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Abstract: TSPO (18 kDa translocator protein) was identified decades ago in a search for peripheral
tissue binding sites for benzodiazepines, and was formerly called the peripheral benzodiazepine
receptor. TSPO is a conserved protein throughout evolution and it is implicated in the regulation
of many cellular processes, including inflammatory responses, oxidative stress, and mitochondrial
homeostasis. TSPO, apart from its broad expression in peripheral tissues, is highly expressed in
neuroinflammatory cells, such as activated microglia. In addition, emerging studies employing
the ligands of TSPO suggest that TSPO plays an important role in neuropathological settings as a
biomarker and therapeutic target. However, the precise molecular function of this protein in normal
physiology and neuropathology remains enigmatic. This review provides an overview of recent
advances in our understanding of this multifaceted molecule and identifies the knowledge gap in the
field for future functional studies.
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1. Introduction

Translocator protein (18 kDa, TSPO), which was initially designated as the peripheral-type
benzodiazepine receptor (PBR), was identified in 1977 when investigators were searching for peripheral
tissue binding sites for benzodiazepines, one of the most widely available class of drugs prescribed
to treat patients with anxiety, convulsions, or insomnia [1]. TSPO was discovered in the kidney as
a diazepam-binding site [1], and the initial characterization of these benzodiazepine-binding sites
outside the brain led to their assignment as ‘peripheral-type’ benzodiazepine receptors (PBR), to
distinguish them from the central benzodiazepine receptors (CBR). Two types of benzodiazepine
binding receptors have been identified in mammalian tissues, the central-type receptors (CBR) and
peripheral-type benzodiazepine receptors (PBR). CBR are located on neurons and found coupled to
GABA receptors, regulating the GABA-regulated chloride channels, [2,3] while PBR have a much more
ubiquitous distribution [4,5]. PBR is primarily located on the outer membrane of mitochondria and
found to be abundant in steroid-synthesizing cells [4]. It is also reported that PBR is pharmacologically
and structurally distinct from the CBR [6,7]. Although the name ‘PBR’ was widely accepted previously,
multiple other names have also been used to refer this protein such as mitochondrial benzodiazepine
receptor, mitochondrial diazepam-binding inhibitor (DBI) receptor complex and PK11195-binding
sites [8,9]. However, regardless of its interactions with other proteins or ligands, PBR was renamed as
18 kDa Translocator Protein (TSPO) in 2006 by the HUGO Gene Nomenclature Committee [4] reflecting
its putative function in protein or ligand transport/translocation.
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2. Evolutionary Conservation of TSPO

The primary coding sequence of TSPO is highly conserved throughout evolution, from bacteria
to humans [8,10–12], and predicts a tryptophan-rich hydrophobic protein with five transmembrane
domains. The functional TSPO protein occurs throughout the phylogenetic spectrum and the cDNA
for TSPO has been cloned from various species including humans [10,13]. Notably, the rat TSPO
replaced the activity of its bacterial homolog in Rhodobacter sphaeroides [14], indicating evolutionarily
conserved functions of TSPO, although these proteins share only about 30% amino acid identity. In
the human genome, the TSPO gene is localized to the chromosome 22, within the band 22q13.31
as a single copy and the mRNAs of human and mouse TSPO translate to closely related proteins
having 169-amino acid residues with 81% sequence similarity [15–17]. TSPO is widely expressed
throughout the body and the binding sites for TSPO ligands have been identified in tissues such
as heart, kidney, and liver [7]. Further, TSPO is found enriched in tissues in which steroids are
synthesized such as adipose tissue and adrenal cortex. In the CNS, the basal expression of TSPO
is low and is restricted mostly to glial cells [18,19]. TSPO is a nuclear-encoded protein and at the
subcellular level, TSPO is mainly localized in the outer mitochondrial membrane [20], reflecting a
key role of TSPO in cellular functions related to mitochondria. Of note, TSPO has been implicated
in a wide range of cellular processes including, but not limited to, proliferation and differentiation,
apoptosis, immunomodulation, oxidative stress, and mitochondrial physiology [20–24]. A recent study
employing microarray analysis of gene expression in a glioblastoma cell line, U118MG, upon treatment
with TSPO ligand, PK11195 demonstrated that the mitochondrial expression of TSPO could be a part
of mitochondria-to-nucleus signaling pathway resulting in modulation of nuclear gene/transcription
factor expression and altered cellular functions [24]. Furthermore, apart from the expression of TSPO
in the mitochondrial membrane, it has also been localized in the plasma membrane as well as in
nuclear/peri-nuclear areas [25–27]. However, the precise molecular function of TSPO as well as
its mode of action, whether it operates as molecular receptor or sensor remains largely unclear. In
addition, the role of TSPO specific to a particular subcellular localization in normal physiology and
pathology needs investigation.

3. TSPO and Steroidogenesis

Consistent with the abundance of TSPO expression in steroid producing tissues, TSPO
was considered to be essential for the translocation of cholesterol from the outer mitochondrial
membrane to the inner mitochondrial membrane, which is regarded as a rate-limiting step for
steroidogenesis [21,28–30]. It was proposed that TSPO transports cholesterol across the outer
mitochondrial membrane to a steroidogenic enzyme, CYP11A1 [31], which converts cholesterol
into pregnenolone, a common precursor for steroids. Of note, synthetic ligands of TSPO such
as PK11195 and Ro5-4864 stimulated steroidogenesis and neuro steroidogenesis both in vitro and
in vivo [21,28,29,32–34]. Further, recent studies demonstrated a positive correlation between the
TSPO ligand residence time (the period for which the ligand interacts with its target, TSPO) and its
neurosteroidogenic efficacy [35,36]. In addition, the benzodiazepine, Ro5-4864 and the isoquinoline
carboxamide, PK11195 exhibit nanomolar affinity for the TSPO and have distinct binding sites on
TSPO [37,38]. The thermodynamic studies indicated that the [3H]-PK11195 binding to TSPO is entropy
driven, in contrast, the [3H]-RO5-4864 binding is enthalpy driven [39]. Therefore, PK-11195 is being
considered as an antagonist of TSPO, and RO5-4864, an agonist or a partial agonist [39] and both
have been utilized extensively as prototypical pharmacological tools for characterizing TSPO and its
molecular function. Apart from a putative role of TSPO in steroidogenesis, earlier studies have also
reported embryonic lethality of TSPO knockout mice [40] implicating a key role of TSPO in normal
physiology and development. In contrast, recent studies demonstrated that genetic deletion of TSPO
in different cell types had no effect on cellular viability [41]. More importantly, the global TSPO
knockout mice that were developed by two independent research groups by Cre-lox technology
were viable and exhibited unaltered steroidogenesis [42,43]. Additionally, studies employing a
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transgenic mouse with conditional TSPO deletion in Leydig cells demonstrated that TSPO was not
essential for testosterone production [44]. However, very recent studies demonstrated that global TSPO
deletion alter adrenocorticotropic hormone-induced plasma corticosteroid concentrations [45] and
TSPO deletion-mediated effects exacerbate with aging [46]. Altogether, the emerging evidence suggests
elusive and conflicting roles of TSPO in mammalian cells that warrant further investigation. TSPO
ligands augmented steroid hormone production in several different steroidogenic cell types [22,32,47].
Given the cytoprotective effects of steroids, the TSPO ligands have been proposed as therapeutic agents
to augment steroid levels in the brain as well as in the reproductive system and the pharmacological
agents have been extensively used to elucidate the physiological relevance of TSPO. However,
genetic studies showed that the pharmacological effect of TSPO ligand, PK11195 on the induction of
steroidogenesis is not mediated through TSPO in MA-10 mouse Leydig tumor cells [48] implicating
the possible off-target effects of synthetic ligands and thereby emphasizing the essentiality of
genetic cellular and animal model systems in elucidating the TSPO ligand-mediated effects on
cellular functions.

4. TSPO and Mitochondrial Functions

Notably, recent studies employing genetic approach demonstrated a significant shift in
mitochondrial homeostasis in Tspo−/− fibroblasts that could affect multiple mitochondrial
functions [49]. Of note, the ligands of TSPO regulate the mitochondrial permeability transition
pore (MPTP) functioning and an association of TSPO with MPTP had been suggested previously [50].
However, recent studies demonstrate that TSPO plays no role in the regulation of MPTP. Further,
both endogenous, as well as synthetic ligands of TSPO, do not regulate MPTP activity through TSPO
implicating that TSPO-mediated modulation of mitochondrial functions could be independent of
the regulation of MPTP [51]. Recent studies have also reported that genetic deletion of TSPO results
in an increase in mitochondrial fatty acid oxidation in steroidogenic cells [52] and a decrease in
oxygen consumption rate (OCR) in microglia [43] and fibroblasts [49] but the underlying molecular
mechanisms of these findings and their relevance to the overall mitochondrial function require
further investigation.

5. TSPO and Endogenous Ligands

Various endogenous TSPO ligands have been proposed such as cholesterol, Diazepam Binding
Inhibitor (DBI), and porphyrin and the endogenous ligands bind TSPO with different affinities.
Cholesterol is a potent ligand of TSPO with nanomolar affinity [53] and it binds to the cholesterol
recognition amino acid consensus sequence in the carboxyl-terminal end of TSPO. In contrast, DBI has
micromolar affinities for both TSPO and CBR and was initially described based on its ability to interact
with CBR and regulate GABAergic transmission [54]. DBI and its proteolytic products can stimulate
steroidogenesis by interacting with TSPO [55] and are widely distributed in the CNS and peripheral
steroidogenic cells [56–60].

TSPO from all species studied bind porphyrins or cyclic tetrapyrroles (protoporphyrin IX (PPIX),
mesoporphyrin IX, deuteroporphyrin IX, heme, and hemin) [61–64] and porphyrins exhibit high (nM)
affinity for TSPO but not for CBR [62,65]. The concept that porphyrins are endogenous ligands is
consistent with the mitochondrial location of TSPO since the mitochondria play a key role in porphyrin
metabolism [66]. Many porphyrins are naturally occurring and one of the best-known porphyrins
is heme, the red blood cell pigment and a cofactor of oxygen- binding protein, hemoglobin. In both
eukaryotes and prokaryotes, TSPO interacts with heme and its immediate precursor PPIX [67]. Though
it has been suggested that TSPO is a porphyrin transporter, no published experimental evidence
supports this claim. Instead of acting as a transporter it is proposed that TSPO binds PPIX as a
regulatory cellular protection mechanism against oxidative stress otherwise generated by the free form
of these porphyrins. Detergent-purified TSPO can bind porphyrins in vitro, including PPIX and hemin
(oxidized heme) [68,69]. Further, Rat TSPO can bind PPIX in vivo and the binding was demonstrated
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with positron emission tomography [70]. However, the mechanisms involved in the porphyrin/heme
binding to the TSPO remain to be determined.

It was proposed that TSPO could sequester free heme in cells and catabolize/degrade excess PPIX
in conjugation with ROS generation. Of note, the genetic knockdown of TSPO in human U118MG
glioma cell line resulted in mitochondrial PPIX accumulation upon exposure of cells to PPIX, suggesting
a role of TSPO in preventing intracellular accumulation of PPIX [71]. In addition, TSPO could act as a
scavenger of porphyrin-based compounds in a eukaryotic model such as human colonic epithelial
cell line (Caco-2) and may contribute to protecting cells from potential toxic compounds such as free
tetrapyrroles [72]. Notably, TSPO ligands could antagonize the functions of the endogenous PPIX and
for instance, PK11195 could counteract the cytotoxic effects of hemin in Caco-2 cells [72]. Employing
detergent-purified bacterial Chlorobium tepidum TSPO, it was demonstrated that TSPO could induce
rapid spectral changes to added PPIX indicative of chemical catalysis [73]. Moreover, in Bacillus cereus,
TSPO mediated a light-induced degradation of PPIX [74]. Further, TSPO ligands were able to partially
rescue cells from porphyrin-induced phototoxicity [75]. In Arabidopsis thaliana, it was observed that
TSPO (AtTSPO) attenuated ALA-induced porphyria through a potential scavenging mechanism [64].
AtTSPO could possibly be involved in the transient clearance of excess cytosolic unbound heme
and thereby it could modulate redox homeostasis [64]. However, the analysis of PPIX elimination
in Tspo−/− mouse tissues and plasma suggests that TSPO is not a critical regulator of PPIX levels
in mammalian systems in normal physiological conditions [49]. Further, PPIX-mediated phototoxic
cell death was not different between Tspofl/fl and Tspo−/− fibroblasts [49]. In addition, early studies
using TSPO-binding pharmacological agents have suggested a functional link between mammalian
TSPO and the induction of hemoglobin synthesis [76,77]. However, recent studies using Tspo−/− mice
and cell lines have established that TSPO is not involved in heme biosynthesis [49]. Though these
recent observations rule out the role of TSPO in PPIX biosynthesis, given the evolutionarily conserved
interaction between TSPO and porphyrins further studies are warranted elucidating the role of TSPO
in oxidative stress associated with porphyrins including heme.

6. TSPO and Oxidative Stress

TSPO appears to be an essential participant in the regulation of mitochondrial reactive oxygen
species (ROS) levels [78–80] and the mitochondrial location of the TSPO is interesting as mitochondria
are the main source of cellular ROS [81]. Also, the exposure of neuronal cells to TSPO ligands
in vitro generates oxygen-free radicals [82]. In the liver, TSPO was found in colocalization with the
mitochondrial manganese-dependent superoxide dismutase, a ROS scavenger [83]. It has also been
demonstrated that increased TSPO expression is associated with resistance against ROS and hydrogen
peroxide cytotoxicity [84]. Along these lines, Jurkat cells transfected with Tspo cDNA exhibited
higher resistance to free radical-mediated damage than controls [84]. Conversely, knockdown of
TSPO augmented ROS production [25], suggesting that TSPO may participate in an antioxidant
response pathway. Also, it has been suggested that TSPO could act to neutralize ROS. Along these
lines, the tryptophan residues in TSPO might react with ROS to generate tryptophan radicals [74].
In MA-10 Leydig cells, CRISPR/Cas9-mediated deletion of TSPO resulted in a modest increase in
ROS production compared to controls [52]. Further, it has been demonstrated that oxidative stress
modulates both the structure and function of TSPO. Along these lines, increased ROS levels resulted
in TSPO polymerization and enhanced ligand binding [85]. However, the precise role of TSPO in the
regulation of cellular ROS levels or vice versa requires further studies.

7. TSPO and Neuroinflammation

Neuroinflammation characterized by the activation of neuroimmune cells has been implicated
as a pathological contributor to several neurodegenerative diseases. Under normal conditions, TSPO
expression is low in immune-competent cells, macrophages, and leukocytes in the periphery, as well
as in microglia and astrocytes [86]. In response to brain injury, the glial cells become activated and
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activated microglia/macrophage are often associated with increased expression of TSPO [18,19,87].
Therefore, TSPO is considered as a relevant molecular marker of neuroinflammation and could
be an attractive therapeutic target. Though neuroinflammation is closely related to brain injuries
and various neurodegenerative disorders such as Huntington’s disease, Dementia, Parkinson’s
disease, and Multiple sclerosis, the precise functional consequences of microglial activation in
these diseases are unclear. It is proposed that TSPO may regulate the release of pro-inflammatory
cytokines during inflammation [27,88,89]. Consistently, genetic knockdown of TSPO in RAW
264.7 cells augmented hemin-induced release of proinflammatory cytokines revealing a negative
regulatory role of TSPO in inflammation [27]. Further, our recent preclinical studies demonstrated an
augmented expression of TSPO after intracerebral hemorrhage (ICH), a neuropathological condition
that mostly afflicts the elderly population [27]. Importantly, irrespective of age, ≈85% TSPO
expressing cells in the brain after ICH, co expressed Iba1 (microglia/macrophage marker) (Figure 1),
implicating a possible role of TSPO in neuroinflammatory responses. Consistently, the expression
of immune response genes was affected in TSPO1−/− tissues [42]. Further, TSPO expression
was also observed in activated microglia/macrophages of phagocytic phenotypes [27] and TSPO
ligands induced the phagocytic capacity of microglia [90] suggesting an unexplored role of TSPO in
microglia/macrophage-mediated phagocytosis in pathological conditions. Altogether, these studies
suggest that TSPO may modulate microglia/macrophage, the inflammatory cells of the CNS, at
multiple functional levels. Although both astrocytic, as well as microglial expression of TSPO, has been
observed in various neuropathological conditions in rodents [26,91,92], microglia/macrophages but
not astrocytes are the significant contributors of TSPO binding sites in human neuropathologies [93,94].
Of note, radiolabeled-TSPO ligands have been widely used for monitoring the augmented brain
expression of TSPO in neuropathological conditions since TSPO-dependent enhanced binding of
the radiotracer can be detected and quantified using non–invasive neuroimaging techniques such
as positron emission tomography (PET) or Single-photon emission computed tomography (SPECT).
Given the enhanced expression of TSPO in brain inflammatory cells, the neuroimaging employing
the radioligands of TSPO provides a valuable tool allowing us to track and quantify the brain
inflammation, and thereby ascertain the effectiveness of therapeutic interventions in a real-time manner.
Along these lines, [11] C-labeled PK11195 is the first radiotracer that was used for the evaluation of
activated microglia/macrophages and neuroinflammation in vivo. However, owing to the high
lipophilicity, radiolabeled PK11195 exhibited high non-specific binding and a poor signal-to-noise
ratio, complicating its quantification [95,96]. This has prompted the search for radiotracers with
improved capacities to quantify TSPO expression. Along these lines, several new TSPO radioligands
have been developed [97], and most of them have lower lipophilicity than radiolabelled-PK11195 and
improved specific-to-nonspecific binding. Though microglia/macrophages are the most prominent
cell type expressing TSPO in diseased brains, the mechanisms regulating augmented TSPO expression
in microglia/macrophage, as well as the precise role of TSPO in microglia/macrophage functions in
neuropathological conditions, remains largely unknown.
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induction. A remarkable co-localization was observed between TSPO and Iba1, whereas no TSPO 
expression was observed in either NeuN or GFAP positive cells in both young as well as old mice. 
Scale Bar = 20 μM; n = 3 per group. 
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PK11195 and DPA-713 respectively, conferred neuroprotection against quinolinic acid injection into 
the rat striatum [101]. Interestingly, TSPO-agonist, Ro5-4864 significantly reversed the pathology 
associated with Alzheimer’s disease in vivo [102]. Though, one of the key mechanisms underlying 
the neuroprotective effects mediated by TSPO ligands has been implicated as the stimulation of 
mitochondrial steroid synthesis, the precise cellular and molecular mechanisms underlying TSPO 
ligand-mediated neuroprotection in neuropathological conditions are not well defined. However, in 
contrast to the neuroprotective role of ligand-mediated TSPO signaling as outlined above, the 
hGFAP-driven-conditional TSPO knockout mice exhibited reduced astrogliosis and experimental 
autoimmune encephalomyelitis clinical scoring in a preclinical mouse model of multiple sclerosis 
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Figure 1. Cellular localization of 18kDa translocator protein (TSPO) expression in old vs. young mice
after intracerebral hemorrhage (ICH). ICH was induced in male mice (20 months or 8 weeks old), as
reported previously [27] and the brain sections were subjected to immunohistochemistry [27]. Briefly,
brain sections were immunolabeled for (A) TSPO and Iba1 (microglia/macrophage marker); (B) TSPO
and GFAP, (astrocyte marker) and (C) TSPO and NeuN (neuronal marker), 3 days-post ICH induction.
A remarkable co-localization was observed between TSPO and Iba1, whereas no TSPO expression was
observed in either NeuN or GFAP positive cells in both young as well as old mice. Scale Bar = 20 µM;
n = 3 mice per group.
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8. TSPO as a Therapeutic Target

Accumulating evidence implicate that synthetic TSPO ligands are neuroprotective in various CNS
disorders [98] and thereby, TSPO is regarded as a therapeutic target for neurologic disorders [23,99].
Along these lines, Etifoxine, a TSPO ligand and clinically approved drug for the treatment of
anxiety disorders, promoted axonal regeneration and functional recovery in an animal model
of peripheral nerve freeze injury [100]. Further, both first and second-generation TSPO ligands,
PK11195 and DPA-713 respectively, conferred neuroprotection against quinolinic acid injection into
the rat striatum [101]. Interestingly, TSPO-agonist, Ro5-4864 significantly reversed the pathology
associated with Alzheimer’s disease in vivo [102]. Though, one of the key mechanisms underlying
the neuroprotective effects mediated by TSPO ligands has been implicated as the stimulation of
mitochondrial steroid synthesis, the precise cellular and molecular mechanisms underlying TSPO
ligand-mediated neuroprotection in neuropathological conditions are not well defined. However,
in contrast to the neuroprotective role of ligand-mediated TSPO signaling as outlined above,
the hGFAP-driven-conditional TSPO knockout mice exhibited reduced astrogliosis and experimental
autoimmune encephalomyelitis clinical scoring in a preclinical mouse model of multiple sclerosis
(MS) [103] and this discrepancy between the genetic and pharmacological studies demands a thorough
investigation. Notably, the widely used TSPO agonist, Etifoxine binds and modulates GABAA
receptors further implicating the need to establish the therapeutic potential of TSPO. Altogether,
it is imperative to reassess the neuroprotective efficacy of TSPO ligands employing transgenic
animal models, as it would validate the functional role of TSPO as a therapeutic target in various
neuropathological conditions.

9. Conclusions

TSPO is an evolutionarily conserved protein with enigmatic functions. Apart from the
identification of TSPO as a biomarker of glial activation future studies are warranted characterizing
the precise role of TSPO in mitochondrial functioning as well as in cellular inflammatory and
oxidative responses and it would also validate the therapeutic potential of TSPO in various
pathological conditions.
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Abbreviations

TSPO 18 kDa translocator protein
GABA gamma-aminobutyric acid
HUGO human genome organization
CNS central nervous system
ROS reactive oxygen species
ALA 5-amino-laevulinic acid
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CRISPR/Cas9
clustered regularly interspaced short palindromic repeats and CRISPR-associated
protein 9

Iba1 ionized calcium binding adaptor molecule 1
GFAP glial fibrillary acidic protein

DPA-713
N,N-diethyl-2-[2-(4-[methoxyphenyl)-5,7-dimethyl-pyrazolo-
[1,5-α]pyrimidin-3-yl]-acetamide

GABAA receptors gamma-aminobutyric acid type A receptors
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