius can affect the final
performance of the GNNmodel. With larger upper bound cutoff
radius, structural information from farther defects can be
included, but computations will also become more expensive. In
Supporting Information II, we present convergence test results
on the upper bound cutoff radius, and decide to use 10 Å as the
upper bound cutoff radius to generate the persistent homology
features for the whole dataset. Besides, the generated homology
features could be correlated with each other. To extract a concise
feature vector and remove the redundant features, we preprocess
the calculated ASPH features by the principal component
analysis method, which reduces the dimensionality of features
through linear transformations and concentrates the informa-
tion in features into the principal components.49 As shown in
Supporting Information II, the MAE reduces as more principal
components are included into the node features and reaches
convergence at around 6 principal components; the sum of the

Figure 3. (A) The number of host structures of each crystal family in
our constructed O-based perovskite dataset. The insets are example
materials from each crystal family. (B) The number of vacancies of each
elemental type in our dataset. Vacancies of all elemental types before La,
except for noble gas elements, are present in our dataset.

Table 1. Number of Vacancies of the Most Common
Elemental Types in the Constructed O-Based Perovskite
Dataset

vacancy type O Sr Te Cr Ca Fe V

number 4049 216 203 178 173 171 161
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explained variance percentage of the first 6 principal
components is 99.5%, suggesting that those principal
components already contain most of the information from the
original 35 persistent homology features in our dataset.
In Figure 4, we show the performance of GNN models (with

global max pooling layers, see discussions below), including

CGCNN, GAT, Transformer networks, on our constructed O-
based perovskite dataset. By including the ASPH features, the
MAE decreases for all GNN networks, suggesting that ASPH
features can consistently improve the prediction accuracy on
defect-related tasks. Since those features can be easily
incorporated into the node features, we expect that the
improvement will also be observed for other GNN models.
Furthermore, among all networks, the Transformer network
performs the best, with the MAE reduced by 55% from 1.55 to
0.72 eV. This agrees with our previous findings in the
configurationally disordered materials.34 In Transformer net-
works, the features of the central node and adjacent nodes are
treated as queries and keys, respectively. The overlap of the
queries and keys reflects the similarity between the two nodes,
determined by not only the elemental properties but also the
chemical environment incorporated by ASPH features. Since the
ASPH features entail the defect-related structure information
such as the number of nearby defects and the distance to those
defects, the attention mechanism allows the network to
effectively extract the chemical information of defects and
make accurate predictions on the defect properties. In addition
to the above networks, we also trained the equivariant neural
network (E3NN) on the dataset, and similar to other networks,
introducing the ASPH features reduces the MAE from 1.94 to

1.27 eV (see Supporting Information II). On our dataset, E3NN
network performs worse than the Transformer network, possibly
due to the fact that both the node features and the prediction
target are invariant quantities and also due to the diverse
chemical bonding network in the host materials in our dataset.
Nevertheless, we note that ASPH features can still improve the
performance of the E3NN network.
Furthermore, in addition to the node features, we note that

graph pooling layers will also affect the performance of GNN
models on defect-related tasks. Previous GNN models for
material property predictions usually use global mean (sum)
pooling layers to collect all node features, which calculates the
mean (sum) of those features as the global representation of the
graph. However, this method includes the contributions from all
node features and thus averages out the distinct features related
to defects, as discussed above. Therefore, instead of global mean
(sum) pooling, we choose to use global max pooling layers to
extract the maximum features over all nodes, which will direct
the focus of our GNN models to the most distinct features of
atoms near the defect sites. The MAEs using different pooling
operations are summarized in Table 2 (more discussions can be

found in Supporting Information II). Those results suggest that
global max pooling layers are effective in extracting the defect
information from the large supercell structures.
More importantly, the global max pooling layers, along with

the ASPH features, can help overcome the previously reported
limitation where the performance of GNN models is not
convergent with respect to the size of the defective supercells.24

Here, we demonstrate that our GNN model which uses global
max pooling layers can produce converged MAE with respect to
the supercell size. Since the crystal systems of our host (pristine)
perovskites are diverse and the defective supercells are
constructed nearly cubic, making it computationally expensive
to increase the periodicity in all directions, we choose to focus
only on host perovskites in the cubic and the tetragonal crystal
system, where the transformation matrix to the defective
supercell is diagonal, so that increasing the periodicity along
Cartesian directions does not change the overall shape of the
supercell significantly. Based on the constructed defective
supercells (which already contain hundreds of atoms), we
consecutively increase the size of the supercell only in the
direction along which the lattice constants are the smallest, as
shown in Figure 5A, while keeping the number of vacancies
fixed, assuming that the defect formation energies from DFT
methods remain constant. As the size of the supercell increases,
the number of atoms within each supercell increases drastically,
as shown in Figure 5B. In panel (C), the MAE of the
Transformer GNN model using the global mean pooling layers
increases gradually as the size of the supercell increases due to
the “trivial” atoms irrelevant to the defect property. On the other
hand the MAEs of our current model using the global max
pooling layers and the ASPH features are convergent with
respect to the supercell size (though the MAE is larger than that
trained on the whole dataset, possibly due to less amount of

Figure 4. Comparison of the performance of GNN models (using
global max pooling layers) on the O-based perovskite dataset without
and with ASPH features. (A, B) CGCNN networks. (C, D) GAT
networks. (E, F) Transformer networks.

Table 2. Comparison of MAE (eV) of the Transformer
Models using Different global Pooling Layers on the O-Based
Perovskite Dataset without and with ASPH Features

global pooling operations max sum mean min-max

without ASPH features 1.55 1.75 1.74 1.79
with ASPH features 0.72 0.90 0.86 0.85
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data), demonstrating that our GNNmodel can also adapt to the
dilute defect limit.
Finally, we narrow our dataset down to structures with only

O-vacancies. For the whole dataset, the accurate prediction of
the vacancy formation energies requires information about the
local chemical environment around the vacancy as well as the
elemental type of the vacancy. As we focus on only O-vacancies,
the prediction task is simpler than that on the whole dataset
since the elemental type information on the vacancy is no longer
needed. However, most of the host materials in our dataset still
possess multiple symmetry-inequivalent O-sites with varying
vacancy formation energies, making it challenging for previously
proposed machine learning and GNN models to tackle. With
our GNN model with ASPH features and global max pooling
layers, the MAE is 0.45 eV, which is comparable to most
previous machine learning and deep learning models predicting
oxygen vacancy formation energies in oxides.50 −52

Multi-defect Interaction Energy in BaTiO3. As discussed
above in the toy models, persistent homology features contain
information not only about vacancies, but also about
substitution defects. Therefore, we anticipate that those features
can also improve the prediction performance for structures with
substitutions. Here we use the cubic perovskite BaTiO3 as an
example and consider the defect formation energies of multiple
substitutions. We construct the dataset containing 1000
defective BaTiO3 in a 3 × 3 × 3 supercell, and randomly
replace at most 8 Ba (out of 27) atoms by Ca or Sr and at most 4
Ti (out of 27) atoms replaced by Zr; those substitutions are
common in BaTiO3.

53 By training our GNN model on this
dataset, we find that after including the persistent homology
features, the MAE decreases slightly from 0.07 to 0.03 eV, and
the comparison between defect formation energies of DFT and
GNN methods are shown in Figure 6a. We note that
substitutional defects do not change the overall chemical
bonding network of BaTiO3, but only replace atoms by other
chemical species randomly, similar to configurationally dis-
ordered materials.34 In this case, even without the persistent
homology features, our GNN model can already capture the

elemental swaps and make accurate predictions on the
formation energies, and adding the persistent homology features
only slightly increases the accuracy.
Furthermore, we consider BaTiO3 with multiple vacancies.

The above discussions revealed that persistent homology
features can also capture the number of vacancies around each
atom. Therefore, persistent homology features can also benefit
predictions with multiple vacancies. We construct another data
set containing 1000 defective BaTiO3 in a 3 × 3 × 3 supercell,
and randomly remove (exactly) 1 Ba, 1 Ti, and 3 O atoms. Since
we constrained the host material and also the number of
vacancies, the energy fluctuations of different defect config-
urations arise from the vacancy−vacancy interactions. There-
fore, the prediction target in fact reflects the multivacancy
interaction energy; however, for consistency, we still call it the
defect formation energy and calculate it from eq 1. By including
the ASPH feature, the MAE decreases from 0.55 to 0.43 eV,
where the comparison between DFT and GNN formation
energies is shown in Figure 6b. The worse performance on tasks
related to vacancy defects than to substitutional defects is
because vacancies disrupt the chemical bonding network in
materials and affect the exchange of information indirectly
through the adjacency matrix of graphs, making it more
challenging to capture the vacancy formation energies than
substitution formation energies. Besides, by the construction of
ASPH features (Figure 1), those features are naturally more
sensitive to substitutions as exotic chemical species, while
vacancies are obliquely encoded in the birth and death of 1-Betti
numbers and 2-Betti numbers. We believe more direct encoding
of the vacancy information in the persistent homology features,
along with advanced GNN models which capture the
interrupted chemical bonding network due to defects (such as
higher-order GNNs), could further improve the prediction
accuracy on defect properties.

■ CONCLUSIONS
In this work, we reveal the relationship between persistent
homology features, obtained from the topological invariants of
the homology group of point clouds, and the defect structures
including multiple vacancies and substitutions. Through several
toy models, we demonstrate that persistent homology features
contain the local structural information near each atom, such as
the type and the number of defects, the distance to those defects
from each atom, and the size of the defects. These persistent
homology features can be easily incorporated into the node

Figure 5. (A) Illustration of the defective supercell with increasing
sizes, where N = 0 is the original defective supercell, and N > 0
represents the supercell by repeating theN − 1 cell along the directions
along which the lattice constant is the smallest. (B) The average number
of atoms of the defective supercells of different sizes. (C) The MAEs of
the Transformer GNN model using global max pooling layers and
ASPH features (black line), and using global mean pooling layers and
without ASPH features (red line) on the dataset of defective supercells
of different sizes.

Figure 6. (A) The comparison between the defect formation energies
from the DFT method and the GNN model on the testing set of the
BaTiO3 dataset with multiple substitutions. The inset is a typical
structure in the dataset, with the following color code: light green: Ba;
dark green: Sr; gray: Ca; yellow: Zr; cyan: Ti; red: O. (B) Same as (A),
but for the dataset of BaTiO3 with multiple vacancies.
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features in any existing GNN models and improve the
performance of GNN models in predicting defect-related
properties.
We numerically verify the role of persistent homology features

using the dataset of O-based perovskite materials, which covers a
wide spectrum of crystal systems and vacancies of various
elemental types. We construct and train the GNNmodels on the
dataset to predict the neutral vacancy formation energies. The
results demonstrate that including the persistent homology
features, along with global max pooling layers, can significantly
increase the prediction accuracy of GNN models with the MAE
reduced by around 55%, outperforming previous machine
learning and GNN models. Our model also produces MAE that
does not depend on the supercell sizes, allowing for accurate
predictions of defect properties in the low density limit.
Furthermore, we demonstrate that persistent homology

features can help predict the defect−defect interaction energies
using a dataset of the defective cubic perovskite BaTiO3 with
multiple substitutions and with multiple vacancies. These results
justify the essential role of persistent homology features in the
accurate predictions of defect properties, such as defect
formation energies and charge transition levels, using machine
learning and deep learning methods, and will benefit future
studies on high-throughput screening and design of the
combination of host materials and specific defects with desired
properties and functionalities.

■ METHODS
Density Functional Theory Calculations. First-principles

calculations are carried out using the Vienna Ab initio
Simulation Package54,55 with projector augmented wave
pseudopotentials.56,57 We used the Perdew−Burke−Ernzerhof
functional in the generalized gradient approximation for all
calculations.58 The kinetic energy cutoff of the plane-wave basis
sets is 550 eV, and the energy convergence threshold is 10−6 eV.
The Γ k-point sampling scheme is used for all pristine and
defective supercell calculations, and for elemental energy
calculations we used the k-point grid with the k-point density
of 0.03(2π/Å). We performed the spin-polarized calculations
with the DFT + U scheme for 3d elements, with the U values
taken from Materials Project.35 The DFT-D3 method was also
used to take account of the van der Waals interactions59,60 in all
calculations.
In this work we only consider the neutral charge state for all

defects, and therefore the defect formation energy for the defect
MC, following the Kröger-Vink notation, is defined as

[ ] = [ ] [ ] +E M E M E nbulkf
C C

i
i i

(1)

where ni is the difference in the number of elements between the
defective and the pristine structures ( >n 0i for removed atoms
and <n 0i for added atoms), and μi is the chemical potential of
element i, which we assumed to be the energy of the most stable
single crystal of this element (except for H, N, O, F, Cl, which we
calculate their energies from corresponding gas molecules).7,8

Training GNN Models. To train our GNN model, our
dataset is split into the training set, validation set, and testing set
according to 60:20:20 ratio. The validation set is used to prevent
overfitting on the training set, which usually occurs when the
dataset contains few data. The MAE on the validation set is
tracked during the training procedure, and we use the model

with the minimal MAE on the validation set as our optimal
model for testing.
The hyperparameters are optimized based on the Bayesian

optimization method as implemented in Optuna,61 which
calculates the expected improvement from a new set of
hyperparameters using the tree-structured Parzen Estimator
method,62 and decides whether to accept or decline this set of
hyperparameters. The set of hyperparameters used in this work
includes the number of convolution layers, the number of
hidden channels in each convolution layer, the number of
attention heads (used only in GNN models with the attention
mechanism), learning rate, weight decay, and batch size.
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