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Due to its low resolution, any EEG inverse solution provides a source estimate at each

voxel that is a mixture of the true source values over all the voxels of the brain. This

mixing effect usually causes notable distortion in estimates of source connectivity based

on inverse solutions. To lessen this shortcoming, an unmixing approach is introduced

for EEG inverse solutions based on piecewise approximation of the unknown source

by means of a brain segmentation formed by specified Regions of Interests (ROIs). The

approach is general and flexible enough to be applied to any inverse solution with any

specified family of ROIs, including point, surface and 3D brain regions. Two of its variants

are elaborated in detail: arbitrary piecewise constant sources over arbitrary regions and

sources with piecewise constant intensity of known direction over cortex surface regions.

Numerically, the approach requires just solving a system of linear equations. Bounds for

the error of unmixed estimates are also given. Furthermore, insights on the advantages

and of variants of this approach for connectivity analysis are discussed through a variety

of designed simulated examples.

Keywords: EEG inverse solutions, EEG inverse low resolution, EEG connectivity, unmixing, source connectivity

INTRODUCTION

The physical and mathematical peculiarities of the (ill-posed) EEG inverse problem imposes that
any EEG inverse solution unavoidably has low resolution, as have been profusely studied by many
authors (see, e.g., Hämäläinen and Ilmoniemi, 1994; Pascual Marqui, 1999; Pascual-Marqui, 2002;
Grech et al., 2008; Pascual-Marqui et al., 2011; and references therein). More specifically, the
resulting current density (or source) estimate at any given voxel is amixture of source values over all
the voxels of the brain. The coefficients or weights of such mixture are determined by the so-called
resolution matrix of the inverse solution.

This “mixing” (or “smoothing”) effect imposes artificial dependences between source estimates
at different voxels that are spurious regarding the real dependence structure of the source associated
with the underlying neurophysiological activity. Consequently, connectivity estimates based on
inverse solutions can severely deviate from the real connectivity patterns.

In general, due to the ill-posedmathematical nature of the EEG inverse problem, without further
specific assumptions it is not possible unmixing an EEG inverse solution to recover the true source
and its covariance structure for the full set of voxels in the cortex.

On the other hand, for many purposes in functional brain imaging a quite common practice is to
approximate the source image by means of a piecewise function regarding several suitably specified
regions, usually referred to as Regions of Interest (ROIs) (see, e.g., Daunizeau et al., 2004; Lapalme
et al., 2006; Chowdhury et al., 2013), and references therein, for source estimation based on such
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parcellations of the source space. These approaches incorporate
a distributed inverse solution by integrating a parcellation as
a form of regularization, but they do not explicitly carry out
leakage correction, i.e., unmixing. However, Farahibozorg et al.
(2018) introduced adaptive cortical parcellation algorithms for
optimizing the number, size and locations of parcels. The
resolution matrices of these adaptive parcels showed higher
sensitivity to distinguish parcels than standard anatomical
parcellations of the brain, allowing the algorithms to minimize
the false leakage-induced connections between the regions,
produced by the inverse methods, which is also analyzed in that
paper.

The central goal of the present paper is to develop a general
and flexible approach for unmixing EEG inverse solutions in
which such kind of piecewise approximation be applied to
the unknown source field. Generality and flexibility is here
thought of regarding to allow ROIs of different dimensions
and forms, any linear inverse solution, and the feasibility of
incorporating additional information about the source when
deemed convenient (e.g., a known direction of the source
at each voxel of a region). In contrast to other approaches,
the unmixing method introduced is a two-step procedure in
which a distributed inverse solution step (such as sLORETA) is
followed by an unmixing step for leakage correction. Selecting
sLoreta for the illustration purpose of this work, does not
compromise our algorithm to this method of inverse solution.
sLoreta is selected because it is simple, fast to calculate and
very popular (at the time we write this work, the Loreta
family has more than 5,000 citations in the literature of the
inverse solutions methods). Therefore, it will be easier to
understand for the many people that uses any method of
the Loreta family. It is true that other inverse methods have
better resolution than sLoreta and more resistance to noise (like
eLoreta, for example), but sLoreta provided the simplicity and
performance necessary to illustrate the need and advantages of
our proposal.

For this, a natural requirement is that the resulting unmixed
source estimate matches the true source when the assumed
piecewise approximation is exactly satisfied. On this basis, it is
shown that the goal just mentioned can be accomplished by just
solving some systems of linear equations.

This approach is general enough to allow for ROIs of any
dimension, such as point, surface and 3D brain regions. Two of
its variants are elaborated in detail: arbitrary piecewise constant
sources over arbitrary regions and sources with piecewise
constant intensity of known direction over cortex surface regions.
In case in which the adopted piecewise source model holds only
as a simplifying approximation, bounds on the error of unmixed
source estimates are given. However, due to the nature of the
inverse problem, the ROIs cannot be selected in an absolutely
arbitrary way if an identifiable model is desired. There are
limitations in the number and configuration of the ROIs that
will be theoretically studied in the body of this work, being the
number of ROIs restricted by the number of electrodes.

Advantages and limitations of the approach are explored and
discussed through a number of enlightening simulated examples.
In particular, it is shown that the introduced unmixing procedure

is more robust to model misspecifications that direct fitting of
parceled models.

MIXING EFFECTS IN SOURCE
ESTIMATION

Some notations will be introduced to be used throughout this
paper. v denotes the d×1 vector of scalp electric potentials
(multichannel EEG)measured at some instant over a number d of
electrodes on the scalp. U = {u : u ∈ {1, ...,Nvox} is a grid formed
by Nvox voxels (Nvox > d) that discretizes the (3-dimensional)
volume of the brain. The 3 × 1 current density vector (source)

at each voxel u is denoted by j (u) =
(
jx (u) , jy (u) , jz (u)

)
)T for

u = 1, . . . ,Nvox. Here, aT denotes the transpose of a vector a.
By stacking the current vectors corresponding to all the voxels,
we obtain the (stacked) current vector j =

(
jT (i)

)
)1≤i≤p, with

dimension p = 3Nvox. The notation rank (B)will be used for the
rank of any matrix B.

Note that, for convenience, two equivalent notations are used
for the source: as an R

3-valued field j (·) defined on the discrete
domain U, and as a vector j ∈ R

p of stacked source values over
all the voxels.

The EEG “forward” or direct problem (see, e.g., Hämäläinen
and Ilmoniemi, 1994; Pascual Marqui, 1999 for more details;
Grech et al., 2008) is defined by the equation that determines the
measured voltage v in terms of the source j:

v = Kj+ ε, (1)

whereK ∈ R
d×p is known as the lead fieldmatrix, which depends

on the geometry and conductivities of the head model adopted.
Here, ε is a measurement noise at the scalp electrodes.

After eliminating the arbitrary reference electrode through the
average reference, the voltage vector v and the lead field K satisfy
the following constraints (Pascual-Marqui, 2002):

Hv = 0 ∈ R
d,

HK = 0 ∈ R
d×p, (2)

whereH is the d×d centering matrix

H = Id −
1

d
11T .

Here, Id denotes the d×d identity matrix, and 1 is the d×1
column vector with entries 1.

Note that the constraint (2) implies that the rows of the d×p
lead field matrix K satisfies a linear restriction, hence the rank of
the matrix K satisfies that rank (K) ≤ min

(
m, p

)
= m,where

m = d − 1. (3)

In what follows, it will be assumed the usual condition that

rank (K) = m. (4)

On the other hand, the EEG inverse problem consists in
determining the current vector (source) j from the scalp electric
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potential vector v by solving the Equation (1). This algebraic
linear problem has not a unique solution. A number of inverse
solutions have been proposed such as the minimum norm
solution (Hämäläinen and Ilmoniemi, 1994), LORETA (Pascual-
Marqui et al., 1994), sLORETA (Pascual-Marqui, 2002), and
eLORETA (Pascual-Marqui et al., 2011); see also Grech et al.
(2008) for a review. In general, any linear inverse solutions ĵ can
be expressed in the form

ĵ = Av, (5)

where A ∈ R
p×d is a specified p×d matrix, depending on the

lead field K in a way that is determined by the particular kind of
inverse solution adopted.

From and it follows that

ĵ = Rj, (6)

where the matrix R, given by

R = AK, (7)

is known as the resolution matrix. It will be assumed that the
matrix A satisfies the ordinary condition:

rank (R) = rank (A) = m. (8)

Denote by R (u,w) the 3×3 block of the matrix R corresponding
to two given voxels u, w ∈ U. Then, in notation of random fields,
the Equation (6) can be rewritten as:

ĵ(u) =
∑

w∈U

R(u,w)j(w). (9)

This last equation expresses the mixing effect in reconstructing
the source by any inverse solution. Indeed, according to Equation
(9), the estimate ĵ(u) of the source field j(u) at a voxel u is a
mixture (or weighted average) of the values of the field j(·) over all
the voxels of the brain volume. Note that the weighting window
is the row R(u, ·) of the resolution matrix R. Therefore, the
strength of the distortion due to this mixing effect is determined
by how much the resolution matrix R deviates from the identity
matrix. In general, the condition rank (R) = rank (A) =

m ≪ p (see Equation 8) implies that R notably deviates from
the identity matrix, which usually causes remarkable distortions
in reconstructing the connectivity pattern of the source. More
specifically, from Equation (9) it follows that

cov(ĵ(u),ĵ(w)) =
∑

s.r ∈U

R(u, s)cov(j(s),j(r))RT(r, w). (10)

That is, the covariance cov(ĵ(u),ĵ(w)) between the source
estimates corresponding to two voxels u and w is not the
covariance cov((u),(w))jj between the true source values at the
voxels u and w, but a mixture of covariance values of the true
source that involves all the possible pairs of voxels in the brain
volume. In section Illustrations through simulations, it will be
illustrated that the connectivity distortion due to the connectivity
mixing (10) can be quite drastic in many examples.

UNMIXING SOURCE ESTIMATES UNDER
SEGMENTATION

Unmixing Through Arbitrary Regions With
Completely Unknown Source Vectors
In general, without additional assumptions, the mixing relations
(9, 10), do not allow to recover the true source j(·) and its
covariance structure from an inverse solution ĵ(·).

On the other hand, a commonly followed simplifying
approach in any modality of functional brain imaging analysis is
to consider a piecewise constant approximation of the image by
means of a number of suitable regions, which are usually referred
to as Regions of Interests (ROIs) (Poldrack, 2007; Giacometti
et al., 2014; Hutchison et al., 2014). These regions used to
be specified based on a priori (functional or/and anatomical)
knowledge about the underlying neurophysiological processes
in each experimental setting, or they can be just adopted as
convenient simplified model for the purposes of the analysis.

The type of ROIs considered in this section is the most
general case of piecewise constant source models. No additional
knowledge about the source is assumed; hence, it is a practical
important model for those situations in which prior information
about the direction of the source vectors is not available.

In this sense, it will be elaborated in this section a general
and flexible method for “unmixing” an inverse solution based on
image segmentation bymeans of given ROIs. For this, let’s specify
a number L of ROIs B1,. . . , BL in the brain volume U. A source
that is constant within each of these regions has the form

j0 (u) =

L∑

l= 1

1Bl (u) bl, (11)

where 1Bl (·) denotes the indicator function of the region Bl, and
b1,. . . , bL are 3× 1 vectors given by

bl =
1

#Bl

∑

u∈Bl

j (u). (12)

That is, a source of the form (11) has constant value bl over each
brain region Bl.

If (11) is regarded as a suitable model for the source j(·), a
naive estimation of the parameters bl could be given by

bl =
1

#Bl

∑

u∈Bl

ĵ (u) , (13)

where ĵ(·) is the inverse solution adopted. However, this has the
shortcoming that, due to themixing effect involved in any inverse
solution (see Equation 9), such estimate b̃l does not match the
parameter value bl even if the (11) model is exactly satisfied.

In order to overcome this difficulty, it is introduced the
following alternative method: to take as estimates bl of the
parameters bl the solution of the following system of linear
equations (with respect to the unknown vectors b1,. . . , bL):

1

#Bl

∑

u∈Bl

ĵ (u) =
1

#Bl

L∑

s= 1

Q
(
l, s

)
bs, (l = 1, ..., L) (14)
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where

Q
(
l, s

)
=

∑

u∈Bl

∑

w∈Bs

R (u,w)(l, s = 1, ..., L). (15)

The corresponding unmixed source estimate is then given by

j0 (u) =

L∑

l= 1

1Bl (u) bl. (16)

Since the number L of ROIs is less than the number of electrodes,
the condition for the solution of the Equation (14) to exist only
requires that the distance between the centers of the ROIs is
greater than the resolution of the inverse method used to estimate
the currents at the sources. If this condition holds, the matrix Q
in Equation (15) is inversible. The fulfillment of this condition for
the matrix Q and the value achieved by its condition number do
not depend on the data, so that they can be easily checked when
specifying the ROIs.

Note that Equation (6) and (8) imply that the stacked
vector ĵ of source estimates belongs to an m-dimensional space.
Therefore, there are at most m linearly independent linear
functions of ĵ; and consequently, in the left hand of the system
of Equation (14) only a number L of equations can provide non
redundant information only subject to the constraint 3L ≤ m.
This imposes the restriction

L ≤ m/3 (17)

on the number L of ROIs to be meaningfully regarded for
unmixing source estimates. Remember that we are dealing with
the case in which the (constant) source bl in each ROI is
completely unknown, regarding both size and direction.

It can be easily shown [as a consequence of Equation (9)]
that if the source model (11) holds then the Equation (14) is
satisfied, hence the estimate bl exactly equals the true value of the
parameter bl for l =1,. . . ,L. That is, in this case the estimates bl
achieves an exactly unmixed version j0 (u)of the inverse solution
that matches the true source j0 (u).

More generally, model (11) can be thought of as just an
approximation to the source j, not exactly satisfied, by means of a
conveniently specified family of ROIs. In such case, the resulting
estimate is just a simplifying approximation. A bound of the
resulting approximation error is given by Equations (A1, A2), in
the Appendix.

Note that, according to Equation (A4), the error
∥∥∥b− b̂

∥∥∥ is

small either if (a) j0 (·) − j (·) is small [i.e., if model (11) is exact
enough]; or (b) the resolution matrix R is close to the identity
matrix [in which case R (u,w) is near zero for any two distinct
voxels u and w]. These descriptive statements have the precise
quantitative meaning conferred by the vector norms involved in
the Equation (A4).

Obviously, the piecewise constant model (11) for a source field
tends to be a better approximation as the number of regions
increases. This suggests to set the number L of ROIs as large as
the restriction (17) allows, and to increase the number of EEG

recording electrodes as much as possible to have a larger upper
boundm/3.

Also, it is worth of emphasizing that the approach for
unmixing just introduced here offers comprehensive generality
and flexibility regarding the choice of the ROIs B1,. . . , BL. These
can be arbitrary regions selected for a specific experimental
setting by the researcher. Some distinguished, commonly useful
types of ROIs are the following:

(S1) Point brain regions.
(S2) Surface regions (e.g., a segmentation of the brain cortex

surface).
(S3) Three-dimensional (3D) brain regions.
(S4) A family of regions that includes different types

(S1)–(S3).
Moreover, the definition of the unmixing operator Q in
Equations (15) and (22) indicates that it depends on the
inverse solution method used (be this any of the Loreta
family, the Minimum Norm family or other) only through its
Resolution matrix R (Equation 7). Therefore, the only factor
of the inverse solution that affects our unmixing procedure is
its specific resolution. This determines the minimum possible
distance between the sources to be unmixed that is allowed
to keep model identifiability (i.e., existence of the inverse
of Q), since obviously two sources that share a common
region in the resolution space of the inverse solution cannot
be distinguished. To further clarify this statement, consider,
for example, sLoreta and Minimum Norm estimate (MNE).
MNE has slightly better resolution than sLoreta if the sources
are estimated at the surface of the cortex. However, when
estimating deep sources, MNE may lead to higher localization
errors and ghost solutions, while sLoreta maintains its property
of zero localization error (Grech et al., 2008; Jatoi et al.,
2014). In that sense, it may be a good choice to select MNE
(although MNE does not guarantee zero localization error even
at the surface) when working with superficial lead fields, while
it would be the appropriate selection to use sLoreta when
dealing with volumetric Leadfields. In both cases, the unmixing
procedure is only affected by the distance of the sources to be
unmixed, which should not be smaller than the resolution of the
method.

Unmixing Through Regions on the Cortex
Surface With Known Source Directions
The maximum number of regions that satisfies the constraint
(i.e.,m/3) is quite small if the number d of scalp electrodes is not
large (see Equation 3). For example, m = 18 in the 1,020 EEG
recording system, hencem/3= 6.

A way to overcome this limitation is to impose additional
simplifying assumptions on the (approximate) source model. In
particular, in this section it will be assumed the following source
model instead of Equation (11): at each voxel u of a given ROIs
Bl, the source has a known direction d(u) (with ‖d (u)‖ = 1) and
a common intensity al; that is, Equation is replaced by

j0 (u) =

L∑

l= 1

1Bl (u) d (u) al, (18)
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where a1,. . . , aL are scalar values defined by

al =
1

#Bl

∑

u∈Bl

dT (u) j (u). (19)

Note that the projection of j0 (u) onto the known direction d(u)
results in the scalar field

X0 (u) =

L∑

l= 1

1Bl (u) al. (20)

In principle, this type of approximation can be applied for
brain segmentations into arbitrary ROIs B1,. . . , BL. For easier
interpretation in the simulated examples shown below, in this
section we will focus in the case of regions of the cortex surface.
Consequently, the inverse solution ĵ will be restricted to the
cortex surface, i.e., the matrix A and the resolution matrix R in
Equations (5) and (7), are computed based on a reduced lead
field K̃ obtained by retaining only the columns of the lead field
K corresponding to voxels on the cortex surface.

The unknown parameters in Equations (18 – 20) are the scalar
values a1,. . . , aL. They will be estimated by the solution â1, . . . , âL
of the following system of L linear equations:

1

#Bl

∑

u∈Bl

dT (u) ĵ (u) =
1

#Bl

L∑

s= 1

qlsas, (l = 1, ..., L) (21)

where

qls =
∑

u∈Bl

∑

w∈Bs

dT (u)R (u,w) d (w)(l, s = 1, ..., L). (22)

The resulting unmixed source estimate is given by

ĵ0 (u) =

L∑

l= 1

1Bl (u) d (u) âl, (23)

and its corresponding projection onto the known direction field
d(.) is the scalar field

X̂0 (u) =

L∑

l= 1

1Bl (u) âl. (24)

Since these equations involve only L linear functions of the
inverse solution ĵ, it is admissible to adopt any number L of
regions with the constraint

L ≤ m (25)

Note that this constraint contrasts with the stronger one L≤m/3
that was required in the previous section.

Similarly to results in the previous section, it can be
straightforwardly shown that this method provides estimates
ĵ0 (·) and X̂0 (·) that, in contrast to the inverse solution ĵ (·),
exactly recover the true source j (·) when the model (18) is

satisfied (i.e., when j (·) = j0 (·)). In other words, this estimation
method achieves exact unmixing of the inverse solution under
this condition. Otherwise, it leads to an approximate unmixing
whose error depends both on the satisfiability of the model (18)
and the resolution R, analogously as was shown in the previous
section.

Unmixing Inverse Solutions vs. Directly
Fitting the Model to the Data
From certain point of view, the unmixing procedure consists in
correcting a mistake introduced by the inverse solution method
used to obtain the currents at the sources. This mistake is
unavoidably caused by the ill-posed mathematical nature of
the inverse problem, where the number of unknowns is much
bigger than the number of observables. This fact might suggest
considering the convenience of using a simpler approach in
which the estimates at the sources are obtained via direct
estimation of the model from the data, without requiring a
previous step of distributed inverse solution as sLORETA. In
principle, this approachmay avoid solving an ill-pose problem by
restricting the solution to a small number of unknowns, which is
less or equal to the number of observations.

More specifically, this approach can be modeled as follows:

j =

L∑

l= 1

α
l
1Al

= Mα,whereα
l
∈ R and 1 ∈ R

Nvox , (26)

1uAl
=

{
1 if u ∈ Al

0 if u /∈ Al

}
(27)

M = [1A1 ... 1AL ],M ∈ R
NvoxxL (28)

α =




α1

...
αL


 (29)

Under this formulation, the Equation (1) can be rewritten as:

v = Kj+ ε = KMα + ε. (30)

The minimum least square solution of Equation (30) is given by:

∧
α =

(
M

T
K

T
K M

)−1

M
T
K

T V (31)

The corresponding estimate of current at the sources is obtained
by:

ĵ =

L∑

l= 1

∧
αl 1Al

= M
∧
α (32)

Equations (8), (17), and (25) state that L is always less than the
rank of K. This condition guarantees the existence of the inverse
in Equation (31) and therefore the solution of Equation (31)
always exist and it is unique. The difference with the inverse
solution estimates is that in this case, only a small number of
sources (L) are estimated instead of the whole set of sources in the
gray matter, as it is the case with the inverse methods. This should
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not be considered a limitation, since anyway, after estimating the
inverse solution, only L sources can be unmixed.

Through simulations in the next section this direct fitting
procedure will be tested against the unmixing of the distributed
inverse solutions procedure.

ILLUSTRATIONS THROUGH SIMULATIONS

Let X1, X2, and X3 be the (time-varying) state variables of a three-
variate system with the dynamic connectivity pattern shown in
Figure 1.

The linear interactions between the variables are set according
to the following multivariate auto-regressive (MAR) order 2
model:

X (t) = A (1)X (t − 1) + A (2)X (t − 2) + e (t) , (33)

where

X (t) = (X1 (t) ,X2 (t) ,X3 (t))T , (t = 1, 2, ...) ; (34)

A(1) =




1.5 −0.25 0
−0.25 1.8 0
0 0.5 1.3


 ,

A(2) =



−0.95 0 0
0 −0.96 0
0 0 −0.95


 , (35)

and the time series e (t)is a white noise, with zero mean and
variance 1, i.e., with covariance matrix:

V (e) = I. (36)

To assess the causal connectivity patterns between the variables
of the system, a direct and directed measure of causal influence
in the frequency domain, named “Isolated Effective Coherence”
(iCoh) (Pascual-Marqui et al., 2014), is used here. For each
pair of system variables Xi and Xj, the iCoh index from
Xi toward Xj is defined as the partial coherence between
them (at each frequency) under a multivariate autoregressive
model obtained from the original one by setting all irrelevant
associations (autorregressive coefficients) to zero, other than

those corresponding to the particular direct and directional
influence of interest from Xi toward Xj. Unlike the correlation,
iCoh is not symmetric and can distinguish between direct and
indirect causal flow of information, so capturing the patterns of
directed influences between the variables. For more details and
examples of the iCoh connectivity measure (see Pascual-Marqui
et al., 2014).

The left panel in Figure 2 illustrates the real pattern
of connectivity that were simulated [according to (33)-(36)]
between X1, X2 and X3, recovered by iCoh.

Point ROI-Based Unmixing With Exact
Source Models
Different simulations presented here illustrate the mixing
effects produced by EEG inverse methods, as were discussed
in section Mixing effects in source estimation. The signals
X1, X2, and X3 were assigned to the nearest voxels in
the cortex to the electrodes Fp1, O1 and P3 of the 10–
20 EEG recording system (panel to the right in Figure 1).
Furthermore, an additional white noise with zero mean
and 0.1 standard deviation was added at all voxels of the
brain.

A superficial three concentric spheres lead field (Hoke et al.,
1990; Riera and Fuentes, 1998; Bosch-Bayard et al., 2001), for
a grid defined over the surface of the cortex of the Montreal
Neurological Institute (MNI) (Evans et al., 1993), was used to
solve the forward EEG problem and generating the voltage at the
19 electrodes of the 10–20 System.

The method described in section Unmixing through regions
on the cortex surface with known source directions will be used
for unmixing, taking point ROIs on the cortex surface. For this,
the lead field was projected to the normal direction to the surface
for all voxels. This allows the estimation of 18 independent point
sources (see Equation 37).

The generated voltage was used to go back to the source space
by solving the EEG inverse problem with sLoreta on the cortex
surface. In this way, an estimate of the current density at any
voxel (point source) on the cortex surface was obtained. iCoh
was used to infer the connectivity between point sources based on
their reconstructed signals by means of sLoreta. Figure 2A shows
the connectivity patterns recovered by iCoh from the sLoreta-
reconstructed signals at SFp1, SO1, and SP3. The iCoh patterns

FIGURE 1 | Left: System diagram. The past of X1 influences the present of X2, and vice versa. The past of X2 influences the present of X3. X3 does not influence any

variable. Right: Voxels in the cortex used as locations of point sources in the simulations (named according to the 10–20 EEG recording system).
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FIGURE 2 | To the left, the iCoh results of connectivity between the original variables used for the simulation. Panel (A) shows the iCoh measures of connectivity

based on the (mixed) current estimates by sLoreta at the point sources considered in the simulation. Panel (B) shows that spurious patterns appear when adding in

the analysis new voxels that were not originally considered in the simulation of the source. Panels (C,D) show the exact reconstruction of the connectivity patterns

achieves by applying the unmixing procedure. Panel (B) for the voxels included in the simulation of the source; panel (D) when adding new voxels not included in the

simulation. In both cases, the reconstruction of the original patterns is exact.

are recovered with a high degree of similarity (compare with the
patterns shown to the left in Figure 2).

However, if one additional voxel is added in the connectivity
analysis, as SP4 in Figure 2B, many spurious patterns of
connectivity appear between the voxels. The shortcomings
become aggravated as more voxels are added to the analysis. This
effect is due to the mixing effect of the EEG inverse method,
sLoreta in this case. The results from Figures 2A,B may suggest
that, in order to be able of recovering the correct patterns of
connectivity with the inverse solutions, one must know the exact
set of variables sending and receiving information in the system,
a non-feasible supposition in most experimental settings.

The unmixing procedure described in section Unmixing
through regions on the cortex surface with known source
directions for regions on the cortex surface solves this problem,
using point ROIs brain regions [i.e., regions described as
type (S1) in section Unmixing through arbitrary regions with
completely unknown source vectors]. The unmixed signals
recover the exact patterns of connectivity of the point sources
included in the simulation. Indeed, Figure 2C shows the exact
reconstruction of the connectivity patterns for the real system
that is obtained after unmixing. Moreover, adding new point
ROIs (or variables) in the analysis of the unmixed signals neither
affects the patterns of connectivity between the original variables
nor introduce spurious information flow with the additional
variables, as is shown in Figure 2D.

Simulations of Unmixing Inverse Solutions
vs. Directly Fitting the Model to the Data
To test whether the approach introduced in section Unmixing
inverse solutions vs. directly fitting the model to the data
may produce better results than the unmixing procedure, we
performed the following simulation:

(a) Select the 5 nearest sources to Fp1, Fp2, F3, F4, and O1
(which will be denoted by sFp1, sFp2, sF3, sF4, and sO1).

(b) Using the methodology explained in section Illustrations
through simulations (Equations 33–36), generate time series for
each of the 5 sources. The patterns of influence among the
variables is shown in Figure 3A: Fp1 : sFp2; sFp2 : sFp1; sF3
: sFp1; sF3: sF4; sF4: sFp2 and sO1: sF3.
Using the time series set to the mentioned sources, the forward
problem was solved as described in section Point ROI-based
unmixing with exact sourcemodels to producemeasurements for
the voltage at the 19 electrodes of the 10–20 system. Note that
these simulation settings are similar to the ones used to validate
methods in Baccalá and Sameshima (2001); Baccala et al. (2007)
and Pascual-Marqui et al. (2014).

On the basis of the voltage signals, two procedures were used
to reconstruct the signals back at the same sources where the
signals had been simulated (sFp1, sFp2, sF3, sF4, and sO1): (a)
solving the inverse solution with sLoreta and then applying the
unmixing procedure as explained in section Unmixing through
regions on the cortex surface with known source directions;
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FIGURE 3 | Comparison of the results obtained by the unmixing procedure after the distributed inverse solution vs. the direct solution of the problem by Least Square

solution. Panel (A) shows the exact simulation used. Panel (B) shows the reconstruction of the patterns of influence by iCoh when one of the simulated signals (sO1)

is ignored; observe that very small artifacts appear. Panel (C) shows the iCoh results using the signals reconstructed at the sources after solving the inverse problem

and applying the unmixing procedure ignoring sO1; note that it almost the same as Panel (B), no better result can be expected. Panel (D) shows the iCoh

reconstruction of influences using the signals obtained by direct estimation of the model by Least Square ignoring sO1; observe that many spurious patterns appear

where the influence should have been zero, although the real patterns between the included regions are well recovered.

and (b) directly estimating the current at the selected sources
using the methodology explained in section Unmixing inverse
solutions vs. directly fitting the model to the data. When solving
the inverse problem and applying the unmixing method, the
procedure produces estimates of the current for all sources in
the grid, while with the direct procedure, current estimates are
obtained only for the 5 selected sources. After that, the iCoh
technique was applied to reconstruct the patterns of influence at
the sources, using the reconstructed time series.

When unmixing and direct solutions were performed using
the same 5 selected sources, both procedures reconstructed the
exact patterns of causality as generated. They are not shown
because it was an obvious result.

However, the results are quite different when, instead of
using the 5 selected sources, we ignore one of them (sO1
in this case) and reconstruct the patterns of influence using
only 4 of the 5 sources: sFp1, sFp2, sF3, and sF4. When
ignoring one of the variables and calculating iCoh with the
rest of them, the iCoh technique cannot reconstruct the exact
patterns of causality since important information about the
multivariate system is omitted; namely, some of its variables.
However, as shown in Figure 3B, the artifacts recovered by
iCoh from this inexact model are minor. Indeed, Figure 3B,
shows almost exact reconstruction of the patterns of influence
among the original system, though the time series set at
sO1 was disregarded in computing iCoh measures. Only
two small artifacts appear—from sFp2 to sF3, and from
sF3 to sFp2. The rest of the patterns remain as they were
simulated.

Figure 3C shows the results obtained by solving the inverse
problem with sLoreta, selecting the time series reconstructed at
the 4 sources (sFp1, sFp2, sF3, and sF4) and applying the iCoh
technique to them, after the unmixing procedure. The results are
almost exactly the same ones obtained for the original times series
in Figure 3B, i.e., the unmixing procedure results are as good as
the best it can be expected in such situation.

However, the results from calculating iCoh with the signals
estimated by the direct procedure results in many artifacts in
the influence patterns, not present in the original simulation,
as shown in Figure 3D. Tough the real patterns of influence
between are correctly reproduced, additional spurious patterns
of influence are present in almost all the pairs of sources. In some
of them, like sF3: sFp2, the spurious pattern involves more than
one frequency.

Similar results are obtained in a wide variety of simulated
scenarios. In general, the unmixing procedure shows to be more
robust than direct fitting concerning deviations of the adopted
model from the true source distribution.

The greater robustness of the unmixing approach
regarding misspecification of the source model is theoretically
understandable. Distributed inverse solutions (as LORETA) have
low resolution, but they have at least some amount of resolution.
Therefore, including a distributed inverse solution as a previous
step provides some degree of source localization. Consequently,
the confounding effects due to sources not included in the
adopted model are diminished by means of the distributed
inverse solution step involved in computing the unmixing
solution.
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Effect of Additive Measurement Noise in the

Recovery of Connectivity Patterns
In this section, the effect of the additive measurement noise ε

[specified in the Equation (1)] is considered in more detail within
the context of unmixing for recovering source connectivity
patterns. This noise appears during the recording of the EEG due
to technical reasons and has nothing to do with the subject’s brain
activity.

To test the effect of this noise, a simulation like the one used
in section Simulations of Unmixing inverse solutions vs. directly
fitting the model to the data is repeated here. The only difference
is that, after the voltage at the electrodes is obtained by solving the
forward problem, now in this case we also add a white Gaussian
noise to the voltage before reconstructing the signal back at the
sources by means of sLoreta. This is a second type of noise
different from the noise added at the time signals at the sources
during the simulation.

From this noise-corrupted voltage we reconstruct the patterns
of influence at the sources in the same way we did in section
Simulations of Unmixing inverse solutions vs. directly fitting the
model to the data (again omitting sO1 in the iCoh technique
calculation), by means of the two procedures: (a) unmixing after
sLoreta; and (b) directly estimating the current at the selected
sources using the methodology explained in section Unmixing
inverse solutions vs. directly fitting the model to the data.

Figure 4 shows the reconstructed patterns of influence for
the two methods. At the left, the reconstruction of the causality
patterns by the unmixing algorithm applied to the inverse
solutions; the right panel shows the reconstruction of the patterns
using the direct fitting of the model. The patterns obtained by
the unmixing procedure are less affected by the noise than the
ones obtained by the direct fitting. Compare them with those
in Figure 3.

We repeated this simulation for different amounts of noise
[decreasing the signal to noise ratio (SNR)] and increasing the
number of sources to be unmixed. It is worth to say, that the
direct fitting is more resistant to the decrease of the SNR than the
sLoreta estimates. Both procedures are affected by the increment
of the measurement noise (as expected), but the sLoreta estimates
are affected in a more severe way than the direct fitting. Also,
when increasing the number of sources to be unmixed, as we
approach to the maximum number of sources possible to be
unmixed (the number of electrodes minus 1), the stability of the
sLoreta procedure is affected in a more severe way than the direct
fitting.

At this point, we consider necessary to give here two
additional comments: in the literature of brain connectivity it
is not frequent that researchers include the analysis of more
than 10 brain regions; and second, although the direct fitting
is less affected than sLoreta when the noise increases, the gain
is not clear since any of the two methods is able to correctly
reproduce the connectivity patterns. In this sense, it is worth to
mention that the problems mentioned above are not inherent
limitations of the unmixing procedure itself but rather than of
the sLoreta method. There exist other types of distributed inverse
methods which are less sensitive to the noise than sLoreta; for
example: eLoreta. While the inverse method is more resistant
to the noise, the unmixing procedure will perform with more
stability.

Thus, by one side, the unmixing procedure inherits virtues

of the distributed inverse solution used, such as some amount
of model-free resolution that leads to robustness regarding

model misspecification, the more the better be the resolution
(as discussed in section Simulations of Unmixing inverse
solutions vs. directly fitting the model to the data above). On
the other hand, also may inherits some drawbacks regarding

FIGURE 4 | Reconstruction of the patterns of influence for the system simulated in Figure 3 with measurement noise added. At the left, the reconstruction obtained

by the unmixing procedure and sLoreta. To the right, the reconstruction obtained by the direct fitting of the model. Note that the reconstruction of the unmixing

procedure is less affected by the noise, and very similar to the one obtained in Figure 3, where the measurement noise was not added.
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noise-sensitivity that are specific to the distributed inverse
solution adopted, as discussed in the present section. Selecting
a suitable trade-off between resolution and noise-sensitivity in
each concrete situation is a general problem dealt with in
the research about distributed inverse solutions. A remarkable
advantage of the flexibility of the introduced unmixing procedure
is that it allows incorporating any proposal from this research
literature.

Performance of the Unmixing Procedure
With Different Inverse Methods
In the last paragraph of section Unmixing through arbitrary
regions with completely unknown source vectors, the conditions
for the existence and inversibility of the unmixing operator Q
and for the possibility of unmixing two specific sources are
analyzed. In this section we illustrate this fact through examples.
For convenience, we use the same example of section Simulations
of Unmixing inverse solutions vs. directly fitting the model to
the data and compare the performance of two inverse methods:
Minimum Norm Estimates (MNE) and sLoreta.

Figure 5 is divided in 6 panels. Panel A and B illustrate some
properties of the two inverse methods under comparison. First,
panel A illustrate, just as a remind, the known localization error
for the twomethods. The X axis contains all the voxels considered
in the grid (3244) sorted by their distance to the center of the
head (HC). A smaller value of X indicates proximity to HC, while
the voxels near the scalp have the highest distance to the HC.
The blue solid line in zero along the X axis indicates the sLoreta
localization error, which is known to be zero, as a property of

sLoreta. For the minimum norm (line in red), voxels near the HC
(deeper voxels) have bigger localization error, which diminishes
while the distance to the center increases, i.e., voxels near the
scalp.

Figure 5B shows the minimum distance between two sources
necessary for the unmixing procedure (inversibility of Q). Again,
the X axis represents the voxels according to their distance to the
HC and the Y axis is the distance between the two voxels. The
blue line shows that with sLoreta, almost all the voxels (except
4) can be unmixed even with the nearest neighbor. However, for
the MNE (red line) many voxels need a bigger separation for
the unmixing procedure. There is not a clear tendency between
the depth of the voxels and the minimum distance for unmixing,
although it appears that deeper voxels have smaller distances, i.e.,
they can be unmixed.

In Figures 5C,D, the five voxels nearest to the S1020 channels
Fp1, Fp2, F3, F4, and O1 are selected as targets for the simulation.
The five signals of the example in section Simulations of
Unmixing inverse solutions vs. directly fitting the model to the
data are set to them. Then, the voltage at the scalp is generated by
solving the forward problem and again, the signal at the sources
are estimated by means of MNE and sLoreta. The patterns of
causality are recovered by calculating the iCoh between the
signals, before and after the unmixing procedure.

Figures 5C,D shows the performance of MNE and sLoreta
respectively. In both, the red dashed lines show the causality
patterns estimated by iCoh with the signals before unmixing and
the solid black lines show the recovery of the causality with the
unmixed signals.

FIGURE 5 | Performance of the unmixing procedure for the Minimum Norm and sLoreta, for voxels at different depth in the brain. Panels (A,B) show a comparison of

MNE and sLoreta in terms of localization error and resolution matrix. Panels (C–F) show the connectivity patterns for a set of voxels near the scalp (C,D) and a set of

voxels deeper in the brain (E,F) for MNE (C,E) and sLoreta (D,F). The reconstruction of the causality after unmixing is perfect in all situations.
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Figures 5E,F show the results for a similar simulation but
selecting the target voxels in deeper regions of the brain: two
at the Temporal Superior (Right and Left), two at the Occipital
Superior (Right and Left) and one at the Left Frontal Superior
region.

Figures 5C–F show that the causality patterns of the voxels
before the unmixing procedure are very affected by the mixing
effect both for sLoreta and MNE. However, after unmixing, the
recovery of the causality patterns in the four situations is perfect.
This result is important since it confirms the statements written
in section Unmixing through arbitrary regions with completely
unknown source vectors that the unmixing procedure does not
depend neither on the inverse method, nor on the localization
error or the depth of the sources under consideration. It is
also worth to note that MNE performs well for connectivity
matters after applying the unmixing procedure, despite the worse
localization error and resolution matrix than sLoreta.

These results are in consonance with Hedrich et al. (2017)
who made a comparison of performance of different inverse
methods, includingMNE and sLoreta. Our results show the same
localization error for both methods, although here we reported it
in terms of the voxel depth. Hedrich et al. (2017) also reported
a similar amount of leakage for MNE and sLoreta, which is in
concordance with our results, as it can be observed in Figure 5.
Additionally, they showed that the spatial dispersion of the Point
Spread Function (PSF) of sLoreta is bigger than the one for the
MNE. This looks to be consistent with Figure 5, where sLoreta
shows a more widespread mixing effect than MNE.

Point ROI-Based Unmixing With Exact
Source Models of Systems With More
Variables
To illustrate that the unmixing procedure works perfectly even
in the boundaries of the maximum admissible number of point
sources as ROIs (18 in this case), a more complex system is
simulated, involving 17 variables, with very complex patterns of

connections between them (see Figure 6, left panel). The same
kind of MAR system previously simulated for X1, X2 and X3
have been extended here between all the 17 variables to construct
this complex system. For clarity in further use, they are named
as the corresponding electrodes of the 10–20 recording EEG.
The arrows indicate the direction of the influence. There is a
bidirectional flow of information between Fp1 and Fp2. In the
rest of the voxels, the information flow goes in only one direction.
The right panel of Figure 6 shows the exact patterns of causality
of the simulated system obtained by iCoh.

The signal of each variable of this system is then set as a
point source at the voxel of the cortex closest to the electrode
corresponding to its given name. From the source composed by
such set of point sources, the voltage at the 10–20 EEG electrodes
are obtained by solving the EEG forward problem. Then, the
current densities are estimated at the sources bymeans of sLoreta.
The iCoh patterns of connectivity based on the these (mixed)
reconstructed signals at the 17 voxels are shown in Figure 7 in
dashed lines. The mixing effect of the inverse solution produces
a big number of spurious patterns of connections between the
signals estimated at the sources, as is shown by the dashed lines
in Figure 7. After applying the unmixing procedure, the iCoh
connectivity patterns between the point sources are recovered
exactly as with the original simulated signals. They are shown
in Figure 7 in solid lines; compare them with the right panel of
Figure 6.

Point ROI-Based Unmixing From Inexact
Source Models
Now, to illustrate the effect of estimating the causal inferences
with an inexact source model, we provide simulation results in
three additional situations. In all of them, the simulated (true)
source is the one represented to the left in Figure 6.

First, let’s remove one voxel of a point source from the source
model (F7 in this case). The unmixing procedure is then carried
out over the remaining 16 voxels instead of the 17 voxels involved

FIGURE 6 | Simulation of a system with 17 variables. The diagram in the left panel shows the map of connectivity patterns simulated among the sources. The right

panel shows the reconstruction of the connectivity patterns among the signals, using iCoh. Note that the reconstruction is exact.
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FIGURE 7 | iCoh measures of the 17 sources of the reconstructed system. Solid thick lines after unmixing the sLoreta reconstruction; dashed lines before unmixing.

in the simulated system. The iCoh measure is computed based
on the unmixed signals at such 16 voxels. Figure 8 illustrates the
iCoh results in this situation. Although the original patterns of
causality between the 16 voxels are kept intact, some additional
spurious patterns of connectivity appear between them. The
reason for this result is that the unmixing procedure did not
include F7, and therefore there is still somemixing effect between
the reconstructed signals.

The second situation consists in replacing in the unmixing
procedure one-point source involved in the simulated system
(F7 as in the previous simulation) by another point source
which did not participate in the original system, and so does
not contain relevant connection patterns (Pz). Figure 9 shows
that in this case all the artifacts are explained by the additional
variable, while the connectivity patterns between the 16 original
variables included in the analysis remain intact. This effect has
been previously described by Wong and Ozaki (2007) for the
case when the innovations from the estimation of themultivariate
AR model is not diagonal (not white innovations), meaning that
some variance of the system is still not explained by the model.
In this case, they propose to add an external (latent) variable,
to gather all the unexplained variance. Here, Pz appears as a
common source of causality for all voxels in the system, to
account for the unexplained influence coming from F7, except
for O1 and O2, which do not receive influenced from any other
variable in the original system. This result is a beautiful example
of the latent variable effect mentioned by Wong and Ozaki
(2007). Note that Pz does not receive influence from any other
variable.

The third scenario for exploring the effect of incomplete
information is keeping all the 17 variables of the system
(including) for the unmixing procedure but calculating the iCoh

between the 16 variables remaining after removing F7. Figure 10
shows the patterns of causality for this case. Compare this figure
with Figure 9. In this case, almost no artifacts appear since F7
participated in the unmixing procedure. However, note that there
is a bidirectional pattern of influence between Fz and T3. This is
because in the original system, F7 sent information both to Fz and
T3 (see Figure 6). When F7 is removed from the iCoh analysis,
the indirect relationship that exists in the original system between
Fz and T3, mediated by F7, appears now in iCoh measures as a
direct relationship between them. This behavior is expected for
measurements like iCoh and has nothing to do with the mixing
effect.

The main conclusion from the results in Figures 8–10 is that,
independently of the number of variables that will be included in
the causality analysis, the unmixing procedure should be always
carried out including the maximum admissible number of point
sources in the model (containing, of course, those voxels to be
subject to causal connectivity analysis). This number is always the
number of electrodes minus one. This will guarantee the greater
possible amount of unmixing of the signals to be submitted to the
causal analysis.

Surface ROI-Based Unmixing
To illustrate the ROI-based unmixing approach described in
section Unmixing through regions on the cortex surface with
known source directions with surface ROIs regions [i.e., the (S2)
type of brain regions mentioned in section Unmixing through
arbitrary regions with completely unknown source vectors], a
new simulation is here added. We take a grid defined over the
cortex surface of the MNI template and calculate a superficial
lead field for it. Again, according to Equation (25) in section
Unmixing through regions on the cortex surface with known
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FIGURE 8 | iCoh for 16-point sources reconstructed by unmixing without including one of the original point sources (F7) in the analysis. F7 is considered neither in the

unmixing procedure nor in the iCoh calculation. The unexplained causality due to F7 appears as artifacts between the rest of the variables.

FIGURE 9 | iCOH of the 17-point sources obtained by removing F7 and adding a new voxel (Pz) which was not in the original system. All the unexplained causality

appears as artifacts in Pz.

source directions, to increase the number of independent local
sources in the brain, the lead field is projected to the normal
direction of each voxel. Then, we divide the external side of the
surface into 18 disjoint regions, 9 regions in each hemisphere, as
it is shown in Figure 11.

The simulation consisted in a source activity that is not
constant over each region; specifically, for all voxels of Region 5
we created a Gaussian-shape source around a target value (value
of the variable X1 in the system in Figure 1), and we added a
random Gaussian noise, independent for each voxel and instant
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FIGURE 10 | The unmixing procedure was carried out with the 17 point sources (including F7), but iCoh was computed based on the 16 sources resulting from

removing F7. The variance due to F7 is then unknown for the iCoh measures. The connectivity patterns between all variables are preserved, except a bidirectional

connection between Fz and T3. Note that this connection exists in the original system, mediated by F7, which has been removed. Small artifacts appear because the

voxels without signal were set to random noise. If no noise is added to these voxels, the reconstruction does not show artifacts.

FIGURE 11 | A parcellation of the cortex superficial grid in 18 regions. Each

color represents a region, and the regions has been numbered consecutively.

of time. The same procedure was used to assign the signal X2 of
the system in Figure 1 to all voxels in Region 10, and the signal
in X3 to all voxels in Region 17. The rest of the voxels of the grid
were set to Gaussian white noise.

According to section Unmixing through arbitrary regions
with completely unknown source vectors, to guarantee that the
source estimates over the ROIs can be unmixed, i.e., the matrixQ
in Equation (15) to be inversible, it is necessary to select the ROIs
such that their centers are separated by a distance greater than
the resolution of the inverse method. For this specific simulation,
the condition number of the resulting matrixQ was 18.71, which
indicates that the matrix is well conditioned.

The voltage at the electrodes was obtained by solving the
EEG forward problem from these currents, using the superficial,
projected, lead field. Then, the current at the sources were

reconstructed by solving sLoreta based on the generated voltage
and the superficial lead field. The unmixing algorithm based
on said 18 surface ROIs was applied, so obtaining the average
unmixed signal for each ROI. For the 18 ROIs, the iCoh was
calculated based on the unmixed reconstructed signals. Figure 12
shows the exact reproduction of the causality between the 18
ROIs for the reconstructed signals at the sources. There is a
perfect reconstruction of the simulated patterns of information
flow between the regions.

An Argument Against the Use of Superficial
Lead Fields for EEG Connectivity Analysis
In this section we analyze the negative effect in the connectivity
analysis of using a superficial lead field (i.e., considering only
voxels located in the surface of the cortex) when the sources that
generate the voltage are not located only on the surface of the
cortex.

To illustrate this, we used a volumetric lead field calculated
over a grid that contained sources at the surface of the cortex, as
well as sources deep in the gray matter.

We then selected the subset of voxels lying in the surface
of the cortex and restricted the lead field to them. In this way,
we have two lead fields: one for the volumetric grid and one
for the voxels at the surface, where the superficial lead field
contains a subset of the sources of the volumetric one. Both
lead fields were projected to the normal direction to the cortex
surface.
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FIGURE 12 | iCoh perfect reconstruction of the connectivity patterns simulated for the 18 surface regions, after application of the unmixing procedure for these

surface regions, as described in section Unmixing through regions on the cortex surface with known source directions.

The next step was to create two scenarios, selecting two sets of
voxels:

(a) In the first scenario, all the voxels belonging to the regions
5 and 10 of Figure 11 (which belong to the surface of the
cortex, according to how the regions were created). Since the
voxels are in the surface, they belong to both lead fields, the
volumetric and the superficial ones.

(b) In the second scenario, for the regions 5 and 10 we found the
centroids and select a small number of neighbors lying in the
cortex below the surface (i.e., inner layer of the cortex). These
voxels belong to the volumetric lead field but do not belong to
the superficial one.

Voxels in Region 5 (or below, depending on the scenario)
were connected to voxels in Region 10 (or below), in the two
directions, i.e., from Region 5 to Region 10 and from Region 10
to Region 5.

Now, we used the volumetric lead field (which contains all the
voxels, both at the surface and the volume) to generate the voltage
at the electrodes, for solving the forward problem for the two
scenarios. After this step, two sets of voltage signals are generated:
one voltage for the signals located in the voxels of the surface and
a second one for the signals located in the voxels of the inner
layer.

Then, the next step was to use the two sets of generated
voltages to estimate the currents back at the sources. For this
purpose, the superficial lead field was used. Note that when the
voltage is generated at the voxels in the inner layer, the superficial
lead field does not contain information about these voxels;
therefore, it will try to distribute this activity among the voxels
in the surface. As inverse method, sLoreta was used. Finally, the

estimated currents at the sources obtained by the two procedures
were submitted to the unmixing method based on said 18 surface
ROIs, as was described in section Unmixing through regions on
the cortex surface with known source directions.

Figure 13 shows the sLoreta solution for the two cases.
Upper row contains the solution for the source voxels in the
surface. Lower row contains the solution for the source voxels
in the inner layer. The true solution is lying in the cortex
below the regions 5 and 10 and is not shown but comparing
with Figure 11 it is evident that the solutions coincide with
the simulated sources. Although the amplitude of the solution
for he voxels in the inner layer is 10 times smaller (a known
effect of the Loreta family solutions for deep voxels), the
topographic pattern of both solutions is the same. It means,
the localization of the activity is not significantly affected, if the
activity is not directly generated at the voxels of the surface
but in the inner (deeper) neighbors, under the assumption
that the currents on the cortex propagates to the surface in
the perpendicular direction to the surface (i.e., in the normal
direction).

However, the connectivity patterns recovered by iCoh from
the reconstructed signals at the sources are very different
for the two scenarios. Figure 14 shows the patterns of
connectivity for the currents at the sources estimated using
the voxels in the surface (the first scenario a). Note that
even when the signals have been reconstructed with the
volumetric lead field, the iCoh patterns are completely
preserved. A few number of small spurious artifacts appear
between some isolated regions. These artifacts appear only
when Gaussian white noise is added to the voxels in the
volume. If no noise is added (a deterministic non-zero
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FIGURE 13 | sLoreta solution using the superficial lead field. The upper panel shows the solution for the voltage generated with the set of voxels located in the

surface. The lower panel shows the solution for the voxels lying in the volume, in the inner layer next to the voxels in the surface. The source localization is not affected

by the position of the sources either at the surface or immediately below the surface voxels. Only the amplitude of the solution is smaller for the voxels in the inner layer.

FIGURE 14 | iCoh connectivity for the setting of current at the surface voxels reconstructed by the superficial lead field and sLoreta. The patterns are recovered with

great accuracy; only some small artifacts randomly appear, due to the Gaussian white noise added to the simulated signals. Remember that in this simulation, the

voxels at the surface are a subset of the voxels in the volume.

value is assigned to the voxels), the reconstruction is
perfect.

On the contrary, the connectivity patterns for the signals
reconstructed at the surface in the second scenario (the voltage
was generated by voxels located in the inner layer) are totally
distorted, even after applying the unmixing procedure. This is
shown in Figure 15. This effect may be caused by the fact that
the connectivity analysis is missing all the truly relevant variables
in the system, namely the sources in the inner layer. This is an
extreme example of Figure 10. In this case, the voxels in the
surface are receiving influences from the voxels in the inner
layer, which are unknown for the system analysis. Therefore, it

is impossible successfully to apply an unmixing procedure based
only on surface regions, since in this way the real variables are
disregarded.

The conclusion of these simulations is that using superficial
grids and lead fields may lead to wrong estimates of the brain
connectivity at the sources if the real sources are not located at
the surface. The problem is not sLoreta. It has been widely shown
in this paper that after the unmixing procedure the connectivity
at the sources is recovered in an almost perfect way. The problem
is that solving the inverse problem at the surface ignores the
real sources of the activity. The activities reconstructed for the
sources located on the surface are already mixed due to the
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FIGURE 15 | iCoh patterns of connectivity obtained from reconstructed currents at the cortex surface by using the superficial lead field when the voltage was

generated by sources lying in the inner layer, bellow but close to the surface. The big effect of mixing in distorting the real connectivity pattern is because of the

superficial lead field does not regard the voxels in the inner layer, hence surface-based unmixing lacks relevant information on inner voxels to successfully unmixed the

superficial sLoreta source estimate.

volume conduction problem; and, since only superficial sources
are considered, the activity that arrives mixed at the surface,
cannot be unmixed because of missing information present in the
deep sources.

CONCLUDING REMARKS

The ROIs-based approach introduced in this paper for unmixing
inverse solutions offers wide flexibility in specifying the family
of ROIs that be adopted to suitably segment the brain in
each particular experimental setting. These can be volumetric,
surface or point regions of the brain, or even some combination
of them.

The error when unmixing by this method, as is demonstrated
by theoretical bounds and exemplified in simulations, depends on
two main factors: (a) the exactness of the adopted segmentation
for representing the true source field, and (b) the deviation
of the resolution matrix from the identity. The first factor
can be improved when the ROIs are selected taking into
consideration relevant anatomical and functional knowledge
about the underlying brain activity. It can be also enhanced
by substantially increasing the number of regions in the brain
segmentation model adopted, which in turn requires to increases
the number of EEG recording electrodes.

The importance of this last issue to improve connectivity
analysis is worth of be emphasized. The conclusion of section
Point ROI-based unmixing with exact source models points out
the importance of including the largest admissible number of
ROIs in the unmixing procedure, even if not all of them will

be later included in computing connectivity measures (such as
iCoh). The largest admissible number of ROIs (variables) is
always the number of electrodes minus one. This is a sound
reason that enforces the need of increasing the number of
electrodes.

The results shown in section Point ROI-based unmixing with
exact source models of systems with more variables clearly advise
against the use of superficial lead fields for brain connectivity
analysis. The landscape of activation, i.e., the amplitude field
of the source activity is not significantly affected by the use
of superficial lead fields (at least when the activity comes
from neighbor voxels located immediately under the cortex).
However, the connectivity pattern associated with the flow
of information arriving at the surface from inner voxels is
completely misunderstood when only the voxels at the surface
are regarded.
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APPENDIX

Let j (·)be any source field; j0 (·), b =
(
bT1 , . . . , b

T
L

)
be defined by

the Equations (11, 12); and b̂ =
(
b̂T1 , . . . , b̂

T
L

)
be the estimate of

b obtained by solving the Equation (14).

Then, it holds the following bound for the size of the error b− b̂:

∥∥∥b− b̂
∥∥∥ ≤

∥∥Q−1
∥∥ ‖δ‖ , (A1)

where ‖·‖ denotes the Euclidean norm of a vector or matrix,
Q =

(
Q

(
l, s

))
1≤l,s≤L

, Q(l,s) is defined by , Q−1 is the inverse of

the matrixQ, δ =
(
δ
T
1 , . . . , δ

T
L

)
, and

δl =
∑

u∈Bl

∑

w∈Bs

R (u,w)
(
j0 (w) − j (w)

)
. (A2)

The inequality can be obtained as a straightforward consequence
of the fact that

Q
(
b− b̂

)
= δ.

In turn, this last equation can be derived quite directly from the
Eequations (14)–(15), (9), and (11–12).
Note that

‖δ‖ ≤
∥∥R− diag(R)

∥∥
sup

∥∥j0 − j
∥∥ , (A3)

where diag(R) denotes the diagonal of the matrix R, and

‖C‖sup = max
{⌊
cij

⌋
: 1 ≤ i, j ≤ L

}

for any matrix C= (cij). Therefore, substituting (A3) into (A1), it
is obtained

∥∥∥b− b̂
∥∥∥ ≤

∥∥Q−1
∥∥ ∥∥j0 − j

∥∥max
u 6=w

∣∣R(u,w)
∣∣ . (A4)

This last equation shows that the error
∥∥∥b− b̂

∥∥∥ of the estimate b̂

is small if either
∥∥j0 − j

∥∥ or max
u 6=w

∣∣R(u,w)
∣∣ are small, in the sense

of the norms involved.
As said in section Unmixing through arbitrary regions with
completely unknown source vectors, the condition for the inverse
matrix Q−1to exist is that the minimum distance between all
centers of the L ROIs is greater than the resolution of the inverse
method used. In general, this results to be a well-conditioned
matrix. For example, the condition number obtained for the
case of simulation of 5 sources without measurement noise was
2.99, and for 5 sources with measurement noise it added was
47.94.
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