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Abstract: Twenty-four-hour samples of fine ambient particulate matter (PM2.5; particles with
aerodynamic diameters ď2.5 µm) were collected in a suburban (quasi-rural) area in Racibórz
(Poland) between 1 January 2011 and 26 December 2012. The samples were analyzed for the
contents of 28 elements. Sources of PM2.5 were identified and the contribution of each source to the
PM2.5 concentration was assessed using an enrichment factor (EF) analysis, a principal component
analysis (PCA), and multi-linear regression analysis (MLRA). In the cold season (January–March
and October–December 2011–2012), the mean ambient concentration of PM2.5 in Racibórz was
48.7 ˘ 39.4 µg¨m´3, which was much higher than at other suburban or rural sites in Europe.
Additionally the ambient concentrations of some toxic PM2.5-bound elements were also high, i.e., the
mean ambient concentrations of PM2.5-bound As, Cd, and Pb were 11.3 ˘ 11.5, 5.2 ˘ 2.5, and
34.0 ˘ 34.2 ng¨m´3, respectively. In the warm season (April–September 2011–2012), the PM2.5 and
PM2.5-bound element concentrations in Racibórz were comparable to the concentrations noted at
other suburban (or rural) sites in Europe. Our findings suggest that elemental composition and
concentrations of PM2.5 in Racibórz are mainly influenced by anthropogenic emissions, i.e., the energy
production based on coal and biomass combustion, traffic, and industry.

Keywords: respirable particulates; source apportionment; MLRA; PCA; traffic emissions;
municipal emission; coal combustion; hotspot area in Europe

1. Introduction

Among all air pollutants, particulate matter (PM) affects the environment most extensively.
It contributes to a variety of health effects and climate changes [1–9]. The strength and direction of
this influence depends on the concentration of PM and its physicochemical properties. Therefore, the
most sophisticated apparatus and methods are used to investigate the chemical composition of PM.
Knowledge of the chemical composition of PM is fundamental to enable proper identification of PM
sources. It also reveals the PM source-receptor links. Moreover, it allows researchers to develop
more efficient PM emission reduction methods. The relationships between the elemental composition
and the origin of PM have been intensively studied for the last ten years. One of the most common
receptor modelling techniques [10–14] used for assessing the origin of PM based on its elemental
composition is principal component analysis (PCA) combined with multi-linear regression analysis
(MLRA) (Table 1). Despite significant progress in the identification of PM pollution sources, knowledge
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of the possible origin of PM2.5 (fine particles; aerodynamic diameters ď2.5 µm) is still incomplete.
There is a limited number of appropriate PM2.5 sampling points in Central and Eastern Europe (Table 1),
which substantially restricts accurate identification of PM sources [15].

An interesting contrast can be noticed between the origin of ambient particulate matter in
Western Europe and in Poland, especially in the highly urbanized and industrialized Silesia region
(one European PM pollution hotspot), where municipal and industrial emissions and emissions
from energy production are greater than traffic emissions. The structure of air pollution in Poland
is representative of Eastern and Middle Europe countries, where the energy production relies on
the combustion of fossil fuels (mainly coal). Zabrze and Katowice (Poland) are well monitored
areas in terms of PM concentrations and elemental composition of PM2.5. The two cities, located
approximate 60 km north of Racibórz, are typical in terms of atmospheric air pollution by PM. Both in
Zabrze and in Katowice very high mass contributions of PM2.5 in total PM are observed, particularly
in winter [16–19]. Analysis of the chemical composition of fine PM suggests anthropogenic sources of
PM (domestic furnaces, fireplaces, road traffic, etc.) [19–21].
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Table 1. Particulate matter (PM) source apportionment results based on the principal component analysis (PCA) and multi-linear regression analysis (MLRA) analysis
obtained from research conducted at various locations all over the world.

Location, Station Type,
Measurement Periods, PM Fraction Factors Identified Together with Elements Included and Suggested Source Names 1

Diabla Góra (PL 2), regional
background (EMEP),
January–March 2009, PM10 [22] 3,4

As, Cd, Ni, Pb, Zn, SO4
2´,

HNO3 + NO3
´ (MI, FA)

Cu, Ni, Zn, SO4
2´, NH3

+ NH4
+ (SA, (L)RT)

Cr, Cu
(AN, TRexh, TRnonexh)

Warsaw (PL), urban,
November–December 2013, PM2.5 [15]

Sc, Se, As, Pb, Br, Mg, K, Zn, Fe,
S, Cl, Na, Ca, Co, Sr, Al, Mn, Si,
Cu (FF, BB)

Ni, V, Mn, Ca, Si, Cu,
Ti (Oil)

Cr, Sr, S
(TRexh, TRnonexh)

Ti, Ni, Al, Si, Cd
(MM, TRnonexh)

Wrocław (PL), residential,
January–April 2009, PM2.5 [23]

H, Cl, K, Ca, Cu, Zn, Br, Rb, Fe,
Pb (BB, TRexh, TRnonexh) Al, Si, Ti, Ca (MM) V, Ni, S (Oil) Cr, Mn, As, Pb, Se, Br, Fe

(MI, FF)

Zabrze (PL), urban background,
2007, PM2.5 [16]

Cl, Mn, Fe, Cu, Zn, Br, Pb
(TRexh, TRnonexh, AN)

S, Ca, Ti, Sb
(FF, TRexh, TRnonexh) Al, K, Sr (MM, BB)

Katowice (PL), urban background,
2007, PM2.5 [16]

S, Cl, K, Cu, Zn, Br, Sb, Pb
(TRexh, TRnonexh, AN) Ti, Cr, Mn, Fe (MI) S, Ca, Se (FF)

Brzezina (PL), rural, August 2009,
PM10 [24]

K, Ca, Ti, Mn, Fe, Zn, Br, Pb
(MM, TRexh, TRnonexh) Cu, As (MInonfer)

Brzezina (PL), rural, February 2010,
PM10 [24]

K, Ca, Cr, Mn, Fe, Cu, Zn, Br,
Pb (AN) Ca, As (MInonfer)

Krakow (PL), urban, June 2009,
PM10 [24] K, Ca, Mn, Fe, Zn (MI) Cu, Br, As

(TRexh, TRnonexh) Ti, Cr (MM)

Krakow (PL), urban, January 2010,
PM10 [24]

K, Cu, Zn, As
(AN, TRexh, TRnonexh) Ca, Cr, Mn, Fe, Br (MI)

Menen (BE), suburban, 2003, PM2.5 [25] S, Si, Al, K, Ti, Ca, Fe
(MM, TRnonexh)

Cr, Cu, Zn
(TRexh, TRnonexh) V, Mn, Ni, Pb (IN) Br, Rb (IN/MM)

K-Puszta (HU), regional background
(EMEP station), May–June 2006,
PM10 [26]

Mg, Al, Si, P, K, Ca, Ti, Mn,
Fe (MM)

NH4
+, SO4

2´, S, Pb
(SA, AN)

EC, Cu
(TRexh, TRnonexh) Na (SS) NO3

´ (SA) Cl (SS) Zn (AN)

Belgrade (CS), urban background,
June 2003–July 2005, PM2.5 [27] Zn, Mn, Fe, Al (TRnonexh) Pb, Cr

(TRexh, TRnonexh, IN) Ni, V (Oil) Cu, Cd (TRexh, IN)

Belgrade (CS), urban background,
June 2003–July 2005, PM10 [27] Zn, Mn, Fe, Al (TRnonexh) Ni, V (Oil) Cu, Cd, Pb

(TRexh, TRnonexh) Pb, Cr (TRexh)

Milan (IT), urban background, 2001,
PM10 [28] Al, Si, Ca, Ti, Mn, Fe (MM) K, Mn, Fe, Cu, Zn, Br,

Pb (TRexh, TRnonexh) S, K (SA) Mn, Zn (IN, MI)

Venice Lagoon (IT), industrial-urban,
March 2002–July 2003, PM3.0 [29]

Cd, Cu, K, Mn, Ni, Pb, V, Zn
(TRexh, TRnonexh, IN)

Al, Co, Cu, Fe, Mg, Mn,
Sr (MM) Na (SS)
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Table 1. Cont.

Location, Station Type,
Measurement Periods, PM Fraction Factors Identified Together with Elements Included and Suggested Source Names 1

Llodio (ES), urban background,
January–December 2001, PM2.5 [30] Pb, Zn, Cd, Mn, Fe, Cu (MI) SO4

2´, NH4
+, V, Na, K,

Tl ((L)RT, AN)
Al2O3, Ti, Ba, Ca,
Sr (MM)

P, OC, EC, K, Tl,
NO3

´ (TRexh)

Cr, Ni, Mo, Co,
As, Cu, Fe, OC,
EC (IN)

Barcelona (ES), urban background,
March–November 2007, PM1 [31]

K, Li, Cu, Zn, Ga, Rb, Fe, Ti,
Mn, Sr, Sb, Ba (MM)

TC, NO3
´, Cl, As, Se,

Cd, Sn, W, Pb, Mn, Sb
(TRexh, TRnonexh)

Al2O3, Ca, Na, Mg, La,
Ce, Ti, Sr (MM)

SO4
2´, NH4

+, V, Co,
Ni (Oil)

Barcelona (ES), urban background,
March–November 2007, PM2.5 [31]

Al2O3, Ca, K, Mg, Fe, Li, Ti, Ga,
Rb, Sr, La, Ce, Mn, Co, P (MM)

TC, NO3
´, Cu, As, Se,

Cd, Sn, Sb, W, Pb, Bi,
Mn, Fe, P, Zn
(TRexh, TRnonexh)

NH4
+, V, Ni, Ba,

Co (Oil)

L’Hospitalet (ES), urban-kerbside,
June 1999–June 2000, PM2.5 [32]

Fe, K, Mn, Pb, Zn, Cu, Cr, Ni, V,
OC + EC, Cl, NO3

´, NH4
+

(TRexh, TRnonexh)

Ca, Al2O3, Fe, Mg, Ti, Sr,
K, Mn (MM)

K, Ni, V, nss-SO4
2´,

NO3
´, NH4

+ (FA)
Al2O3, P, Na,
NO3

´ (IN)

Monagrega (ES), rural, March
1999–July 2000, PM10 [32]

Ca, Al2O3, Fe, Mg, Ti, Sr, K,
Mn, V (MM)

Pb, Zn, V, OC + EC,
nss-SO4

2´, NH4
+ (FA) Mg, Na, Cl (SS) Pb, OC + EC, NO3

´

(TRexh, TRnonexh)

Santa Ana (ES), suburban,
January 2004–March 2005, PM2.5 [33]

Ti, Fe, Al2O3, Mn, Rb, K,
Ca (MM)

OM, EC, NO3
´, Cl, Sb,

K, Pb, As, NH4
+, Mg

(TRexh, TRnonexh)

SO4
2´, V, Ni, As, NH4

+

(SA, IN)
Na, Cl (SS) Zn (MI)

Huelva (ES), urban, April
2008–December 2009, PM2.5 [34]

nss-SO4
2´, NO3

´, NH4
+, P, As,

Pb, Cd, V, Ni, Zn, Bi, Mo,
Sn (IN)

OM, Al, Ca, Fe, Ti, Mn,
K (TRexh, TRnonexh) Na, Cl´, Mg (SS)

Lisbon (PT), suburban-industrial, 2001,
PM2.5 [35]

Al, Si, Sc, Ti, Mn, Fe, La, Sm,
Ca2+ (MM) V, Ni, Co, Pb (Oil) Cl´, Na+, Mg2+, Br (SS) Se, Hg (IN) SO4

2´, NH4
+,

Cl´ (SA)

Cu, Zn, Sb, Pb
(IN, TRexh,
TRnonexh)

As, NO3
´, K+,

NH4
+ (TRexh)

Izmir (TR), suburban,
June 2004–May 2005; PM2.5 [36] Ba, Ca, Fe, Mg, Sr (MM) Cd, Mn, Pb, V, Zn

(MI, FF) Al, Cu (TRexh, TRnonexh) K, Na (SS)

Bishkek and Teplyklouchenka (KG),
remote sites, July 2008–July 2009,
PM2.5 [37]

Cl, Li, B, Na, Mg, Al, P, K, Ca,
Sc, Ti, V, Cr, Mn, Fe, Co, Rh, Sr,
Y, Nb, Pd, Cs, Ba, La, Pr, Nd,
Sm, Eu, Gd, Ho, Tm, Yb, Lu, W,
Th, U (MM)

Cu, Zn, Rh, Pd, Pb
(MI, AN)

OC, EC, SO4
2´, NO3

´,
NH4

+, Sb (SA)
Mn, Cd, As, Tl (AN)

Jorhat City (IN), urban,
January 2007–January 2008, PM2.5 [38] Al, Si, Ca, Ti (MM) S, SO4

2´, Te, Mn, Cd,
Sn, Sb (FF)

Co, Ni, Cu, Zn, Cd, Te
(IN, TRexh, TRnonexh) K, NH4

+ (BB) NO3
´, NH4

+,
SO4

2´ (SA)

Kanpur City (IN), residential,
July 2008–May 2009, PM1 [39] Cu, Zn, Pb (TRexh, TRnonexh) Ca, Mg, Zn, Cr, Fe, Pb,

V (TRnonexh) NO3
´, SO4

2´ (SA) Cl´, Se, Cd, Pb, Ni (FF)
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Table 1. Cont.

Location, Station Type,
Measurement Periods, PM Fraction Factors Identified Together with Elements Included and Suggested Source Names 1

Agra (IN), rural,
May 2006–March 2008, PM2.5 [40] Pb, Ni, Zn, Cu (IN, (L)RT) Ni, Fe, Cr (MM) Cr, Mn

(MM, TRexh, TRnonexh)

Agra (IN), urban,
May 2006–March 2008, PM2.5 [40] Zn, Cr, Cu (IN) Pb, Ni, Mn

(TRexh, TRnonexh) Ni, Fe (WI, WD)

Ordos (CN), urban, September 2005,
PM2.5 [41]

Al, Ca, Fe, Mg, Mn, Na, P, Sr,
Ti (MM)

B, Ba, Ca, Na, Sr, Cl´,
OC, EC (TRexh)

K, Pb, Zn, NO3
´,

SO4
2´, OC, EC (SA) Cr, Cu, Ni (IN, Oil)

Xinglong (CN), rural mountainous site,
September 2008, PM2.5 [42]

Na, Mg, Al, K, Ca, Cr, Mn, Fe,
Ni, As, Mo, Ba, U (MM, FA)

K, Zn, Ag, Cd, Tl, Pb
(IN, TRexh, TRnonexh, BB)

Be, Al, Mo, Ag, Cd,
Th (MM) Cr, Cu, Se (MInonfer) Co, Sb (TRnonexh)

Beijing (CN), urban, 2000, PM2.5 [43] Al, Si, Ca, Ti, Fe, Mg (TRnonexh) EC, Mn, Cu, Zn, As,
Pb (TRexh)

OC, NO3
´, Cl, K, Br

(FF, BB)
NO3

´, SO4
2´, NH4

+,
As (SA)

Ni, Se
(IN, e.g., MI)

Beijing (CN), roadside, 2008–2009,
PM1.0–2.5 [44]

Al, Ti, Mg, Si, Ca, Na, K, Fe, Mn,
Br, Cl, Cu (MM, TRnonexh) Cl, Cu, Zn, Pb (IN, FF) Br, NH4

+, NO3
´,

SO4
2´ (SA)

Ji’nan (CN), urban, September 2010,
PM2.5 [45]

Cu, Fe, Mn, Ni, Pb, Sr, Zn
(TRexh, TRnonexh, MI, FF)

Ba, Ni, Sr, Ti
(MM, TRnonexh) As, Cr (FF)

Chengdu (CN), urban, April
2009–January 2010, PM2.5 [46]

NH4
+, K+, Cl´, NO3

´, SO4
2´,

OC, EC, Cr, Zn, As, Br, Pb, Cu,
Mn, Rb, Mo (AN)

Al, Si, Ca, Ti, Fe, Mn,
Ba (MM) Na, Mg2+, Ca2+ (MM) Sr, Cd (MI)

Changsha (CN), suburban, July and
October 2008, PM10 [47]

Al, Si, Ti, Mg, Fe, Cl, Ca,
Na (MM) Zn, Pb (TRexh, TRnonexh) S, P, K (FF, SA) Mn, K, Ca, Na (BB, WI) Ni (Oil) Cu (IN)

Lhasa (CN), urban, September
2007–August 2008, PM10 [48]

Na, Mg, Al, K, Ca, Sc, Ti, V,
Mn, Fe, As, Ba, Pb
((L)RT, MM, TRnonexh)

Na, Ni, Cu, Zn, As,
Pb (AN) V, Cr, Co, As, Cd (WI)

Tunghai University (TW), rural,
July 2001–April 2002, PM2.5 [49] Fe, Mg, Cd (MM) Pb (TRexh, TRnonexh) Cr, Cu (MI)

Jeongwang (KR), residential,
May 2004–January 2006, PM10 [50]

Al, Ba, Cr, Fe, K, Na, Sb, Ti, V
(MM, TRnonexh)

Al, As, Cd, Mn, Ni, Pb,
Se, V, Zn (AN)

As, Cr, Pb, Sb, Se, V,
Zn (IN) Cd, Pb, Sb, V (IN) K, Na (SS)

Yeongwoi (KR), urban, April
2012–October 2013, PM2.5 [51]

Al, Si, K, Ca, Mn, Fe, As,
Pb (MM) Cr, Ni (IN) Zn, Cd (IN)
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Table 1. Cont.

Location, Station Type,
Measurement Periods, PM Fraction Factors Identified Together with Elements Included and Suggested Source Names 1

Pohang (KR), residential, 2003–2004,
PM10 [52]

Ba, Cd, Co, Fe, Mn, Ni, Pb, Sb,
V, Zn (WI)

Al, Ca, Co, Fe, Mn, Si,
Ti (MM) K, Mg, Na (SS) Cr, Ni (FF, Oil) Cu, Tl (IN, MI)

NAPS network sampling sites (CA),
urban and rural sites, May
2004–December 2006, PM2.5 [53]

Mn, Fe, Zn, Mo, Sb
(MM, TRnonexh) Se, Sn, Cd, Pb (FF) V, Ni (IN, Oil) Sr, Ba, Sb (TRnonexh) As, Cu, Sb, Cd,

Zn (IN)

Los Angeles (USA), 10 sampling sites,
April 2008–March 2009, PM0.25 [54]

Rb, Mg, Al, K, Mn, Ca, Ti, Na,
Li, Fe, Sr, Co (TRexh, TRnonexh)

Fe, Sr, Rh, Ba, Sb, Cu,
Mo, As, Pb (TRnonexh) S, La, V (Oil) Cd, Ag, Pb (MI) Cr, Ni (MI)

Rio de Janeiro (BR), different locations,
September 2003–December 2005,
PM2.5 [55]

Al, Fe, Ce (MM) BC, Cu, Cd
(TRexh, TRnonexh) Ni, V, SO4

2´ (Oil, SA) Na, Mg (SS)

Buenos Aires (AR), urban,
October 2005–October 2006, PM10 [56] Sc, Sm, Ce, Fe, Cs, Cr (MM) Fe, BC, Zn, As, Ba, Sb

(TRexh, TRnonexh) Zn, Br, Sb (MInonfer, WI) Eu, Co, La (AN) Na (SS)

1 PM sources: AN—unidentified anthropogenic sources; BB—biomass burning; FA—fly ash; FF—fossil fuel combustion; IN—industrial sources (different, e.g., from cement industry,
pigment manufacture plant, petrochemical industry, oil refineries); (L)RT—regional and/or long-range transport; MM—mineral matter (e.g., crustal/soil dust, construction dust,
mechanical abrasion processes of crustal materials, soil-related industry, etc.); MI—metal industry; MInonfer—non-ferrous metal processes; Oil—fuel oil combustion; SA—secondary
aerosol compounds; SS—sea salt; TRexh—exhaust traffic-related sources; TRnonexh—non-exhaust traffic-related sources; WD—waste dumping; WI—waste incineration. 2 ISO
3166 country codes: AR—Argentina; BE—Belgium; BR—Brazil; CA—Canada; CN—China; CS—Serbia and Montenegro; ES—Spain; HU—Hungary; IE—Ireland; IN—India; IT—Italy;
KG—Kyrgyzstan; KR—South Korea; NZ—New Zealand; PL—Poland; PT—Portugal; TR—Turkey; TW—Taiwan; USA—United States of America. 3 References. 4 PM10—particles with
aerodynamic diameters ď10 µm.
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In European rural areas most of PM comes from long-distant pollutant transport and natural
sources. Its concentration is generally lower than in city centers and rarely causes any air quality
problems [57–63]. However, there are suburban (quasi-rural) areas, such as Racibórz, which are neither
“urban” (i.e., they are neither densely populated nor built up and the PM origin differs from that
in urban areas) nor “rural” (being medium-size towns which are as common in southern Poland as
industrial towns and cities like Zabrze or Katowice). To our knowledge, long-term observation of
elemental composition of PM2.5 has not been carried out in any suburban areas located in a European
hotspot yet. Still, some research shows that PM–related exposure among Racibórz residents is the
same as or sometimes even higher than that found among the inhabitants of city centers [21].

The purpose of this work is to identify the souces of PM2.5 in a suburban area located in southern
Poland, based on statistical analysis of a two-year data series of elemental composition of PM2.5.

2. Materials and Methods

2.1. PM2.5 Sampling

Twenty-four-hour PM2.5 samples were collected by means of a PNS (peripheral nervous system)
Atmoservice sampler (Poznań, Poland) equipped with a PM2.5 head (PM inlet with PM2.5 sharp-cut
cyclone). The air flow rate was 2.3 m3¨h´1. The PM2.5 samples were collected on 47-mm diameter
PTFE membranes (Whatman Cat. No. 7592-104, with a minimum particle filtration effectiveness
of >0.2 µm diameter equal to 99.95%. Little Chalfton, UK). Before and after the exposure, the filters were
conditioned in a weighing room (48 h; relative air humidity: 45%˘ 5%; air temperature: 20˘ 2 ˝C) and
weighed twice (at 24 h intervals) on a Mettler Toledo AT microbalance (with a resolution of 2 µg) using
a Haug U-ionizer (Mettler Toledo, Warsaw, Poland). The adopted method of PM sampling and the
subsequent gravimetric analysis of the PM were compliant with EN 14907/2005 (Standard gravimetric
measurement method for the determination of the PM2.5 mass fraction of suspended particulate
matter) and EN 12341/1998 (Air quality-Determination of the PM10 fraction of suspended particulate
matter-reference method and field test procedure to demonstrate reference equivalence of measurement
methods). The weighing accuracy, determined as three standard deviations from the mean obtained
from ten weighings of a blank filter (conditioning performed every 48 h), was 20.5 µg.

2.2. Sampling Site

The samples were collected between 1 January 2011 and 26 December 2012 in Racibórz, a town
located in the south-western part of the Śląskie (Silesian) Province in south Poland, close to the
Czech-Polish border. The sampling point (50˝51 N and 18˝141 E) was located approximate 6 km south
of the center of Racibórz. The Racibórz area is an agricultural region (Figure 1), where farmlands
cover approximate 66.30% of the area. The entire industry (a few chemical, power, agricultural, and
food-processing plants) as well as commercial centers are located in the town center. The population
density is approximate 220 people/km2 in the whole area, and about 700 people/km2 in Racibórz itself.
It is 3–5 times less than in other cities and towns in southern Poland. The majority of the inhabitants
live in Racibórz. Low buildings with individual heating systems (fed with biomass, coal, or natural
gas) dominate the landscape. The building development is compact in the center of Racibórz and
scattered in the vicinity of the sampling site. The mean annual temperature in the region is +8.0 ˝C.
January is the coldest month (´2.1 ˝C), whereas July is the warmest one (+18.0 ˝C). During the year,
there are 100–110 frost days and 170 days with precipitation (including 45 snowy days) in the region.
South winds prevail in autumn and winter and north winds are common in spring and summer.
Calms are frequent.
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2.3. Elemental Analysis

The PM2.5 samples (320 in total) were analyzed for their elemental content by means of
energy dispersive X-ray fluorescence (EDXRF) on an Epsilon 5 spectrometer (PANalytical B.V.;
Almelo, The Netherlands). The apparatus was equipped with an X-ray tube with a side window
(nitrogen-cooled, gadolinium anode, working range 25–100 kV, 150-µm beryllium window), a system
of nine secondary targets (Al, Ti, Fe, Ge, Zr, Mo, Ag, Ce2O3, Al2O3), and a Ge(Li) detector
(resolution 140 eV, energy range 0.7–100 keV, working surface 30 mm2, 8-µm beryllium window).
The measurements were conducted under vacuum condition. The analysis, including the run of the
whole program of the changes of targets and X-ray tube settings (25 keV and 25 mA for Al, 40 keV and
15 mA for Ti, 40 keV and 15 mA for Fe, 75 keV and 8 mA for Ge, 100 keV and 6 mA for Zr, 100 keV and
6 mA for Al2O3) lasted 2400 s. The concentrations of particular analytes were derived by comparing
the results with calibration curves. The curves were determined by measuring thin-layer standards
(Micromatter, Inc., Vancouver, BC, Canada) and corrected for possible matrix effects according to a
standard procedure saved in the spectrometer software.

The NIST standard reference material (SRM2873) was measured weekly. Except 52% and 39%
recoveries of V and Co, the recovery of each element was between 85% (As) and 120% (Pb) of the
certified value. Ten blanks (PTFE membranes) were used to determine the detection limits for the
procedure. Each blank underwent the entire EDXRF procedure devised for a regular sample 30 times;
a detection limit for an element was the standard deviation from the 300 results obtained for this
element. The detection limits were between 0.2 (Se) and 21.3 (Si) ng¨ cm´2.

2.4. Results Analysis

Twenty-four-hour concentrations of PM2.5 and twenty-four-hour PM2.5-bound elements were
divided at first into two sets and averaged. The measurement period was used as the division
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criterion. The results were therefore averaged for two periods: the cold/heating season (January–March
and October–December, n = 147) and the warm/non-heating season (April–September, n = 173).
A nonparametric technique known as the Mann-Whitney U test was used to test the significance of
inter-season variation in PM2.5 and PM2.5-bound element concentrations (Table 2). The Mann-Whitney
U test is a nonparametric test of the null hypothesis, that two samples come from the same population,
against an alternative hypothesis, that a particular population tends to have larger values than the
other. The Mann-Whitney U test is a non-parametric test, hence it does not assume any assumptions
related to the distribution.

Table 2. Descriptive statistics of twenty-four-hour concentrations of PM2.5 (µg¨ m´3) and PM2.5-bound
elements (ng¨ m´3) in the warm and the cold seasons of 2011–2012 in Racibórz.

Element
Cold/Heating Season (n = 147) Warm/Non-Heating Season (n = 173) Concentration

Ratio 1
Mean ˘ SD 2 Min Max Mean ˘ SD Min Max

PM2.5 48.7 ˘ 39.4 3.6 209.5 13.9 ˘ 8.0 3.2 42.6 3.5
Na 201.3 ˘ 109.1 - 644.5 95.0 ˘ 46.6 - 237.5 2.1
Mg 44.6 ˘ 35.6 - 201.7 10.3 ˘ 13.7 - 49.1 4.3
Al 37.5 ˘ 33.7 - 198.1 47.4 ˘ 250.5 - 3296.4 0.8
Si 73.0 ˘ 63.4 12.4 363.3 163.8 ˘ 148.0 28.2 1073.0 0.5
S 1528.0 ˘ 1152.2 186.1 6812.9 924.4 ˘ 399.3 243.1 2283.5 1.6
Cl 2364.3 ˘ 2274.3 24.1 13,801.1 206.3 ˘ 279.3 15.2 1525.3 11.5
K 384.8 ˘ 307.4 38.5 2360.8 138.0 ˘ 89.6 20.9 505.3 2.8
Ca 56.3 ˘ 41.7 8.9 277.4 71.3 ˘ 64.7 7.9 678.9 0.8
Cs 3.3 ˘ 2.8 - 18.8 7.5 ˘ 11.8 0.5 145.0 0.4
Ti 2.4 ˘ 1.9 - 9.4 3.7 ˘ 3.8 0.2 28.3 0.6
V 0.9 ˘ 0.8 0.2 4.4 0.7 ˘ 0.8 - 5.3 1.3
Cr 3.6 ˘ 5.5 0.5 38.3 7.4 ˘ 7.2 0.5 45.4 0.5
Mn 8.0 ˘ 6.6 - 41.2 7.0 ˘ 4.1 1.4 19.3 1.1
Fe 135.5 ˘ 136.7 10.9 722.9 159.1 ˘ 114.7 15.6 496.8 0.8
Co 1.6 ˘ 2.0 - 10.8 0.9 ˘ 1.4 - 6.2 1.8
Ni 5.5 ˘ 9.3 0.2 55.8 10.8 ˘ 12.1 0.2 85.0 0.5
Cu 9.3 ˘ 24.1 1.0 289.3 3.8 ˘ 1.8 1.0 13.5 2.5
Zn 99.9 ˘ 90.1 6.5 544.4 32.9 ˘ 27.3 2.7 158.6 3.0
As 11.3 ˘ 11.5 0.5 70.9 4.2 ˘ 2.8 0.2 15.0 2.9
Se 0.8 ˘ 1.1 - 6.9 0.3 ˘ 0.5 - 2.2 2.3
Br 21.6 ˘ 20.0 2.9 111.6 4.3 ˘ 2.9 0.5 17.4 5.1
Rb 3.9 ˘ 3.9 0.2 22.6 0.9 ˘ 0.6 - 3.6 4.5
Sr 4.3 ˘ 2.5 0.5 18.8 3.5 ˘ 1.7 0.5 14.0 1.2

Mo 3.0 ˘ 1.9 - 12.6 2.5 ˘ 3.5 - 44.5 1.2
Cd 5.2 ˘ 2.5 1.4 17.3 3.7 ˘ 1.2 1.4 7.0 1.4
Sb 6.0 ˘ 8.1 0.2 58.0 2.8 ˘ 1.9 - 10.9 2.2
Ba 5.1 ˘ 3.4 - 22.6 5.3 ˘ 4.1 - 48.8 0.9
Pb 34.0 ˘ 34.2 - 204.9 13.5 ˘ 9.2 - 54.5 2.5

1 ratio between the mean concentration in the cold/heating season (January–March and October–December)
and the mean concentration in the warm/non-heating season (April–September); underlined values in bold
indicate that the difference between the concentrations observed in the cold and the warm periods is statistically
significant—non-parametric Mann-Whitney U test, α = 0.05). 2 SD—standard deviation.

The so-called enrichment factor (EF, Figure 2) was then calculated for each element measured
independently in the heating and the non-heating period. By using the enrichment factor it was
possible to assess quantitatively the strength of the anthropogenic effect influencing the PM2.5-bound
element concentrations [16,18–21].
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where: Cx and Cref designate the element x and the reference element concentrations, respectively;
(Cx/Cref)PM and (Cx/Cref)soil are proportions of these concentrations in PM and in the soil.

In the paper, the observed Cx concentrations are related to the CSi concentration of Si.
Consequently, EFSi = 1. The element concentrations of the Earth’s upper continental crust soil were
taken from the study [64].

In this study, an EFx with a value up to 10 indicates the crustal origin of the element x [16,18–21],
while a higher EFx suggests a strong anthropogenic effect on the concentrations of x.

Further data analysis consisted in applying the methodology described by Thurston and
Spengler [65]. The method combines a factor analysis (FA) for identifying the possible sources with a
multi-linear regression analysis (MLRA) used to quantify their contribution to the PM concentrations.

In the first step, a principal component analysis (PCA) was applied to the 28 ˆ 320 data matrix
representing the twenty-four-hour PM2.5-bound element concentrations. Subsequently, values of
the new variables—principal components (only principal components with eigenvalues >1.0 were
considered according to the Kaiser criterion)—were used in the MLRA. All the calculations were
performed using Statistica 8.0 software (StatSoft, Tulsa, OK, USA).

3. Results and Discussion

3.1. Concentrations of PM2.5

The twenty-four-hour PM2.5 concentrations in Racibórz ranged from 3.2 µg¨m´3 to 209.5 µg¨m´3

(Table 2). The mean PM2.5 concentration for the entire measurement period was equal to 29.9 µg¨m´3.
It was relatively high when compared to the PM2.5 concentration limits established by the European
Commission (25 µg¨m´3; annual mean value) [66] and the World Health Organization (10 µg¨m´3;
annual mean value) [67].

The twenty-four-hour PM2.5 concentrations clearly indicate a poor quality of air as far as pollution
with fine PM in the cold (heating) season in Racibórz is concerned (Figure 3). Only 34% of the
twenty-four-hour PM2.5 concentrations during the cold season in 2011–2012 were below 25 µg¨m´3,
whereas more than 35% of the twenty-four-hour values of PM2.5 concentration exceeded 50 µg¨m´3.
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During the warm (non-heating) season in 2011–2012, less than 11% of the twenty-four-hour PM2.5

concentrations exceeded 25 µg¨m´3. A distinct seasonality of the concentration of PM2.5 and
other air pollutants has already been observed in other parts of Poland [68–70] and throughout
Europe [25,57,63,71]. The seasonal pattern in the PM2.5 concentrations was characterized by a
maximum in the cold period and a minimum in the warm period (Table 2). The non-parametric
Mann-Whitney U test confirmed that the differences between the mean PM2.5 concentrations noted in
the cold and warm season (Table 2) were statistically significant (α = 0.05; p ď 0.001); the mean PM2.5

concentration in the cold season (48.7 µg¨m´3) was about 3.5 times higher in comparison with the
warm season (13.9 µg¨m´3).

Int. J. Environ. Res. Public Health 2016, 13, 715 10 of 21 

 

warm period (Table 2). The non-parametric Mann-Whitney U test confirmed that the differences between 
the mean PM2.5 concentrations noted in the cold and warm season (Table 2) were statistically significant 
(α = 0.05; p ≤ 0.001); the mean PM2.5 concentration in the cold season (48.7 µg·m−3) was about 3.5 times 
higher in comparison with the warm season (13.9 µg·m−3). 

In the cold season, Racibórz residents increased combustion activities for heating purposes, 
which generally contributed to the increased PM2.5 concentrations [21,70]. In winter, low temperature 
may have also resulted in a low inversion layer with more PM trapped near the ground level [72,73]. 
The low twenty-four-hour PM concentrations in the warm (non-heating) season were attributed to 
the wet removal of aerosol particles (due to more frequent and more abundant precipitation in the 
warm season than in the cold one) and higher mixing height facilitating the PM dilution and 
dispersion [48,70]. In Racibórz, where no large-point emission sources exist, the seasonal variations 
in the PM2.5 concentrations were also affected by the incoming air masses from distant areas [21,70]. 

(a)

 
(b)

Figure 3. Number of incidents of 24-h concentrations of PM2.5 within the assumed ranges for  
(a) the cold/heating season (January–March and October–December 2011–2012) and (b) the 
warm/non-heating season (April–September 2011–2012) in Racibórz.  

In 2011–2012, the mean PM2.5 concentration in Racibórz did not differ much from the PM2.5 
concentrations recorded in other cities of southern Poland such as Zabrze (2007; PM2.5 = 22.0 µg·m−3), 
Katowice (2007; PM2.5 = 31.0 µg·m−3) [16], Wrocław (2012; PM2.5 = 36.0 µg·m−3) [23], Trzebinia (2013; 
PM2.5 = 25.2 µg·m−3) and Złoty Potok (2013, PM2.5 = 25.2 µg·m−3) [74]. This concentration was relatively high 
as compared to the PM2.5 concentrations in other parts of the country, such as Diabla Góra (2010; PM2.5 = 
15.0 µg·m−3) [70] and Szczecin (2010; PM2.5 = 17.1 µg·m−3) [74] in northern Poland, or Zielonka (2011; 

Figure 3. Number of incidents of 24-h concentrations of PM2.5 within the assumed ranges
for (a) the cold/heating season (January–March and October–December 2011–2012) and (b) the
warm/non-heating season (April–September 2011–2012) in Racibórz.

In the cold season, Racibórz residents increased combustion activities for heating purposes, which
generally contributed to the increased PM2.5 concentrations [21,70]. In winter, low temperature may
have also resulted in a low inversion layer with more PM trapped near the ground level [72,73].
The low twenty-four-hour PM concentrations in the warm (non-heating) season were attributed
to the wet removal of aerosol particles (due to more frequent and more abundant precipitation in
the warm season than in the cold one) and higher mixing height facilitating the PM dilution and
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dispersion [48,70]. In Racibórz, where no large-point emission sources exist, the seasonal variations in
the PM2.5 concentrations were also affected by the incoming air masses from distant areas [21,70].

In 2011–2012, the mean PM2.5 concentration in Racibórz did not differ much from the PM2.5

concentrations recorded in other cities of southern Poland such as Zabrze (2007; PM2.5 = 22.0 µg¨m´3),
Katowice (2007; PM2.5 = 31.0 µg¨m´3) [16], Wrocław (2012; PM2.5 = 36.0 µg¨m´3) [23], Trzebinia
(2013; PM2.5 = 25.2 µg¨m´3) and Złoty Potok (2013, PM2.5 = 25.2 µg¨m´3) [74]. This concentration
was relatively high as compared to the PM2.5 concentrations in other parts of the country, such as
Diabla Góra (2010; PM2.5 = 15.0 µg¨m´3) [70] and Szczecin (2010; PM2.5 = 17.1 µg¨m´3) [74] in northern
Poland, or Zielonka (2011; PM2.5 = 16.1 µg¨m´3) [75] and Warsaw (2013; PM2.5 = 10.7 µg¨m´3) in
central Poland [15]. The mean PM2.5 concentration in Racibórz was also high as compared to the
values registered at various European stations situated in suburbs, such as Košetice (Czech Republic,
2009–2010, PM2.5 = 15.7 µg¨m´3) [63], Hyytiälä (Finland; 2011, PM2.5 = 5.1 µg¨m´3), Waldhof
(Germany; 2012, PM2.5 = 11.5 µg¨m´3), Harwell (UK; 2012, PM2.5 = 12.8 µg¨m´3), Cabauw-Zijdeweg
(The Netherlands; 2011, PM2.5 = 15.3 µg¨m´3) and Ispra (Italy; 2010, PM2.5 = 17.9 µg¨m´3) [75]. It was
more similar to the PM2.5 concentrations registered at industrial sites (e.g., Bobadela (Spain), 2001,
PM2.5 = 24.0 µg¨m´3) [35] or traffic-exposed sites (e.g., Athens (Greece), 2007, PM2.5 = 35.9 µg¨m´3) in
Europe [76].

3.2. PM2.5-Bound Elements

The mean concentrations of the selected PM2.5-bound elements ranged from 0.8 ng¨m´3 (Se) to
2364.3 ng¨m´3 (Cl) and from 0.3 ng¨m´3 (Se) to 924.4 ng¨m´3 (S) in the cold and the warm seasons
(2011–2012), respectively (Table 2). The masses of 28 PM-bound elements collectively accounted
for 10.4% (cold season) and 13.9% (warm season) of the PM2.5 mass. Cl and S were the most
abundant among the determined elements; their common percentage in PM2.5 was ~8.0% in both
measurement periods.

The mean concentrations of the PM2.5-bound Cl (1197.6 ng¨m´3) and S (1201.7 ng¨m´3) in
Racibórz (averaged for the entire measurement period) were generally much higher than at other
European locations, such as Mount Cimone (Italy) [77], Zürich (Switzerland) [78] and Menen
(Belgium) [25]. As the distance between Racibórz and the Baltic Sea (over 500 km) precludes the marine
origin of Cl and S, the two elements were probably anthropogenic, which was further substantiated
by the values of EF (Figure 2). The concentrations of Cl and S in the air in Racibórz, just like in
other locations in Silesia, are affected by the intensity of fossil fuel combustion, and more precisely
the combustion of hard coal and various solid waste in domestic low-efficiency furnaces [16,70].
This finding was confirmed by the strong seasonal variability in the ambient concentrations of Cl
and S and statistically significant difference between the mean concentrations of both these elements
between heating and non-heating periods (Table 2).

Similarly to the PM2.5-bound Cl and S, the concentrations of other (perhaps all) elements could be
affected by coal and biomass combustion in Racibórz during the heating season. This is indicated by
evidently greater values of EF for such elements as compared with the non-heating season (Figure 2),
and by definitely greater concentrations of the elements in the heating season. It even applies to those
elements which are usually associated with crustal or soil matter (Na, K, Al, Ti, Mg, Si, Ca, and Fe
(e.g., [15,16,23]). Although EF does not exceed 10 during the cold season in the case of a majority of such
elements, the mere increase in EF in comparison to its values noted during the warm season indicates
an influence of anthropogenic emission, e.g., from coal or biomass combustion, on the concentrations
of the crustal elements. That is why the origin of PM2.5-bound elements in Racibórz is more difficult to
interpret (especially in the cold/heating season) than in other regions of Europe [16,22,23,70].

The mean ambient concentrations of most PM2.5-bound elements recorded in Racibórz in
2011–2012, just like the mean PM2.5 mass concentration, are comparable to the values reported in
different cities in southern Poland [15,70,79]. On the other hand, most of the heavy metals were found
to have higher concentrations than in other regions of Poland [15,24,70] and Europe [26,61,71,78,80].
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The International Agency for Research on Cancer (IARC) of the World Health Organization (WHO)
classified As, Cd, Ni and their compounds, as well as Cr(VI) within Group 1 (carcinogenic to humans).
The Pb compounds are included in Group 2A (probably carcinogenic to humans). In 2011–2012, the
ambient concentrations of As, Cd, Ni, and Pb in Racibórz did not exceed the permissible values of
annual concentrations established by the European Commission (6 ng¨m´3, 5 ng¨m´3, 20 ng¨m´3,
and 0.5 µg¨m´3, respectively) [81]. However, they were much higher than elsewhere, e.g., in Flanders
(Belgium), Thessaloniki (Greece), Athens (Greece), Bobadela (Spain), Huelva (Spain), Venice (Italy),
different sites in Switzerland, Beijing (China) and Rio Grande (Brazil) (Table 3).

Table 3. The mean concentrations of PM-related As, Cd, Ni, and Pb at various sites in the world.

Location City (Country),
Site Type Measurement Period

PM
Fraction

Concentrations (ng¨ m´3)

As Cd Ni Pb

Racibórz (Poland), suburban
(this study) a January 2011–December 2012 PM2.5 11.3/4.2 5.2/3.7 5.5/10.8 34.0/13.5

Flanders (Belgium),
suburban [81] September 2006–September 2007 PM10 3.8 - 3.6 21.0

Thessaloniki (Greece),
residential-commercial [82] a June 1994–May 1995 PM2.5 1.5/1.4 0.71/1.3 15/21 122/141

PM2.5–10 0.59/0.47 0.12/0.10 6.4/5.2 29/29

Athens (Greece),
suburban [83] August–November 2003 PM2.5 5.78 0.58 2.19 10.4

Bobadela (Spain),
suburban-industrial [35] 2001

PM2.5 0.31 - 2.6 8.6
PM2.5–10 0.16 - 1.6 6.0

Huelva (Spain), urban
background [34]

April 2008–December 2009 PM2.5 5.1 0.6 2.3 10.8
PM2.5–10 1.1 0.1 1.4 3.6

Venice (Italy),
urban-industrial [29] March 2002–June 2003 PM10 3.0 2.0 14 19

Zurich-Kaserne
(Switzerland), urban [84]

April 1998–March 1999 PM2.5 0.47 0.31 3.1 21
PM2.5–10 0.10 0.03 0.11 5.9

Basel (Switzerland),
suburban [84]

April 1998–March 1999 PM2.5 0.40 0.48 1.7 19
PM2.5–10 0.11 0.04 0.46 4.4

Chaumont (Switzerland),
rural [84]

April 1998–March 1999 PM2.5 0.16 0.12 1.3 4.7
PM2.5–10 0.02 1.00 0.04 0.8

Beijing (China), urban [85] February 2005–September 2007 PM2.5 13 2.5 1.6 32

Rio Grande (Brazil),
urban-industrial [86] b October 2009–January 2010 PM2.5 bld. bld. 0.79/0.86 0.40/bld.

a Mean concentrations of the elements are shown separately for cold period/warm period; b mean concentrations
of the elements are shown separately for October 2009/January 2010; bld.—below limit of detection.

3.3. Source Apportionment of PM2.5

As in the case of the studies listed in Table 1, the authors of this study attempted to identify the
sources of PM2.5 and the contribution of these sources to the concentrations of PM2.5 based on the PCA
and MLRA results. Table 3 presents the results of PCA and MLRA modelling performed for the data
concerning the elemental composition of PM2.5 in Racibórz. For a better interpretation of the PCA
results, the enrichment factors (EFs) for PM2.5-bound elements (Figure 2) were also taken into account.
The inference process also took into consideration the distribution of element concentrations for
particular wind directions (Figure 4) and conclusions drawn by the authors of previous studies [21,70],
as well as conclusions from available studies by other researchers (Table 1).
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Figure 4. Concentrations (ng¨ m´3) of the selected PM2.5-bound elements averaged for 2011–2012 for
the selected air mass inflow directions in Racibórz: (a) S, Cl, K; (b) V, Mn, Co, As, Se, Br, Rb, Cd, Sb;
(c) V, Sr, Mo; (d) Cu, Mo; (e) Cr, Ni; (f) Na, Mg, Fe, Zn, Pb.

In the PCA model, five new variables—principal components PC1–PC5—were identified. Only the
principal components with eigenvalues >1.0 were considered (according to the Kaiser criterion).
Their variances were within the range of 4.7%–37.9%.

Seventeen elements were strongly correlated (factor loadings ě0.4) with PC1: Zn, K, Br, Rb,
As, Pb, Cl, S, Na, Cd, Mn, Co, Se, V, Sb, Mg, and Fe. The mean ambient concentrations of all these
elements (except Fe) were statistically significant and evidently higher in the heating (cold) season
than in the non-heating (warm) season (Table 2). High concentrations of K, S, Cl, V, Mn, Co, As, Se, Br,
Rb, Cd, and Sb were observed on days when there was an air inflow from the S-E and E directions
(Figure 4). The local sources of PM2.5 (small boiler rooms and individual home furnaces) were located
in both directions (Figure 1). The pollutants from the Silesian agglomeration, where the emission
from the municipal sector is a dominant source of PM in the heating season [20,70,72,73,87] were
transported mainly from the N-E, E, and S-E directions. These observations and conclusions drawn
from the previous studies (Table 1; [21,70]) allow us to assume that the PM2.5 identified in PC1 originate
from the combustion of coal (e.g., the S, As, Br, and Se correlations with PC1), biomass (e.g., the Na
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and K correlations with PC1) and various waste types (e.g., the Cl correlation with PC1) for heating.
This source was assigned with FF_BB_WI symbol, i.e., fossil fuels (FF) and biomass (BB) combustion,
and waste incineration (WI; Table 1).

Mean mass percentages of FF_BB_WI in the PM2.5 concentrations in Racibórz were the greatest in
the S-E and E directions (about 30%) and slightly smaller in the S and N-E (Figure 5). Generally, much
greater mass contents of PC1 (FF_BB_WI) in the PM2.5 concentrations occurred during the cold
season: the highest twenty-four-hour share of PC1 in the PM2.5 concentration, 40.3%, was recorded on
3 February 2012, whereas the lowest share was observed on 11 August 2012 (17.6%).Int. J. Environ. Res. Public Health 2016, 13, 715 14 of 21 
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The EFs calculated for each of the 17 elements correlated with PC1 were much higher in the
heating season than in the non-heating season (Figure 2), which indicates that the PC1 must have
been correctly identified as FF_BB_WI. It can therefore be suspected that a stronger anthropogenic
influence on the concentrations of the 17 elements during the heating season is a result of a more
intensive emission from FF_BB_WI. It must be noted, however, that the mean value of EF for some of
the elements, correlated with PC1, i.e., Fe, Mg, Ca, Na, and K, during the non-heating season did not
exceed 10, which suggests their natural (crustal) origin. This finding implies that the mineral/crustal
matter could have been their source in the warm season.

PC3 revealed a slightly lower mean percentage (17%) compared to PC1 (Table 4). The variability
in its twenty-four-hour percentage in the PM2.5 concentrations was low (16.3%–19.2%) in the entire
analyzed period. PC3 was the most strongly correlated with Sr, Mo, and V. In 2011–2012, those three
elements had statistically higher concentrations in the heating (cold) season (Table 1). Their EFs,
although a little higher in the heating season than in the non-heating season, in both seasons were
distinctly higher than 10, therefore revealing an anthropogenic origin (Figure 2). The concentrations of
Sr, Mo, and V did not differ much for the analyzed air inflow directions (Figure 4).

Table 4. Results of the principal component (PCA) and multi-linear regression (MLRA) analyses
performed for PM2.5 and PM2.5-bound element concentrations.

Component Element Factor Loading 1 Source/%Variance
Mean Source Contributions (%) to
PM2.5 Concentrations in Sampling

Period (Results from MLRA) 2

PC1
Zn0.96, K0.95, Br0.93, Rb0.94, As0.91, Pb0.90,
Cl0.87, S0.82, Na0.69, Cd0.65, Mn0.64, Co0.64,

Se0.60, V0.58, Sb0.54, Mg0.53, Fe0.52

FF_BB_WI 3/37.9 22.0

PC2 Cr0.86, Ni0.84, Si0.71, Mg0.70, Na0.62, Sc0.58,
Ca0.55, Ti0.42, Ba0.42

IN_MI 4/19.4 16.2

PC3 Sr0.63, Mo0.49, V0.43 FF_FA 5/10.1 17.2

PC4 Co0.47, Al0.42 TRnonexh_TRexh_MM 6/7.1 13.5

PC5 Cu0.85, Mo0.46 TRnonexh_TRexh/4.7 15.7

Total variance 79.3 84.6%
1 Elements with factor loadings <0.40 are not included. Elements presented in the descending order of their
factor loads, with factor loadings indicated as subscript. 2 Sets of measured 24-h PM2.5 concentrations and
concentrations computed for each day from MLRA—the determined contributions were substantially correlated
(R2 = 0.86). 3 FF_BB_WI—PM2.5 sources: FF—fossil fuel combustion; BB—biomass burning; WI—waste
incineration. 4 IN_MI—PM2.5 sources: IN—industrial sources; MI—metal industry. 5 FF_FA—PM2.5 sources:
FF—fossil fuel combustion; FA—fly ash. 6 TRnonexh_TRexh _MM—PM2.5 sources: TRnonexh—non-exhaust
traffic-related sources; TRexh—exhaust traffic-related sources; MM—mineral matter (e.g., crustal/soil dust,
construction dust, mechanical abrasion processes of crustal materials, soil-related industry, etc.).

The above-mentioned observations allow a conclusion that PC3, similarly to PC1, may have
characterized a source of PM2.5 whose efficiency changed with air temperature. Its contribution to the
concentrations of PM2.5 in Racibórz did not depend on the direction of air masses (Figure 5). The energy
production based on the combustion of fossil fuels seems to be the source. Widory et al. [88] made
observations which definitely confirmed that Sr could be a marker of coal combustion. It was also
shown that relatively high concentrations of Mo are present in the fly ash emitted during fossil fuel
combustion [89]. Racibórz is under the influence of air masses which are extremely polluted with flue
gases emitted by Polish (E and N), Czech (S) and German (W) power and heat and power plants fired
with brown and hard coal (Figure 1). According to the symbols used in Table 1, the source identified
with PC3 was given the symbol of FF_FA, i.e., fossil fuels (FF) and fly ash (FA).

Cu and Mo were the most strongly correlated with PC5. Their concentrations were the highest
at the inflow of air masses from the center of Racibórz and other cities of the Silesian agglomeration
(S-E and E). High concentrations of these elements were also observed at the inflow of air masses from
the Czech Republic and Germany (S, W), especially from the Moravian-Silesian Region (S; Figure 4).
Cu and Mo demonstrated statistically higher mean concentrations in the heating season than in
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the non-heating one (Table 2). The higher EF values of Cu and Mo were observed in the heating
season (Figure 2). Therefore, in Racibórz, both Cu and Mo could have partially originated from fuel
combustion (PC1, PC3). However, most authors treat PM-bound Cu as the marker of traffic emission
(Table 1). Mo is present in the gases coming from the combustion of fossil fuels, which includes petrol
and crude oil [90,91]. In 2011–2012, distinct differences in the twenty-four-hour percentage of PC5 in
PM2.5 were found in Racibórz (1.0%–16.5%). The lowest percentage of PC5 in PM2.5 was observed
on cold (heating) season days. The values for the days analyzed in the warm season were much
higher. Generally, a mean mass content of PC5 in the concentrations of PM2.5 did not depend on the
direction of the incoming air masses (Figure 5). This finding supported the assumption that that PC5
characterized emissions from traffic (given the symbol of TRnonexh_TRexh). PC4 was classified in the
same way. It was the most strongly correlated with Co and Al, which suggested that tire and road wear
particles were some of the identified sources of PM2.5 in Racibórz [92]. Yet, in the case of PC4, a clearly
greater mean mass content in the concentration of PM2.5 occurred during the warm season rather than
in the cold part of the year. Besides, the greatest percentages of PC4 in PM2.5 were determined for the
western and northern directions (Figure 5), where the measuring site was surrounded by farmland
and meadows. Eventually, it was decided that PC4 may represent, apart from traffic emissions, also
soil matter; it was assigned the symbol of TRnonexh_TRexh_MM. The percentage of the mineral/soil
matter (exclusively) in the PM2.5 mass in Racibórz was calculated in a simplified way in the previous
study [70]. Its mean mass percentage did not exceed 3.5% in the entire measurement period.

The percentage of the last extracted principal component (PC2) was independent of the direction
of incoming air masses or the season (Figure 5). Cr and Ni (i.e., two out of three elements whose
EFs did not differ between the heating season and the non-heating season, Figure 2) were the most
strongly correlated with PC2. Their mean ambient concentrations were higher in the non-heating
season, therefore they could not have come from the production of energy for heating. Sc was the
third element strongly correlated with PC2. The results presented in Table 1 clearly indicate that PC2
(due to its strong correlation with Cr) reflects the industrial source of PM2.5 in Racibórz (most probably
steel smelter emissions; according to the symbols used in Table 1, the source identified with PC2
was given the symbol of IN_MI, i.e., industrial sources (IN) and metal industry (MI)). Cr is not the
only marker of this source. Also Ni is a common ingredient in steel and other metal products [93,94].
Other elements correlated with PC2 (e.g., Si, Mg, Na, Ca, Ti) are either the ingredients of the fluxes
introducing the necessary components into the steel processing, such as components for the necessary
composition (e.g., CaO, CaCO3, SiO2, Al2O3, or CaF2), or oxidants used for oxidizing the metal stock
admixtures and transforming them into slag (such as Fe or Mn ores). Sc and other rare earth elements
are broadly used in metallurgy as alloying additions improving the properties of admixture metals,
as permanent magnets or polishing pastes. In the case of a majority of elements correlated with PC2,
relatively high concentrations (visibly higher for Cr and Ni) were observed when the air masses were
transported from the N-E, where the most industrialized cities of the biggest urban and industrial center
of Poland (Upper Silesian Industrial Region) are located, and in the S direction (Moravian–Silesian
Region), where the biggest European steel works is situated (ArcelorMittal Ostrava)—Figures 1 and 4.
Since there are a number of large steelworks, non-ferrous metal works and other industrial plants in
Upper Silesian cities, it is difficult to point at the one dominant industrial source in the N-E direction.

4. Conclusions

Southern Poland, where Racibórz is located, is one of the most urbanized and polluted “hot spot”
areas in Europe. The PM2.5 found at the quasi-rural site in that area differs significantly from the
PM2.5 at other similar areas located in various parts of Europe. Differences are observed in both the
concentrations and elemental compositions of PM. The obtained results indicate that sources originate
from the common use of solid fuels for energy production in Poland. Nearly 17% of the PM2.5 in the air
in Racibórz comes from the hard and brown coal combustion in power plants and large industrial heat
and power plants located in various parts of Poland and abroad. In our study we found that 22% of



Int. J. Environ. Res. Public Health 2016, 13, 715 18 of 23

the PM2.5 is associated with the combustion of the coal and biomass mixture (and most probably home
waste) at local small boiler rooms and home furnaces. In other European regions, traffic emissions are
currently the primary source of air pollution (also with PM). In Racibórz, the contribution of traffic
related pollutants to the concentration of PM2.5 does not exceed 30%. Considering the elemental
composition of PM2.5 alone is insufficient to determine whether the majority of emissions comprise
PM particles of mechanical origin (non-exhaust emission) or particles/particle precursors from fuel
combustion (exhaust emission). In southern Poland, the industrial emissions exert a significant effect
on PM2.5 concentrations. Steelworks, non-ferrous metal works and other industrial plants located
outside the Racibórz area, (PC2; jointly referred-to as IN_MI: industrial sources_metal industry) are
responsible for 16% of the PM2.5 mass in Racibórz.

Long-distance transport of PM is known to be associated with adverse health effects and impacts
related to climate change. Source identification of PM-bound elements via principal component
analysis and monitoring of PM concentrations are critical tools used to evaluate their potential impacts
and effectiveness of control measures. Regionally in Poland and locally in Raciborz the combustion
of solid fuels has been identified as primary anthropogenic contributors to air pollution. While total
elimination of many anthropogenic sources is not possible, important findings of this study can be
used to help inform the development of realistic management policies and cost-effective methods to
improve air quality. It is our opinion that simply reducing the combustion of coal, biomass, and wastes
in domestic ovens in the Raciborz region would benefit local and regional air quality.
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