NUCLEUS
2017, VOL. 8, NO. 5, 496-505
https://doi.org/10.1080/19491034.2017.1363136

Taylor & Francis
Taylor &Francis Group

EXTRA VIEW

‘ W) Check for updates ‘

3 OPEN ACCESS

Hierarchical recruitment of Polycomb complexes revisited

Eshagh Dorafshan, Tatyana G. Kahn, and Yuri B. Schwartz

Department of Molecular Biology, Umea University, Umea, Sweden

ABSTRACT

Polycomb Group (PcG) proteins epigenetically repress key developmental genes and thereby
control alternative cell fates. PcG proteins act as complexes that can modify histones and
these histone modifications play a role in transmitting the “memory” of the repressed state as
cells divide. Here we consider mainstream models that link histone modifications to
hierarchical recruitment of PcG complexes and compare them to results of a direct test of
interdependence between PcG complexes for recruitment to Drosophila genes. The direct test
indicates that PcG complexes do not rely on histone modifications to recognize their target
genes but use them to stabilize the interactions within large chromatin domains. It also shows
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that multiple strategies are used to coordinate the targeting of PcG complexes to different
genes, which may make the repression of these genes more or less robust.

Polycomb group proteins and complexes

Polycomb Group (PcG) proteins orchestrate develop-
ment of multicellular animals by targeting genes piv-
otal to the onset of cell type-specific gene expression
programs. Because of their remarkable propensity to
repress genes if they have been repressed in previous
cell cycles, PcG proteins epigenetically silence alterna-
tive gene-expression programs and ensure that cells
maintain their identity throughout multiple genera-
tions." First discovered in fruit flies (Drosophila mela-
nogaster) as regulators of homeotic selector genes,”’
most PcG members were identified by genetic screens
that used homeotic transformations as the readout.
Orthologues of fly PcG proteins were later found in all
metazoan animals and some of them were also found
in plants and unicellular fungi.*

PcG proteins act as multi-subunit complexes. Two of
these complexes, Polycomb Repressive Complex 1
(PRC1) and Polycomb Repressive Complex 2 (PRC2),
are evolutionary conserved and essential for PcG repres-
sion in all animals. However, some of the complexes, for
example Pho Repressive Complex (PhoRC), are critical
for PcG repression in flies but are not part of the process

in mammals® and vice versa. Drosophila PRC1 consists
of 5 core subunits: Polycomb (Pc), Polyhomeotic (Ph),
Posterior sex combs (Psc) or its closely related homolog
Suppressor of zeste 2 (Su(z)2), Sex combs on midleg
(Scm), and RING1.°® The heterodimer between RING1
and either of the 2 PCGF subunits Psc or Su(z)2 acts as
E3 ligase that directs the transfer of one ubiquitin group
to Lysine 118 of the histone H2A (H2AK118, the analog
of H2AK119 in mammalian cells).”'® Mammalian
PRC1 complexes have similar composition but are
more diverse due to multiple closely related genes
encoding each of the subunits. Thus, Drosophila RING1
is represented by 2 mammalian proteins RINGI and
RING2. There are also 2 paralogs for Psc (BMI1 and
MEL18, also known as PCGF4 and PCGEF2), 3 for Ph
(PHC1, PHC2, and PHC3) and 5 for Pc (CBX2, CBX4,
CBX6, CBX7, CBX8).'"""?

In addition to Psc and Su(z)2, Drosophila genome
encodes one more PCGF protein called L(3)73Ah.'*
We and others have recently shown that the knock-
down of L(3)73Ah leads to 70% reduction of the over-
all H2A118ub.'>'® Together with observations that
RING1 is responsible for all detectable H2A118ub,”"”
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this suggests that L(3)73Ah forms a heterodimer with
RINGI and that L(3)73Ah-RINGI containing complex
is a major Drosophila H2A118 mono-ubiquitylase.
Although biochemical evidence for existence of L(3)
73Ah-RING1 complex is currently lacking, complexes
between RING2 and PCGF3 (mammalian ortholog of L
(3)73Ah) have been reported.'> Whether RINGI/
RING2-PCGF3 complexes are critical for bulk H2A119
ubiquitylation in mammalian cells is unknown.

Finally, Drosophila RING1-Psc heterodimer was
said to be incorporated in a complex called dRAF,
which differed from PRC1 in that it lacked Pc, Ph, and
Scm but included Kdm2, RAF2, and Ulpl.17 The same
study reported that the dRAF complex produces the
bulk of fly H2AK118ub and requires Kdm?2 for its E3
ligase activity.'” This contradicts our observation that
cells completely deficient for Psc and Su(z)2 and,
hence, lacking both PRC1 and dRAF, retain about 70%
of the bulk H2AK118ub seen in wild-type cells.”” The
dRAF accounts are also hard to reconcile with drastic
reduction of H2AK118ub in the L(3)73Ah deficient
cells.'>'® Interestingly, the Ring2 complex containing
Kdm2B, one of the 2 mammalian paralogs of the fly
Kdm?2, was purified from mouse embryonic stem cells
and appeared to contribute to PcG repression.'®"
However, this complex is clearly different from dRAF.
Instead of the Psc ortholog, it contains the protein
called PCGF1, which does not exist in flies, as well as
RYBP (or closely related YAF2) and BCOR subunits
that were not found in dRAF. More work is needed to
clarify the relation of the Kdm2 complexes to PcG
repression in Drosophila. We should note, that human
and mouse genomes encode 6 different PCGF proteins
all of which form heterodimers with RING1 and
RING2 and can mono-ubiquitylate H2AK119 in vitro.
However, of the 6 PCGFs, only BMI1- and MELI18-
containing dimers are incorporated in complexes that
contain Pc and Ph orthologues (i.e. classical PRC1
complexes). All other PCGF-RING heterodimers form
complexes that contain RYBP (or YAF2) and diverse
sets of subunits that are specific for each PCGF.'*>*°
Some of these RING complexes (at times referred to as
non-canonical PRC1) were shown to activate tran-
scription”' and, probably, should not be considered as
epigenetic repressors of the Polycomb group.

Drosophila  PRC2 contains 5
Enhancer of zeste (E(z)), Suppressor of zeste 12 (Su(z)
12), Extra sex combs (Esc), Cafl, and Jing. PRC2 has
histone methyltransferase (HMTase) activity and

core subunits:
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mono-, di- and tri-methylates Lysine 27 of histone H3
(H3K27).>** E(z) is the enzymatic subunit of PRC2
but, similar to RING1 of PRC1, requires other subu-
nits, namely Esc and Su(z)12, to form a catalytically
active core.”**>?**” EZH2 and EZHI, EED, SUZ12,
and AEBP2 are mammalian orthologues for Drosoph-
ila E(z), Esc, Su(z)12, and Jing, respectively. Drosoph-
ila Cafl has 2 mammalian homologs, RBBP4 and
RBBP7.*° In addition to these 5 core subunits, PRC2
comes with 2 mutually exclusive components. In flies,
either Jarid2*® or Pcl,”” can be incorporated in PRC2
and this seems to confer some division of labor on the
variant complexes.’* Pcl-PRC2 was shown to stably
associate with PcG target genes,'>* and is needed for
extensive tri-methylation of H3K27 within the chro-
matin of repressed HOX genes.”” Indeed H3K27me3
is a hallmark of the PcG-mediated repression state of
the target genes.’**> However, the majority of methyl-
ated histone H3 is di-methylated at K27 and
this, together with sparse tri-methylated H3K27, are
scattered  throughout transcriptionally inactive
genome.'®> While the exact role of Jarid2-PRC2 is
still unclear, it is tempting to speculate that, in Dro-
sophila, it might have a role in global di-methylation
of H3K27 by hit-and-run mechanism which does not
involve stable binding of PRC2 to the chromatin.

Targeting Polycomb repression to specific genes

To epigenetically repress developmental programs,
PRCI and PRC2 need to be “targeted” to specific
genes but also be able to “sense” whether a target gene
is not transcriptionally active and, once the repression
has first been established, “remember” it as cells con-
tinue to divide. Understanding molecular mechanisms
that bring about these 3 essential properties of the sys-
tem is a key challenge for the field.

In Drosophila, PcG target genes are equipped with
discrete DNA elements, called PREs (Polycomb
Response Elements), to which PRC1 and PRC2 are
stably bound when target genes are repressed.’*”’
Neither PRC1 nor PRC2 contain sequence specific
DNA binding subunits, therefore it appears that at
least one of the PRC complexes is anchored to PREs
via sequence specific adaptor proteins. Indeed, over
the years, several candidate DNA binding proteins
were identified.”® However, no candidate protein is, by
itself, sufficient to reconstitute a PRE or recruit PRC1
or PRC2. This suggests that PREs are flexible
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collections of binding sites for multiple DNA binding
adaptor proteins, which combine their individually
weak interactions to stably anchor PRC complexes.
PRCI can specifically recognize H3K27me3 pro-
duced by PRC2 while PRC2 can specifically interact
with H2AK118ub produced by PRC1.*>*° Since dur-
ing replication histones are randomly partitioned
between sister chromosomes, they can, potentially,
serve as media to transmit the “memory” of transcrip-
tional state. Although more experimental work is
needed to clarify whether after the passage of a repli-
cation fork the “old” histones are re-incorporated in
the proximity of their original positions, recent genetic
evidence support the role of H3K27 methylation in
transmission of the memory of PcG repression.*"** If
H3K27me3 or H2AK118ub are used to remember the
repressed state, their presence within chromatin
should, in some way, be advantageous for re-establish-
ment of PcG repression after DNA replication and/or
mitosis. In line with this, earlier reports have proposed
that the main role of H3K27me3 and/or H2AK118ub
is to coordinate the targeting of PRC complexes. One
popular hierarchical model postulated that PRC2 is
recruited to Drosophila PREs by sequence specific
adaptor proteins, once at PREs it extensively tri-meth-
ylates H3K27me3, which recruits PRC1.*> In a more
recent extension of this model, one of the RYBP-
RING complex was suggested to be recruited first and
ubiquitylate H2A, which, in turn, was proposed to
recruit PRC2, leading to H3K27 methylation and ulti-
mately PRCI recruitment.** Although attractive in
their simplicity, both models are contradicted by
some of the experimental data. First, it has been
shown that, in Drosophila, PREs are the principal
binding sites for both PRC1 and PRC2 while H3K27
tri-methylation is spread around PREs as broad
domain.’’?> Moreover PREs are depleted of nucleo-
somes and hence are low in histone modifications.”>*°
Second, in mammals, the catalytic activity of RING1/
RING2 appears dispensable for PcG repression and
early development.“s’46 Third, it has been shown that,
flies with catalytically inactive RINGI display no mis-
expression of HOX genes or homeotic phenotypes,
characteristic of PRC1 loss of function. Furthermore,
replacement of endogenous Drosophila histone H2A
with histones that cannot be ubiquitylated, does not
disrupt the repression of HOX genes.” Finally, the
H2A118ub deubiquitylase activity of Calypso subunit
of the Drosophila PR-DUB complex is critical for

repression of HOX genes,” and, in fact, the
H2A118ub levels within some of the PcG-repressed
HOX genes, are very low.'®

Direct test of PRC1 and PRC2 recruitment
hierarchy

Concerned with discrepancies in current hierarchical
recruitment models we have set up direct test of inter-
dependence of PRC1 and PRC2 for recruitment to
Drosophila PREs."® For such test to be successful one
has to devise a model system that provides enough
material for biochemical experiments and allows to
assay the consequences of the complete loss of individ-
ual PRC complexes without concomitant activation of
target genes by developmental signaling. The latter is
critical to separate direct relations between PRC1 and
PRC2 from possible indirect effects caused by tran-
scription and action of trithorax Group (trxG) pro-
teins.**>* To this end, we derived cultured cell lines
from Drosophila embryos deficient for closely related
Psc and Su(z)2 genes that produce no Psc and Su(z)2
proteins as well as embryos homozygous for null
mutation of Su(z)12 gene. Although Psc/ Su(z)2 and
Su(z)12 deficient flies die during embryogenesis when
maternally supplied protein runs out, corresponding
mutant cells are viable and proliferate in cell culture.
This is fully consistent with the idea that the key role
of PcG system is to support cell differentiation in the
context of a multicellular organism.

In Su(z)12 deficient cells no Su(z)12 protein is
made, which leads to degradation of E(z) and possi-
bly other PRC2 subunits. As a result, Su(z)12 minus
cells completely lack H3K27me2 and H3K27me3."”
Consistently, very little E(z) and no H3K27me3 or
H3K27me2 can be detected at PcG target genes by
Chromatin immunoprecipitation (ChIP). The loss of
PRC2 and H3K27 methylation does not affect the
overall levels of PRC1 and H2AK118ub."” Surpris-
ingly, in Su(z)12 minus cells, despite complete
absence of PRC2 and H3K27me3, PRC1 is still
targeted to PREs. This finding argues that, at least in
case of Drosophila, the models that place PRC2 and
H3K27me3 at the base of recruitment hierarchy are
not valid.

In Psc and Su(z)2 deficient cells, corresponding pro-
teins are not produced. This is accompanied by severe
reduction in the level of Pc and 4-fold reduction in the

level of RING1 proteins.'> Since the amount of
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Figure 1. PRC1 is not required for untargeted methylation of H3K27 by PRC2. A. Two-fold dilutions of acid-extracted histones from con-
trol Ras3 and Psc/Su(z)2 deficient cells were analyzed by western-blot with antibodies against H3K27me2 and H3K27me3. The loss of
Psc/Su(z)2 causes no significant reduction of the overall H3K27me2/me3, which suggests that much of the bulk H3K27me3 is produced
by untargeted PRC2 activity and that the integrity and the activity of PRC2, per se, do not require PRC1. B. Di-methylation of H3K27 in
the vicinity of PREs as measured by ChIP-gPCR. Histograms show the mean of 2 independent experiments with error bars indicating the
scatter. Note that the loss of H3K27me3 in the PRC1 deficient cells allows di-methylation of H3K27 by untargeted PRC2. The high levels
of H3K27me2 at “Control” amplicon from transcriptionally inactive intergenic region on Chromosome 3L are similar in wild type (WT)
and Psc/Su(z)2 deficient cells. The data in (A) and (B) are from Kahn et al.”

corresponding transcripts is not altered, this suggests
that the majority of RINGI is in the complex with Psc
or Su(z)2 and that, in their absence, PRC1 gets
degraded. In contrast, the loss of Psc or Su(z)2 does
not affect the overall levels of PRC2."> Surprisingly,
ChIP assay indicates that, in the absence of PRCI,
PRC2 binding to roughly 2 thirds of all PREs is signifi-
cantly reduced (hereafter referred to as PRC2:PRCI1-
dependent PREs)."” This argues that most PREs have
to bind PRCI1 first to efficiently anchor PRC2. How-
ever, the fact that one third of PREs retain PRC2 bind-
ing in PRCI deficient cells (hereafter referred to as
PRC2:PRC1-independent PREs) implies that there are
multiple ways to coordinate the PRC1 and PRC2
recruitment (Fig. 2). Genome-wide survey of PRC2
loss in PRC1 deficient cells indicates that PRC2:PRC1-
dependent and PRC2:PRCI1-independent pathways to
recruit PRC2 to PREs are not mutually exclusive.'” Tt
appears that at different PREs the 2 pathways can

combine their inputs and contribute to different
degrees (Fig. 2).

PRC2 methylates H3K27 by 2 distinct mecha-
nisms. The bulk of the PRC2 activity is dedicated to
pervasive di-methylation and sporadic tri-methyla-
tion of H3K27 throughout the entire transcription-
ally inactive genome.'® This process is untargeted
and does not require stable binding of PRC2. It can
be viewed as a hit-and-run action of PRC2 com-
plexes free-floating in the nucleoplasm. The other
PRC2 activity relates to extensive tri-methylation of
H3K27 around PREs. Instructive, the loss of PRC1
has no significant effect on the level of bulk
H3K27me2 and causes only small reduction of the
overall H3K27me3 (Fig. 1A). This argues that global
hit-and-run methylation of H3K27 by PRC2 is inde-
pendent of PRC1 and that significant amount of tri-
methylated H3K27 is scattered throughout tran-
scriptionally inactive genome.
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Figure 2. Revised model for hierarchical recruitment of Polycomb complexes. More than one pathway is used to recruit PRC2 to PREs. A.
PRC2:PRC1-dependent pathway. At step 0, a PRE is bound by DNA-binding adaptor proteins (dashed circle and oval) that can coopera-
tively interact with PRC1 and anchor it. The PRE may also bind adaptor proteins that can interact with PRC2 (dashed triangle) but are
not sufficient to anchor it. At step 1, PRCT is recruited to the PRE. The recruitment of PRC2 at step 2 may require direct interaction with
PRC1 and step 1 might be very transient. B. PRC2:PRC1-independent pathway. At step 0, DNA-binding adaptor proteins specific for both
PRC1 (dashed circle and oval) and PRC2 (dashed triangle and square) bind the PRE. This is followed by independent recruitment of
PRC1 and PRC2 via cooperative interactions with corresponding sets of adaptor proteins. Eventually, at step 2, the PRE is occupied by
both PRC1 and PRC2. Step 1 might be transient and PRC1 and PRC2 may bind to the PRE stochastically or simultaneously. Genomic anal-
ysis indicates that the PRC2:PRC1-dependent and —independent pathways are not mutually exclusive. At many PREs both pathways con-
tribute to PRC2 recruitment however their relative contributions vary between different sites.

In the absence of PRC1, chromatin around PRC2:
PRCI1-dependent PREs loses H3K27me3.'> However,
in contrast to PRC2 deficient cells, it gains H3K27me2
(Fig. 1B). This argues that PRC2 has to be anchored
at PcG target genes to produce high density of
H3K27me3 nucleosomes, which is consistent with in
vitro preference of PRC2 for less methylated substrates
(i.e., the H3K27me0 -> H3K27mel -> H3K27me2
reaction is 6 times faster than H3K27me2 ->
H3K27me3).”

Since PRC2:PRCI1-dependent PREs are more com-
mon, the transgenic tests performed throughout the
years were naturally confined to this group. From
these tests we know that PRC2:PRCI-dependent
PREs are able to autonomously recruit PRC1 and
PRC2 complexes and repress reporter genes in sto-
chastic clonally heritable fashion.”® To determine if
PRC2:PRC1-independent PREs are different in this
respect, we generated a series of transgenic fly lines
with reporter constructs containing both classes of
PREs. These experiments suggest that PRC2:PRC1-
dependent and PRC2:PRCl-independent PREs are
equally efficient in recruitment of PcG complexes,
forming a domain of H3K27me3 and repressing the
white reporter gene.'> What could be then a rationale
for existence of PREs with different degrees of PRC2:
PRCI-dependence if they provide the same level of

repression? Although this could be a simple coinci-
dence, the 2 modes of PRC2 recruitment may have
evolved to fine-tune the robustness of PcG repres-
sion. While PcG proteins are ubiquitous and most of
PcG target genes are repressed in any given cell, a
subset of these genes has to be transcriptionally
active in a cell-lineage specific manner.’>>*> This
plasticity relies on the function of Trithorax Group
(trxG) proteins which antagonize PcG repression.
For a handful of PREs, all of which happen to be of
PRC2:PRC1-dependent kind, we know that a tran-
sient activation of their target gene leads to “switch-
ing” of a PRE into a Trithorax-dependent elements
that stimulates transcription.’®*®*’In some cases,
such switch is accompanied by displacement of PcG
complexes from PREs.’>® It is, therefore, tempting
to speculate that PRC2:PRCI-dependent and -inde-
pendent PREs may have different susceptibility to
the action of trxG proteins and, perhaps, that PRC2:
PRCl-independent PREs cannot be “switched” to a
transcription stimulating mode.

Histone modifications and PcG repression

Tri-methylation of H3K27 is an essential feature of PcG
repression. Genes repressed by PcG mechanisms get
embedded within broad domains of H3K27me3**>*
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Figure 3. Tri-methyl H3K27 stabilizes PcG contacts with chromatin around PREs. A. When assayed by ChIP, Pc (light gray dashed line)
but not the other PRC1 subunits, for example Psc (dark gray dashed line), shows immunoprecipitation profile that extends from PREs
into the neighboring chromatin (left). Upon PRC2 loss, the Pc ChlIP signals become confined to PRE cores (right). B. Polycomb group
(PcG) complexes anchored at PREs can transiently loop out and interact with the chromatin of neighboring promoters, enhancers and
transcription units where PcG complexes may interfere with transcription. Interactions between Pc and H3K27me3 seem to stabilize the
looping, which shifts the equilibrium toward looped conformation. Assisting transcriptional repression, this may also help to restore

high density of H3K27me3 after DNA replication.

and replacement of Lysine 27 of histone H3 to unme-
thylatable Alanine or Arginine (H3K27A or H3K27R)
recapitulates the HOX gene misexpression and homeo-
tic transformations, characteristic of PRC2 loss of func-
tion.”>®® Moreover, recent studies provide genetic
evidence that H3K27me3 is part of a short-term epige-
netic memory whose replenishment requires PRC2
anchored to PRE.*"** Yet, our test of interdependence
of PRC1 and PRC2 binding to PREs indicate that
H3K27me3 is dispensable for PRC1 targeting. What is
then the role of H3K27me3? Although it is likely to
contribute to repression in multiple ways, one role of
H3K27 methylation is to stabilize the interaction of
PRE-anchored PcG complexes with surrounding chro-
matin. It has been noted for some time that PRC1 sub-
units give sharp peaks of ChIP signal over PREs. The
exception from this rule is Polycomb (Pc) protein
(Fig. 3A). While ChIP signals for Pc are also highest
at PREs they spread as lower signal tails into sur-
rounding chromatin.>"*>**®! The tails of Pc ChIP
signals were proposed to reflect the direct interac-
tions between H3K27me3-containing nucleosomes

and Pc chromodomain®®°! (Fig. 3B). Validating this
model, we found that in PRC2 deficient cells, where
tri-methylation of H3K27 at PcG target genes is
ablated, Pc signal at core PREs is only slightly
reduced but this signal drops to a background level
at distance from PREs'’ (Fig. 3A). We speculate that
prolonged interaction of the PRE-anchored PcG
complexes with surrounding chromatin are integral
part of “reading” the H3K27me3 memory mark. By
making looping interactions more stable, H3K27me3
would deliver PcG complexes to enhancers, pro-
moters and transcription units of target genes where
the complexes can interfere with transcription. At
the same time, stable loops between PREs and neigh-
boring chromatin would help PRC2 to produce high
level of H3K27me3 around PREs and quickly replen-
ish the methylation after repressed genes undergone
DNA replication (Fig. 3B).

While tri-methylation of H3K27 is, no doubt, a key
component of PcG repression, the implication of
H2AK118 ubiquitylation is less clear. Initial studies sug-
gested that H2AK119ub (mammalian analog of fly
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H2AK118ub) directly blocks transcription elongation.”
Later, H2A119ub was reported to recruit PRC2 in mouse
ES cells.***> However, recent studies including our own
indicate that, at least in Drosophila, H2AK118 ubiquityla-
tion is unlikely to play a role as critical as that of H3K27
methylation. First, we found that in the absence of
H2A118ub one third of the PREs is still able to recruit
PRC2."” Second, we saw that repressed Antennapedia
and Bithorax complex homeotic gene clusters display
very low level of H2A118ub.'>'® Third, flies severely
impaired for their ability to ubiquitylate H2A118 were
reported to have no homeotic transformations and dis-
play no misexpression of engrailed and HOX genes.” In
line with these observations, it appears that the bulk of
H2AK118ub is produced by RINGI-L(3)73Ah com-
plex,”'® and that many genomic regions enriched in
H2AK118ub are not appreciably bound by PRC2 or
PRC1 or tri-methylated at H3K27.'® The latter argues
that, in flies, H2AK118ub is not sufficient to recruit
PRC2 and that most of the H2AK118ub is unrelated to
PcG regulation. Perhaps the most surprisingly, the
steady-state level corresponds to just 15% of H2AK118
ubiquitylation produced by RING1-L(3)73Ah complex
as most of H2AK118ub is being continuously removed
by deubiquitylase activity of PR-DUB complex."

Outlook

The direct test of the interdependence between PcG
complexes for recruitment to Drosophila PREs
changes our view of how PcG repression is targeted. It
refutes some of the popular hierarchical recruitment
models and places histone modifications downstream
of the targeting step. It also raises some exciting possi-
bilities and important new questions. The core com-
of PRCl1
conserved and so are many of the target genes. This

ponents and PRC2 are evolutionary
makes it highly likely that at least some parts of the
molecular mechanism that targets PcG repression to
specific genes are common between Drosophila and
vertebrates. As PREs that require PRC1 binding to
recruit PRC2 are far more common, it is tempting to
speculate that the use of compact DNA elements
to recruit PRC1 may be that evolutionary ancient
feature of the targeting. It would be very interesting to
test this possibility experimentally.

Linked to this, is the question of how PRC1 pro-
motes the binding of PRC2. One possibility is that
PRC1 and PRC2 interact directly, although this

interaction must be relatively weak as the 2 com-
plexes appear as separate entities in biochemical
purifications. This possibility is supported by obser-
vations that the Esc subunit of PRC2 co-immuno-
precipitates with PRC1 from nuclear extracts made
from early Drosophila embryos®* and that Scm sub-
unit of PRC1 can be recovered as an interactor of
PRC2 after formaldehyde crosslinking.®’More com-
plex scenarios are also possible. For example, the
binding of PRC1 to PREs may stabilize the binding
of sequence specific adaptor proteins implicated in
PRC2 recruitment, much the same way as PRCl
presence enhances the binding of PhoRC complex.’
As H3K27 methylation appears to function down-
stream of the targeting, it raises the question of
whether it is directly involved in transcriptional
repression and, more generally, how do PcG proteins
repress transcription? Here it would be interesting to
explore whether H3K27me3-stabilized looping con-
tacts between PREs and the chromatin of the neigh-
boring genes may directly inhibit their transcription.
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