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Regional quantitative analysis of airway morphological abnormalities is of great interest in lung disease investigation. Considering
that pulmonary lobes are relatively independent functional unit, we develop and test a novel and efficient computerized scheme in
this study to automatically and robustly classify the airways into different categories in terms of pulmonary lobe. Given an airway
tree, which could be obtained using any available airway segmentation scheme, the developed approach consists of four basic
steps: (1) airway skeletonization or centerline extraction, (2) individual airway branch identification, (3) initial rule-based airway
classification/labeling, and (4) self-correction of labeling errors. In order to assess the performance of this approach, we applied
it to a dataset consisting of 300 chest CT examinations in a batch manner and asked an image analyst to subjectively examine the
labeled results. Our preliminary experiment showed that the labeling accuracy for the right upper lobe, the right middle lobe, the
right lower lobe, the left upper lobe, and the left lower lobe is 100%, 99.3%, 99.3%, 100%, and 100%, respectively. Among these,
only two cases are incorrectly labeled due to the failures in airway detection. It takes around 2 minutes to label an airway tree using
this algorithm.

1. Introduction

Airway disease is a major cause of morbidity and mortality
worldwide [1, 2]. Whereas the airways are the primary
conductive structure of the human respiratory system for
exchanging air, their morphological characteristics or vari-
ations (abnormalities) may have a direct impact on the
airflow, thereby alternating the pulmonary function and
the prognosis of lung diseases (e.g., chronic obstructive
pulmonary disease, (COPD)). Given its high temporal and
spatial resolutions, modern computed tomography (CT)
makes it possible to noninvasively identify in vivo airway
structures and quantify their variations. In the past decades,
there have been numerous methods [3–6] developed for
computerized airway analyses as a way of investigating the
underlying mechanism of lung diseases. A relatively com-
prehensive review can be found in [7]. However, majority
of the efforts are dedicated to the global assessment of

airway abnormalities at the level of the entire lung. Actually,
in anatomy, the human lungs are divided by oblique (or
major) and horizontal (or minor) fissures into lobes, with
three lobes in the right lung and two lobes in the left
lung. Both bronchial and vascular systems in each lobe are
largely isolated with minimal connections between lobes,
and the lobes can be considered as relatively independent
function units. In particular, early diseases of several types
may begin in and/or be confined to an individual lobe
[8]. Hence, it is desirable to perform quantitative analyses
of airway abnormalities based on individual lobes, thereby
aiding in the assessment of disease state and progression
and/or response to specific treatments. An intuitive approach
to this problem is to identify the lobes in advance and
then label airway branches according to their locations.
However, robust lobe segmentation itself is a relatively
challenging issue in practice [9–12]. Therefore, to avoid the
complicated lobe segmentation, a straightforward way is to
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label the airways directly according to their locations in
individual lobes.

In the past decade, given the fact that manually labeling
the airway is very tedious and error prone, a very limited
number of computerized approaches [13–17] have been
developed to label the airways anatomically. Their primary
aim is to assign the airways with the 32 predefined anatom-
ical names, which correspond to different lung segments.
Such a labeling may aid the navigation of the airway tree in
the virtual bronchoscope application and enable a compar-
ison of the differences between two airways trees that may
be acquired on the same or different subjects. In technique,
the available labeling approaches were largely implemented
using a tree-like structure matching operations. Different
variations of graph theory were typically used. For example,
Tschirren et al. [13] developed a hierarchical approach based
on an association graph to perform the tree matching;
Kitaoka et al. [14] implemented the tree matching by search-
ing for the maximum weight clique in a tree association
graph (TAG) or subtrees with maximum similarity; Graham
et al. [15] proposed a graph-theoretic approach to match
airway trees using a cost function that compares branch and
branch points measures; van Ginneken et al. [16] proposed
a recursive scheme to assign airway labels by measuring
a probability based on orientation, average radius, and
angles; Feragen et al. [17] presented a supervised hierarchical
scheme to label airway trees based on geodesic distance in a
geodesic tree space.

Obviously, accurately and anatomically labeling the
airways is a very challenging task because of anatomical
variations across individuals and the large amount of airway
branches contained in an airway tree. In this study, instead
of labeling the airways at the level of lung segment, we
describe an approach that is capable of directly labeling the
airways in terms of lobes without the involvement of lobe
segmentation. The purpose is to aid regional lobe-based
abnormality analysis and other clinical applications (e.g.,
surgical planning). A robust skeletonization is developed by
computing the repulsive force field [18, 19] of an airway
tree; thereafter, basic lung anatomy knowledge in regard
to airways is used for labeling or classification. Due to
the variability in biological structures across individuals
and the presence of various diseases, we in particular
developed a self-correction mechanism. The performance
of the developed scheme was assessed by testing it against
an independent dataset consisting of 300 chest CT exam-
inations. A detailed description of the method and the
experimental results follows.

2. Methods and Materials

2.1. Scheme Overview. In implementation, given an airway
tree, the proposed airway labeling approach has three basic
steps (Figure 1): (1) airway skeletonization or centerline
extraction, (2) individual airway branch identification, (3)
initial airway labeling or classification in terms of pulmonary
lobe, and (4) self-correction of labeling errors. This scheme
is independent of airway segmentation schemes. The airway
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Figure 1: A flow chart illustrating the procedures of the developed
airway labeling scheme.

tree identified by any airway segmentation approach can be
used as the input of the scheme. In this study, we simply used
the airway segmentation scheme described in [20] to obtain
the airway trees. For brevity, we use RUL, RML, RLL, LUL,
LLL to denote the right upper lobe, right middle lobe, right
lower lobe, left upper lobe, and left lower lobe, respectively.
Detailed descriptions of these steps follow.

2.2. Airway Skeletonization or Centerline Extraction.
Attributed to its concise representation of a shape, skeleton
(frequently referred as medical axis) is widely used in
computerized shape analysis. The skeletonization is typically
associated with intensive computational cost and is sensitive
to the existence of noises. In the past, various approaches
[21–23] have been developed to obtain the skeleton of an
airway tree by taking advantage of its tubular structures.
In this study, we optimized a generic algorithm based on
repulsive force field developed by Cornea et al. [18] to
automatically obtain the skeleton of an airway tree.

Given an airway tree that is represented in the form
of image voxels, its three-dimensional (3D) vector field is
computed using the repulsive force function:

−→
FPC=

−→
CP

Rm
, (1)



International Journal of Biomedical Imaging 3

(a) A segmented airway tree
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Figure 2: An example used for illustrating the steps of the labeling algorithm: (a) a segmented airway tree that can be obtained using any
airway segmentation algorithm, (b) the extracted skeleton/centerline of (a) in the form of point/voxel, (c) skeleton segments obtained by the
algorithm of [18], (d) individual branch labeling (in different colors), (e) different generation labeling (in different colors), (f) lobe labeling
(trachea, RUL, RML, RLL, LUL, LLL are colored with green, blue, red, yellow, cyan, and magenta, resp.), (g) airway tree volume labeling.

where
−→
FPC is the repulsive force at point P with respect to the

point charge C,
−→
CP= (P−C)/R is the normalized vector from

C to P, indicating the direction of the force, R = ‖P − C‖F is
the Euclidean distance between P and the charge C, and the
power m is the order of the force function (m = 2 for the
Newtonian force and m = 4 in this study). As explained in
[18], a larger value of m typically has a higher influence on
a given interior point than on the distance boundary points,
ultimately leading to a “sharp” vector field that follows the
local boundary topology more closely. On the contrary, a
lower value of m will result in a smoother vector field. Given
the tubular-like structure of the airways in shape, a relatively
low value of m is preferred because we are only interested in
the skeleton of the airways that reflect the global shape of the
airways, and the local details with high frequency (e.g., the
surface perturbation of the airways) should be ignored. The
total force at point P can be computed by summing all the
forces at P:

−→
FP=

∑

i

−→
FPCi , (2)

where
−→
FP is the final repulsive force at point P due to all point

charges Ci.
According to (2), if all the boundary voxels are used

to compute the force at each point P, the computational
complexity will be O (NP × NC), where NP is the number of
object (airway) voxels and NC is the number of boundary
voxels (point charges). Hence, given the large number of

the object (airway) voxels, it is very time consuming to
compute the repulsive force field of an airway tree. In
order to significantly improve the computational efficiency,
we propose not to consider all the boundary voxels when
computing the repulsive force at a given point P, because the
airways appear as a tubular shape, and the boundary voxels
far away from P may contribute little to the repulsive force.
Therefore, given an object voxel P, only the boundary voxels
close to P (e.g., less than 25 mm to P) are considered to
compute the repulsive force at P. This strategy significantly
reduces the computation cost from an average of 30 minutes
to less than 2 minutes with little impact on the accuracy
of the skeletonization. An example of the skeletonization is
shown in Figure 2(b).

2.3. Individual Airway Branch Identification. The repulsive
force field described in [18] can be exploited further to detect
the “nodes” by decomposing the identified skeleton into
different segments automatically in terms of the divergence
of each point on the skeleton. However, the identified
segments are sensitive to the curvature of the skeleton,
ultimately leading to a number of segments that are not
meaningful airway branches (Figure 3(c)). Here we propose
to identify individual airway branches by organizing the
skeleton points as an undirected acyclic graph (UAG).

Let S = {Si}NS
i=1 denote the NS extracted skeleton points

and G = {V ,E} denote a targeting undirected acyclic graph
(UAG), where V is the vertex set and E is the edge set. The
graph G is initialized with V = {Si}, E = φ, where vertex Si is
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Figure 3: Illustration of the graph construction procedure. Each loop starts with Step 1 and ends at Step 4. In the graph, the nodes (i.e.,
“a”–“i”) denote the skeleton points, the edges between nodes represent the distance between the skeleton points. In this example, let “a” be
the randomly selected point, then other skeleton points are added to the voxel set V in the following sequence: “bcde | fgh | i |”, where “|”
means Step 4 is called.

a point randomly selected from the skeleton points set, and
then the following steps are performed.

Step 1. Find a nearest pair of points Si ∈ V and Sj ∈ S \ V ,
where Si has less than three connected neighbors on G, let
V = V ∪ Sj and E = E ∪ (i, j).

Step 2. Let Sj denote the last inserted point and find its
nearest neighbor Sk ∈ S\V . If the distance between Sj and Sk
is small enough (e.g., smaller than 2 mm), then letV = V∪Sk
and E = E ∪ ( j, k).

Step 3. If a new voxel Sk is added to V, go to Step 2; otherwise,
go to Step 4.

Step 4. If S \ V /=φ, go to Step 1; otherwise, the graph
construction is finished.

The graph construction algorithm is explained using the
example in Figure 3. Once the UAG is constructed, each
vertex is connected to one, two, or three other vertexes. A
terminate point (e.g., “e”, “h”, or “i” in Figure 3) is connected
to only one neighbor point. A bifurcation point (e.g., “c”) is
defined as one connected with three neighbor points, thus
the branches can be obtained by cutting at the bifurcation
points. In Figure 3, the three branches are “cde,” “cfgh,”
and ”cbai,” respectively. An example of skeleton branch
decomposition is shown in Figure 2(d).
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Figure 4: An example of classification of RML and RLL.
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Figure 5: A normal example and an abnormal example. (a) An example with normal topology, (b) an example with abnormal topology, (c)
3D view of the abnormal airway.

2.4. Initial Airway Labeling or Branch Classification. To label
or classify the identified airway branches, we firstly locate
the trachea by identifying the branch with the largest lumen
volume. To compute the airway lumen volume of each
branch, we assign each airway voxel to its nearest skeleton
point and the branch of the skeleton point. Thereafter, the
generations of the airway tree are determined by treating the
airways as a bifurcation tree (Figure 2(e)).

Here, basic lung and airway anatomy knowledge is used
to classify the individual branches into different categories
in terms of pulmonary lobes. First, the left lung and the
right lung labels are determined based on x values of the two
end points (B and M in Figure 2(b)) of the first generation
branches. Second, for the left lung, the LUL and the LLL
are determined based on the z values of the two end
points (U and L in Figure 2(b)) of the second generation

branches. For the right lung, the RUL is selected with the
same criteria by comparing the end points (i.e., H and
C in Figure 2(b)). Due to the biological variability across
individuals in lung structure, the RML and RLL of the
airways are not necessarily divided at the second node of
the branches (point C in Figure 4) of the right lung. It can
be seen on the sagittal view of the example in Figure 4(c)
that the RML is usually at the upper left of the RLL. Using
this rule, we select a branch end point E with the maximal
value of (z-y) and a branch end point F with the minimal
value of (z-y). Then, the bifurcation node D of point E
and F is determined. Finally, the branches between node D
and E and their subbranches are labeled as RML, and the
other branches of node C are labeled as RLL. An example
after the application of the labeling algorithm is shown in
Figure 2(f).
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(a) (b) (c) (d)

Figure 6: Two failed cases in RML and RLL labeling: (a)-(b) show the skeleton and the labeling result of the first failed example and (c)-(d)
show the skeleton and the labeling result of the second failed example.

2.5. Self-Correction of Labeling Errors. In practice, although
the graphs of most airway tree have the same topology in
structure, as the one shown in Figure 5(a), there are some
exceptions, such as the example in Figures. 5(b) and 5(c).
In order to automatically handle such exceptions (errors),
we develop a self-correction mechanism. In the example
shown in Figures 5(a) and 5(b), A, B, C, D are nodes of
the first, second, third, and forth generations. Let AB denote
the distance between node A and node B and BC denote
the distance between node B and node C. The ratio BC/AB
in the exceptional cases (e.g., the example in Figure 5(b)) is
typically much smaller than the ratio BC/AB in the normal
cases (e.g., the example in Figure 5(a)). This rule typically
holds because the two branches in blue after B and C in
Figure 5(b) belong to the same lobe (RUL). Hence, we can
use this rule to automatically detect the potential labeling
error. In other words, if BC/AB is smaller than a given value
(e.g., 0.5), the labeling error occurs. As a correction, we label
all the branches after nodes B and C as the RUL.

2.6. Airway Volume Assignment. After the airway branches
are labeled, the last task is to mark the airway volumetric
voxels to each individual branches or lobes. In this study,
we assign each airway voxel P to its nearest skeleton point
S∗ = arg minSi

‖P − Si‖F and the branch of the skeleton
point. An example after the application of this airway volume
assignment procedure is shown in Figure 2(g).

2.7. Performance Assessment and Testing Dataset. As demon-
strated by the example in Figure 2(g), it is relatively easy to
visually examine whether the airways are labeled correctly or
not. Hence, in order to assess the performance of the airway
labeling algorithm developed in this study, we ask an image
analyst to visually study the labeled results and locate the fail
ones. Then, the number of the failed cases in terms of lobes is
summarized as a way of measuring the accuracy of the airway
labeling.

The proposed algorithm was evaluated on 300 lung
CT examinations specifically from a chronic obstructive

Table 1: Airway labeling accuracy in terms of lobes.

Trachea RUL RML RLL LUL LLL

Correct # 300 300 298 298 300 300

Percentage 100% 100% 99.3% 99.3% 100% 100%

pulmonary disease (COPD) dataset available at the Uni-
versity of Pittsburgh Medical Center (UPMC). These CT
examinations were performed under an Institutional Review
Board (IRB) approved protocol using a LightSpeed VCT 64-
detector scanner (GE Healthcare, Waukesha, WI, USA) with
subjects holding their breath at end inspiration. CT data
were acquired using a helical technique at a pitch of 0.969,
120 kVp, 0.4 s gantry rotation, and 250 mA (100 mAs). The
detector configuration was 32 × 0.625 mm. CT images were
reconstructed to encompass the entire lung field using the GE
“bone” kernel at 0.625 mm section thickness and 0.625 mm
interval (without slice overlapping). The CT images were
represented using a 512 × 512 pixel matrix with a pixel
dimension ranging from 0.549 to 0.738 mm.

3. Experimental Results and Discussion

We summarized the experimental results in Table 1. Among
the 300 chest CT examinations, the labeling operation failed
for only two cases (Figure 6) because of the unavailability
of the airways in the RML and the RLL. This is actually
not caused by the labeling algorithm but by the airway
segmentation algorithm. To demonstrate the performance of
this scheme, a set of labeled examples are listed in Figure 7.
Given an airway tree, the total average computational cost
for each case is around two minutes when performing the
developed scheme on a typical PC.

In this study, we described a simple and efficient
algorithm to automatically label the airway trees in terms
of pulmonary lobes. The innovations lie in the following
aspects. First, the skeletonization is robust, efficient, and
accurate regardless of the shape of an airway tree. The chest
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Figure 7: Examples of the airway labeling results.

CT examinations in our testing dataset are randomly selected
from a COPD study and cover a wide range of severities
in emphysema that has a direct impact on the morphology
of airways. Experiments showed that this skeletonization
scheme can successfully obtain the centerlines of all these
cases in less than two minutes. Second, the airway labeling
procedure is performed directly on the skeletons without
the involvement of any matching operation like some
previous approaches [13–17]. To assign predefined labels to
the airway tree, traditional approaches often take a tree-
matching procedure, where a prelabeled airway model is used
as reference for labeling. However, tree structure matching
itself is a challenging problem, especially when two trees
have different branch numbers. In particular, we develop
a self-correct mechanism to handle the cases where the

topology of an airway tree changes. As shown in Figure 6,
although there are two cases identified by the image analyst
as failed cases, the failure is not caused by the labeling
algorithm but by the airway identification procedure. Third,
we applied a relatively large dataset to assess the accuracy of
the developed scheme. The results show that the proposed
airway skeletonization and labeling scheme are accurate and
robust. As demonstrated by an example in Figure 8, the
airway skeletonization and labeling are correct in spite of the
missing of a large part of the airway trachea.

We are aware that there are some limitations with this
study. First, unlike the previous approaches [13–17], which
assigned the airways anatomically into 32 names in terms
of lung segments, the airway branches are only labeled
here in terms of lobes and generations. For more detailed
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(a) Skeleton (b) A local view of (a) (c) 3D view of airway

Figure 8: An example where a missing part of the trachea is missed by the airway segmentation scheme.

(a) Airway skeleton (b) Airway labeling

Figure 9: An example with airway leakage.

investigation of airway diseases, it may be desirable to have
airway labeled at the level of lung segments. In technique
and implement, we admit that the lobe-based labeling is
relatively easier as compared with the previous approaches.
Given the different levels of detail in labeling, it is not
proper to compare the performance of our scheme with
other available methods. Second, although 300 cases are
used to test the performance of this scheme, we cannot
guarantee that this dataset covers all types of airway tree
topology because of the large variations of human subjects
in anatomy. In this study, we only identified one exception
as shown in Figure 5(b). In the future, we will collect more
dataset from various sources to test the performance of this
labeling algorithm. In particular, we asked an image analyst
to visually assess the performance of the labeling scheme,
because it is relatively easy to visually judge the accuracy
and correctness of the lobe-based labeling results given the
distinctive boundary of individual lobes (as demonstrated
by the examples in Figure 7). In contrast, it is very difficult

even impossible to visually judge the accuracy of the tradition
methods because of the huge number of airway branches
in an airway tree and their self-occlusion. Third, although
this algorithm is independent of the airway segmentation
scheme in theory and implementation, we do not verify this
in practice. As compared with the traditional airway labeling
approaches, assigning airways into different lobes is much
easier and more robust, because only the first few generations
of the airways are involved. As the airway segmentation issues
typically occur in the small airway regions [24], we believe
that the performance of the airway segmentation scheme
(e.g., the leakage issue in the traditional region-growing-
based airway segmentation in Figure 9) may have a very
limited impact on the lobe-based airway labeling.

4. Conclusion

We described a simple and efficient algorithm for automated
airway labeling in term of pulmonary lobe. The performance
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of this algorithm is assessed using a large dataset consisting
of 300 chest CT examination selected from a COPD study
at our institute. Experiments showed that this algorithm is
efficient, accurate, and robust. In the future, we will extend
this work to label an airway tree at the level of lung segments
and collect a larger dataset for assessment purpose.
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