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OBJECTIVE—We sought to investigate whether elevated levels of acute-phase serum amyloid
A (A-SAA) protein precede the onset of type 2 diabetes independently of other risk factors,
including parameters of glucose metabolism.

RESEARCH DESIGN AND METHODS —Within the population-based Cooperative
Health Research in the Region of Augsburg (KORA) S4 study, we measured A-SAA concentrations
in 836 initially nondiabetic subjects (55—74 years of age) without clinically overt inflammation who
participated in a 7-year follow-up examination including an oral glucose tolerance test.

RESULTS —A-SAA concentrations were significantly associated with incident type 2 diabetes
(odds ratio [OR] for a one-SD increase of A-SAA adjusted for age and sex = 1.28 [95% CI 1.08-
1.53], P = 0.005), particularly in younger subjects (P value for interaction = 0.047). The asso-
ciation attenuated when adjusting for parameters of glucose metabolism (fasting glucose, fasting
insulin, HbA;., and 2-h glucose; OR 1.16 [0.95-1.42], P = 0.15). Similar analyses for high-
sensitive C-reactive protein (hs-CRP) yielded the following ORs: 1.39 (1.10-1.68, P = 0.0006)
and 1.13 (0.88-1.45, P = 0.34), respectively. In contrast, A-SAA concentrations were signifi-
cantly associated with 2-h glucose levels at follow-up even after adjustment for parameters of
glucose metabolism (P = 0.008, n = 803).

CONCLUSIONS —Our findings indicate similarly strong prospective associations with type 2
diabetes for A-SAA and hs-CRP and suggest a potential causal link via postchallenge hypergly-
cemia.
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ype 2 diabetes is preceded by a

differential activation of compo-

nents of the innate immune system
(1,2). Serum amyloid A (SAA) is a sensi-
tive marker of the acute inflammatory
state. Its acute-phase isoform (A-SAA) is
up-regulated up to 1,000-fold in response
to inflammatory stimuli such as trauma,
infection, injury, and stress (3-5). The
high inductive capacity, along with the
fact that genes and proteins are highly
conserved throughout the evolution of
vertebrates and invertebrates, suggests
that A-SAA plays a key role in pathogen
defense mechanisms and probably func-
tions as an effector molecule of the im-
mune system (3).

Cross-sectional data have demon-
strated an association between elevated
systemic A-SAA concentrations and prev-
alent type 2 diabetes (6,7) as well as the
related metabolic parameters homeostatic
model assessment for insulin resistance,
fasting insulin, and HbA . (8,9). In a sub-
group of the current study population, we
have previously shown that circulating
levels of A-SAA were increased not only
in prevalent type 2 diabetes subjects but
also in individuals with impaired glucose
tolerance (7). To our knowledge, up until
now, only one prospective study con-
ducted in 492 Aboriginal Canadian sub-
jects has investigated the association
between baseline levels of SAA and incident
type 2 diabetes and did not find evidence
for a significant association (10).

We set out to investigate whether el-
evated levels of A-SAA precede the onset of
type 2 diabetes during 7 years of follow-up
in a large population-based study of ini-
tially nondiabetic, elderly Western Euro-
pean subjects without clinically overt
inflammation. Moreover, we assessed
whether this association was independent
of other risk factors, including parameters
of glucose metabolism (i.e., fasting glucose,
fasting insulin, HbA,, and 2-h glucose),
which indicate early impairments of glu-
cose homeostasis. Finally, the strength of
the association between A-SAA and inci-
dent type 2 diabetes was compared with
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that of the most frequently used inflam-
matory marker, circulating high-sensitive
C-reactive protein (hs-CRP).

RESEARCH DESIGN AND
METHODS

Study population

The current study included participants of
the population-based Cooperative Health
Research in the Region of Augsburg
(KORA) survey S4 (1999-2001; N =
4261) and its 7-year follow-up study F4
(2006-2008; N = 3,080) and was conducted
in the region of Augsburg, Southern
Germany. The study was approved by the
ethics committee of the Bavarian Medical
Association, and informed written con-
sent was obtained from all participants.
The selection process of study partici-
pants is displayed in Fig. 1. The sample
included all KORA S4 participants for
whom an oral glucose tolerance test
(OGTT) was performed at baseline (i.e.,
only the age-group between 55 and 74
years) and who were nondiabetic accord-
ing to the OGTT (n=1,231). For the pres-
ent analyses, subjects with elevated levels
of hs-CRP at baseline, which indicated an
acute proinflammatory state (hs-CRP
>10 mg/L, n = 44), or with missing
A-SAA data (n = 16) were excluded. Fur-
thermore, participants in the follow-up

Random sample in the region of Augsburg (KORA S4)
aged 25-74 years
n=4,261

Y

Survey participants within the age group 55-74 years
(eligible for OGTT examination)
n=1,653

!

Non-diabetic survey participants
within the age group 55-74 years
n=1,231

!

Follow-up participants
n=3878

examination (n = 878) with missing data
in type 2 diabetes status (n = 20) or in one
of the covariables used in the different
models (n = 22) were also excluded.
Thus, 836 subjects were included in the
present analyses.

Ascertainment of type 2 diabetes
and assessment of independent
variables

Type 2 diabetes was defined on the basis of
an OGTT according to the 1999 World
Health Organization diagnostic criteria
(11) or by a self-report, which was vali-
dated using data on glucose-lowering med-
ication or by questioning the attending
physician. At baseline, fasting EDTA
plasma samples were collected and A-SAA
was analyzed by immunonephelometry
on a BN II analyzer using an N Latex—en-
hanced test (Siemens, Schwalbach, Ger-
many). The interassay coefficient of
variation was <7% (7,12).

Information regarding the collection
of laboratory, anthropometric, and socio-
economic variables is provided in detail
elsewhere (13-16).

Statistical analyses

A-SAA, hs-CRP, and covariables were
tested for normal distribution. Further-
more, all numerical covariables were tested
for correlations between each other using

Drop-outs (non-fasting, technical problems,
vomiting during OGTT, missing 2-h glucose): n=168
Known diabetes: n=131

Newly diagnosed T2D by baseline OGTT: n=123

Clinical inflammation (CRP>10mg/L): n=44
Missing A-SAA data: n=16
Non-participants in follow-up: n=293

|

Study sample under investigation
n=836

Missing value regarding T2D: n=20
Missing value in covariable status: n=22

Figure 1—Flowchart of the selection process of study participants for the present analyses. T2D,

type 2 diabetes.

the Pearson coefficient of correlation for
normally distributed variables and the
Spearman coefficient of correlation for
skewed distributed variables. Baseline
characteristics of subjects who developed
type 2 diabetes and those who remained
diabetes free were compared using five
different tests: 1) Pearson Xz test to test
for independence of categorical variables
between groups, 2) Fisher exact test to
test for independence between groups
with small sample sizes in categories, 3)
two-sample Student ¢ test for normally dis-
tributed numerical variables with equal
variances, 4) Welch t test for normally dis-
tributed numerical variables with unequal
variances, and 5) the Mann-Whitney U test
for skewed distributed numerical variables.
Multivariable linear and logistic regression
analyses with various degrees of adjust-
ment were performed. Interactions be-
tween A-SAA and sex as well as A-SAA
and age were assessed by adding an inter-
action term to the multivariable models.
Two-sided P values that were <0.05 were
considered to be statistically significant. All
statistical analyses were conducted using
SAS (version 9.2; SAS Institute, Cary, NO).

RESULTS —Baseline characteristics
stratified by incident type 2 diabetes status
are provided in Table 1.

Seven-year cumulative incidence of
type 2 diabetes was 11.1% (n = 93) in our
study. Circulating systemic A-SAA levels
were significantly higher in I) diabetic sub-
jects (median of A-SAA levels = 4.0 mg/L
[IQR 2.6-6.8 mg/L]) than in nondiabetic
subjects (3.4 mg/L [2.2-5.4 mg/L], P =
0.009), 2) women (median = 3.9 mg/L
[2.6-6.1 mg/L]) than in men (2.9 mg/L
[2.0-4.7 mg/L], P < 0.0001), and 3) sub-
jects between 65 and 74 years of age (me-
dian = 3.6 mg/L [2.3-6.2 mg/L]) than in
subjects between 55 and 64 years of age
(3.3 mg/L [2.2-5.0 mg/L], P = 0.03). All
covariables were correlated with each other
with r < 0.5 except for hs-CRP and A-SAA
(r=0.50) (Supplementary Table 1).

Table 2 presents the association be-
tween baseline A-SAA levels and incident
type 2 diabetes. A-SAA concentrations
were significantly associated with the de-
velopment of type 2 diabetes during the
7-year follow-up period. The odds ratio
(OR) (adjusted for age and sex, model 1)
for a one-SD (4.16 mg/L) increase in
A-SAA was 1.28 (95% CI1 1.08-1.53, P =
0.005). The association remained statisti-
cally significant after adjustment for mul-
tiple covariables, including BMI (model
2), and further traditional risk factors
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Table 1—Baseline characteristics of the study participants stratified by incident type 2

diabetes status

Incident type 2

No diabetes diabetes P
n (%) 743 (88.9) 93 (11.1)
Age (years) 63.02 (5.35) 65.16 (5.06) 0.0002
Male (%) 48.3 63.4 0.006
BMI (kg/m?) 27.84 (3.97) 30.30 (3.41) <0.0001
Smoking status (%)
Never 54.1 39.8
Former 34.9 45.2 0.03
Current 11.0 15.1
Alcohol intake (g/day)* 8.57 (0.89-23.14) 11.43(1.57-26.14) 0.42
Physical activity (%)
Vigorous 20.1 16.1
Moderate 279 28.0
Mild 17.4 15.1 0.62
None 34.7 40.9
Education level (%)
No educational degree 1.4 22
Lower secondary educational degree 64.1 68.8
Secondary educational degree 21.1 14.0 0.38
High secondary educational degree 4.7 7.5
University degree 8.8 7.5
Systolic blood pressure (mmHg) 133 (19) 138 (19) 0.009
Lipids
Non-HDL cholesterol (mmol/L) 4.78 (1.07) 4.90 (1.16) 0.35
Triglycerides (mmol/L)* 1.22 (0.89-1.73) 1.55(1.21-2.02) <0.0001
Glucose homeostasis
Fasting glucose (mg/dL) 07.78 (8.75) 106.40 (10.49) <0.0001
Fasting insulin (wWU/mL)* 9.3(6.75-13.20) 13.5(10.05-21.15) <0.0001
HbA, . (%)* 5.6 (5.4-5.8) 5.8 (5.6-6.0) <0.0001
HOMA-IR 3.03 (4.01) 4.88 (4.92) <0.0001
2-h glucose (mg/dL)* 106 (89-126) 146 (117-176) <0.0001
Inflammatory markers
A-SAA (mg/L)* 3.40 (2.20-5.40) 4.00 (2.60-6.80) 0.009
hs-CRP (mg/L)* 1.39 (0.72-2.75) 2.52 (1.25-3.78) <0.0001
Parental history (%)
At least one parent diabetic 219 36.6
No parent diabetic 59.9 44.1 0.004
No information 18.2 19.4

P values: Pearson X test, Fisher exact test, two-sample Student ¢ test, Welch t test, and Mann-Whitney U test.
P values printed in bold indicate a statistically significant difference. HOMA-IR, homeostatic model assess-
ment for insulin resistance. *Data with normal and skewed distribution are given as mean (SD) and median

(interquartile range) of the variables.

(smoking, alcohol intake, physical activity,
education, parental history of diabetes,
non-HDL cholesterol, fasting triglycerides,
and systolic blood pressure; model 3). To
further evaluate the impact of body fat and
body composition on the association be-
tween A-SAA levels and incident type 2 di-
abetes, BMI was replaced by waist-to-hip
ratio (WHR) or, alternatively, body fat
mass index, lean BMI, and appendicular
skeletal muscle mass index as proposed
by Kyle et al. (17,18) in model 2 of the
association analysis. These analyses yielded

results similar to those displayed in Table 2
(Supplementary Table 2). The effect esti-
mates decreased and the association was
attenuated after additional adjustment for
baseline parameters of glucose metabolism
(fasting glucose, fasting insulin, HbA, ., and
2-h glucose; model 4). Sensitivity analyses
demonstrated that the attenuation was at-
tributable mostly to adjustment for 2-h glu-
cose (model 3 + fasting glucose + fasting
insulin: OR 1.25 [95% CI 1.03-1.52], P =
0.02; model 3 + HbA,.: 1.21 [1.01-1.46],
P = 0.04; model 3 + 2-h glucose: 1.17

Marzi and Associates

[0.97-1.42], P = 0.11). In multivariable lin-
ear regression analyses, the association
between baseline levels of A-SAA and In-
transformed levels of 2-h glucose at follow-
up was statistically significant in all four
models [model 1: B = 0.01, se(B) = 0.003,
P < 0.0001; model 2: B = 0.008, se(B) =
0.003, P = 0.0009; model 3: B = 0.007,
se(B) = 0.002, P = 0.004; model 4: B =
0.006, se() = 0.002, P = 0.008; n = 803].
Stratification by sex showed that effect
sizes in general were stronger in women
than in men but the multiplicative interac-
tion term between sex and A-SAA was not
statistically significant (P > 0.1). Replace-
ment of BMI by WHR, body fat mass index,
lean fat mass index, or appendicular skele-
tal muscle mass index also did not
indicate a statistically significant sex effect.
However, the multiplicative interaction
term between the metric age variable and
A-SAA was borderline significant regarding
the outcome of incident type 2 diabetes (P
value for interaction adjusted for age and
sex = 0.047). Therefore, we also calculated
age-stratified ORs using 10-year age strata
(Table 2). Stratified analyses showed that
the A-SAA variability was higher in the
age stratum 65-74 years (SD for age stra-
tum 55-64 years = 3.34 mg/L; SD for age
stratum 65—74 years = 5.11 mg/L). The as-
sociation between A-SAA and incident type
2 diabetes was only significant in younger
subjects (OR for the age-group 55-64 years
adjusted for age and sex = 1.48 [95% CI
1.17-1.88], P=0.001; OR for the age-group
65—74 years adjusted for age and sex=1.21
[0.94-1.55], P = 0.14). Furthermore, sensi-
tivity analyses demonstrated that for the
age-group 55-64 years, the effect was
mostly attenuated by adjustment for
HbA; . and not 2-h glucose (model 3 + fast-
ing glucose + fasting insulin: OR 1.44 [95%
CI 1.07-1.92], P = 0.03; model 3 + HbA,
1.26 [0.93-1.70], P = 0.14; model 3 + 2-h
glucose: 1.37 [1.00-1.86], P = 0.05),
whereas for the age-group 65-74 years, it
was mainly affected by adjustment for 2-h
glucose (model 3 + fasting glucose + fasting
insulin: 1.17 [0.89-1.55],P=0.31; model 3 +
HbA,: 1.18[0.90-1.56], P=0.23; model 3 +
2-h glucose: 1.06 [0.80-1.41], P = 0.69).
The association between baseline levels
of hs-CRP and incident type 2 diabetes was
analyzed similarly to the baseline levels of
A-SAA (Fig. 2). The hs-CRP effect estimate
was somewhat larger than the effect size for
A-SAA when adjusted only for age and sex
(OR1.39[95% CI1.10-1.68],P=0.0006),
but similar after full adjustment for all co-
variables (1.13 [0.88-1.45], P = 0.34). No
evidence for an age-specific effect was
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Table 2—Results of the overall and age-stratified associations between circulating concentrations of A-SAA and incident type 2 diabetes
according to four different models of covariable adjustment

n type 2 diabetes/n no diabetes

All (93/743) 55-64 years (43/457) 6574 years (50/286)
Model Covariables OR (95% CI) P OR (95% CI) P OR (95% CI) P
1 Age + sex 1.28 (1.08-1.53) 0.005 1.48 (1.17-1.88) 0.001 1.21 (0.94-1.55) 0.14
2 1 + BMI 1.25 (1.05-1.50) 0.01 1.40 (1.09-1.79) 0.009 1.21 (0.94-1.09) 0.15
3 2 + traditional risk factors* 1.22 (1.02-1.47) 0.03 1.39 (1.06-1.81) 0.02 1.16 (0.88-1.52) 0.29
4 3 + parameters of glucose metabolism**  1.16 (0.95-1.42)  0.15 1.24 (0.85-1.79)  0.26 1.07 (0.80-1.43)  0.65

Odds ratios (95% CI) are given for a one-SD increase of A-SAA concentrations (4.16 mg/L for all, 3.34 mg/L for younger, and 5.11 mg/L for the older age stratum).
Smoking is coded in three classes (never, former, and current smoker). Alcohol intake was assessed in g/day. Physical activity is coded in four classes (none, mild =
irregularly 1 h per week, moderate = regularly 1 h per week, and vigorous = regularly 2 h or more per week). Education is coded in five classes based on the highest
degree of education. Parental history is coded in three classes (at least one parent has/had type 2 diabetes, none of the parents has/had type 2 diabetes, and no in-
formation on parental history). P values printed in bold indicate a statistically significant difference. *Traditional risk factors are smoking, physical activity, alcohol
intake, education, parental history of diabetes, non-HDL cholesterol, fasting triglycerides, and systolic blood pressure. **Parameters of glucose metabolism include
fasting glucose, fasting insulin, HbA ., and 2-h glucose.

found for hs-CRP (P value for interaction
>0.1).

Sensitivity analyses were conducted
to assess the impact of menopausal status,
hormone replacement therapy, intake of
aspirin, and liver disease on the associa-
tion between levels of A-SAA and incident
type 2 diabetes by adjusting for these
variables, but all analyses yielded very
similar results as those displayed in Table
2 (Supplementary Table 3).

CONCLUSIONS —We observed a sta-
tistically significant association between
elevated systemic levels of A-SAA and the
development of type 2 diabetes in a large
population-based cohort with long-term
follow-up. This finding extends observa-
tions from earlier cross-sectional studies
that reported a positive association be-
tween systemic A-SAA concentrations
and prevalent type 2 diabetes and related
traits (6-9). Furthermore, we could show

1.8
17 p=0.0006
=0.01

1.6 P —

=0.005 p=0.06
5 L7 p=0.01 p=0.03 p=0.32

OR= =0.16
1.4 W 139 oR P
13 | ose OR= @130 | OR= | OR=
12 W25 mi22 M123 | OrR= | Or-
M 1.16
1.1 M 1.13
1

0.9
0.8

A-SAA hs-CRP | A-SAA hs-CRP | A-SAA  hs-CRP | A-SAA  hs-CRP

Model 1: Model 2: Model 3: Model 4:
ad]. for age+sex model 1 + BMI model 2 + traditional |/model 3 + parameters
risk factors* of glucose
metabolism™*

Figure 2—OR and 95% ClI for the association between baseline levels of A-SAA and hs-CRP with
incident type 2 diabetes. *, traditional risk factors include smoking, physical activity, alcohol
intake, education, parental history of diabetes, non-HDL cholesterol, fasting triglycerides, and
systolic blood pressure; **, parameters of glucose metabolism are baseline levels of fasting glucose
and fasting insulin, HbA,, and 2-h glucose. Smoking is coded in three classes (never, former, and
current smoker). Physical activity is coded in four classes (none, mild = irregularly 1h per week,
moderate = regularly 1 h per week, and vigorous = regularly 2 h or more per week). Education is
coded in five classes based on the highest degree of education. Parental history is coded in three
classes (at least one parent has/had type 2 diabetes, none of the parents has/had type 2 diabetes,

and no information on parental history).

that the association between A-SAA and in-
cident type 2 diabetes was independent of
various established type 2 diabetes risk fac-
tors, most of which were correlated with
A-SAA cross-sectionally in our study.
These risk factors include age and sex and
the traditional type 2 diabetes risk factors
(smoking, physical activity, alcohol intake,
education, parental history of diabetes,
non-HDL cholesterol, fasting triglycerides,
and systolic blood pressure). The associa-
tion of A-SAA with incident type 2 diabetes
was also independent of BMI or, alterna-
tively, other measures of body fat and
body composition, such as WHR, body
fat mass index, and lean BMI. This is par-
ticularly notable since concentrations of
A-SAA are known to be elevated in obese
subjects (19) and since the proinflammatory
cytokines and A-SAA inducers interleukin-6
and tumor necrosis factor-a, as well as
A-SAA itself, were found to be partly ex-
pressed in adipose tissue (20-22). Addi-
tionally, the administration of recombinant
A-SAA in mice adipocytes results in a
downregulation of genes that are critical
for insulin sensitivity in the treated cells
(23). Our results suggest that apart from
adipose tissue, other metabolically critical
sites, such as the liver, seem to be involved
in the course of the disease. Furthermore,
there was no evidence for a role of appen-
dicular skeletal muscle mass index in the
association between A-SAA and incident
type 2 diabetes, which makes confounding
effects by myokines unlikely.

Relationship between A-SAA,
postchallenge hyperglycemia, and
incident type 2 diabetes

The difference in A-SAA levels between
individuals with incident type 2 diabetes
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and study participants who remained
diabetes free was attenuated after adjust-
ment for baseline parameters of glucose
metabolism, which indicates early
impairments of glucose homeostasis. Sen-
sitivity analyses showed that levels of 2-h
glucose contributed most strongly to this
attenuation. This suggests that elevated
levels of A-SAA could be associated with
early alterations in glucose control. Thus,
elevated levels of circulating A-SAA might
be a consequence of a prediabetes pro-
cess, rather than a cause of it. Alternatively,
postchallenge hyperglycemia might be an
intermediate variable linking A-SAA to the
development of type 2 diabetes. To further
elucidate the question regarding the di-
rection of causality, we analyzed baseline
levels of A-SAA and levels of 2-h glucose at
follow-up. These analyses yielded a signif-
icant association independent of baseline
parameters of glucose metabolism. This
suggests an independent impact of circu-
lating levels of A-SAA on glucose homeo-
stasis and thus supports the hypothesis of
postchallenge hyperglycemia as an inter-
mediate variable. However, our analyses
do not allow inferences on reverse cau-
sality between levels of 2-h glucose and
A-SAA. Consequently, we cannot rule out
that the relationship between A-SAA and
2-h glucose might be bidirectional. Pro-
spective analyses on levels of A-SAA or
time series studies as performed for other
markers of subclinical inflammation (24)
might further clarify the relationship be-
tween subclinical low-grade inflamma-
tion, postchallenge hyperglycemia, and
incident type 2 diabetes.

Comparison of our data with the
literature

In accordance with a previous study (8),
our study demonstrated that A-SAA con-
centrations were higher in women than in
men but the estimates for A-SAA concen-
trations regarding risk of incident type 2
diabetes did not differ significantly be-
tween men and women, as has been sug-
gested for hs-CRP (25).

The finding of the current study
differed from those of the Sandy Lake
Health and Diabetes Project (10). This
study had an even broader age range
(10-79 years), similar covariables, and a
similar sex distribution but did not
observe a significant association between
SAA and incident type 2 diabetes, al-
though effect estimates pointed into the
same direction. The 10-year cumulative
incidence was high (17.5%), but fewer
subjects (n = 492) were analyzed. Thus,

results may differ due to a lower statistical
power of the Sandy Lake Health and Di-
abetes Project. In addition, the study was
conducted in Aboriginal Canadians and
ethnic factors might also be responsible
for the different results.

The association between A-SAA and
incident diabetes is possibly
modulated by age

In the current study, the association
between levels of A-SAA and incident
type 2 diabetes seemed to be age depen-
dent. Stratified analyses showed that the
variability of A-SAA levels was higher in
older subjects. Furthermore, the associa-
tion of A-SAA with incident type 2 di-
abetes was only significant in younger
subjects. In the age-group 55-64 years,
the effect was attenuated mainly by ad-
justment for HbA;. but not by levels of
2-h glucose. This suggests that elevated
levels of A-SAA may play a more impor-
tant role in the development of type 2
diabetes in younger subjects and that
the pathogenic mechanisms may differ
in an age-dependent manner. Also, there
was no evidence of an influence of hor-
monal changes during menopause or hor-
mone replacement therapy in women on
the observed age effect. Notably, the age-
dependent differences were evident in our
study population with elderly partici-
pants of a relatively small age range (55—
74 years). It might be even more pro-
nounced in study populations with youn-
ger participants and broader age ranges.
However, we only found an effect modi-
fication by age for A-SAA but not for hs-
CRP. Therefore, further research is re-
quired to confirm and clarify the role of
age in the context of innate immunity and
the development of type 2 diabetes.

A-SAA versus hs-CRP and incident
type 2 diabetes

To compare the strength of the putative
association between levels of A-SAA and
incident type 2 diabetes with that of another
acute-phase protein, we also analyzed levels
of hs-CRP as the best established inflam-
matory marker. Effect estimates for hs-CRP
were initially higher than for A-SAA but
were attenuated more strongly when ad-
justing for the same covariables. After full
adjustment for all covariables, effect sizes
for A-SAA and hs-CRP were similar.

Limitations and strengths of the
study

Several potential limitations of our study
have to be mentioned. First, due to the

Marzi and Associates

restrictions in laboratory methods, our ana-
lyses were confined to the A-SAA isoform
and did not capture the constitutively ex-
pressed C-SAA isoform, which, however,
responds only moderately to inflammatory
stimuli. Second, only one A-SAA measure-
ment was available, although multiple
measurements for the determination of
inflammatory proteins are preferred (26).
And third, this study did not assess the
possible influence of energy intake or liver
steatosis on the association between levels
of A-SAA and incident type 2 diabetes. The
strengths of this study are its prospective
design, the well-defined study population
sample, and the definition of type 2 diabe-
tes based on validated diagnosis and OGTT
at both time points. In addition, the current
study accounted for baseline parameters of
glucose metabolism and thus early impair-
ments of glucose homeostasis.

Conclusion

In this prospective, population-based study
in an elderly Western European population,
we observed a statistically significant associ-
ation between elevated systemic levels of A-
SAA and the development of type 2 diabetes.
The relevance of high circulating levels of A-
SAA in the pathogenesis of type 2 diabetes
may be modulated by age. The association
with incident type 2 diabetes was indepen-
dent of several established type 2 diabetes
risk factors, including different measures of
obesity and body composition. In the fully
adjusted model, effect estimates for A-SAA
were similar to those for hs-CRP.
Adjustment for parameters of glucose metab-
olism, particularly 2-h glucose, attenuated
the association between A-SAA and incident
type 2 diabetes. In contrast, prospective anal-
yses indicated a significant association be-
tween baseline levels of A-SAA and levels
of 2-h glucose at follow-up, even after adjust-
ing for baseline parameters of glucose metab-
olism. Prospective analyses on A-SAA or
time series studies are warranted to clarify
whether the relationship between circulating
levels of A-SAA and 2-h glucose is bidirec-
tional or if postchallenge hyperglycemia is
the intermediate link between A-SAA and
the development of type 2 diabetes.
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