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Abstract
Background: Circulating	markers	of	oxidative	stress	have	been	associated	with	
lower	lung	function.	Our	objective	was	to	study	the	association	of	gene	expres-
sion	levels	of	oxidative	stress	pathway	genes	(ALOX12,	ALOX15,	ARG2,	GSTT1,	
LPO,	MPO,	NDUFB3,	PLA2G7,	and	SOD3)	and	lung	function	forced	expiratory	
volume	 in	 one	 second	 (FEV1),	 forced	 vital	 capacity	 (FVC)	 in	 Coronary	 Artery	
Risk	Development	in	Young	Adults	study.
Methods: Lung	 function	 was	 measured	 using	 spirometry	 and	 the	 Nanostring	
platform	was	used	to	estimate	gene	expression	levels.	Linear	regression	models	
were	used	to	study	association	of	lung	function	measured	at	year	30,	10-	year	de-
cline	in	lung	function	and	gene	expression	after	adjustment	for	center,	smoking,	
and	BMI,	measured	at	year	25.
Results: The	10-	year	decline	of	FEV1	was	faster	in	highest	NDUFB3	quartile	com-
pared	to	the	lowest	(difference = −2.09%;	p = 0.001)	after	adjustment	for	multi-
ple	comparisons.	The	10-	year	decline	in	FEV1	and	FVC	was	nominally	slower	in	
highest	versus	lowest	quartile	of	PLA2G7	(difference = 1.14%;	p = 0.02,	and	dif-
ference = 1.06%;	p = 0.005,	respectively).	The	other	genes	in	the	study	were	not	
associated	with	FEV1	or	FVC.
Conclusion: Higher	gene	expression	levels	in	oxidative	stress	pathway	genes	are	
associated	with	faster	10-	year	FEV1	decline.
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1 	 | 	 INTRODUCTION

Oxidative	stress,	the	imbalance	between	oxidant	and	anti-
oxidant	effects	in	the	body,	is	associated	with	asthma	and	
chronic	 pulmonary	 obstructive	 disease	 (COPD;	 Ahmad	
et	 al.,	 2012;	 Hecker,	 2018;	 Holguin,	 2013;	 Montuschi	
et	al.,	 2000;	Ochs-	Balcom	et	al.,	 2006;	Park	et	al.,	 2009).	
Specifically,	pro-	oxidants	such	as	p-	TBARS	have	been	as-
sociated	with	lower	lung	function	(Mannino	et	al.,	2003;	
Sircar	 et	 al.,	 2007)	 and	 antioxidants	 such	 as	 carotenoids	
were	positively	associated	with	forced	expiratory	volume	
in	 one	 second	 (FEV1)	 and	 forced	 vital	 capacity	 (FVC)	
in	 cross-	sectional	 studies	 (Ochs-	Balcom	 et	 al.,	 2005;	
Schunemann	et	al.,	1997).

Though	oxidative	stress	is	determined	by	a	regulation	
of	 complex	 biological	 processes,	 the	 release	 of	 reactive	
oxygen	 species	 (ROS)	 is	 an	 important	 mechanism	 for	
increasing	 oxidative	 damage	 while	 the	 activities	 of	 vari-
ous	antioxidant	enzymes	are	 important	defenses	against	
oxidative	 damage.	 Increased	 ROS	 production	 can	 occur	
through	 several	 mechanisms	 that	 include	 the	 electron	
transport	 chain	 (ETC)	 in	 mitochondria,	 (Droge,	 2002;	
Papaharalambus	 &	 Griendling,	 2007)	 increased	 produc-
tion	 of	 superoxides	 (e.g.,)	 ARG2,	 short-	lived	 oxidized	
intermediates	such	as	hypochlorous	acid	from	myeloper-
oxidase	(MPO)	and	hypothiocyanite	from	lactoperoxidase	
(LPO)	 or	 from	 intermediates	 in	 lipid	 metabolism	 such	
as	 lipid	 peroxidation	 catalyzed	 by	 lipoxygenases	 such	 as	
ALOX12	 and	 ALOX15	 or	 lipid	 hydrolysis	 catalyzed	 by	
platelet-	activating	factor	acetohydrolase	(PAF-	AH;	Gago-	
Dominguez	et	al.,	2007;	Pierini	&	Bryan,	2015).	In	addition	
to	increased	ROS	production,	lower	activity	of	antioxidant	
defenses	 such	 as	 inadequate	 antioxidant	 enzyme	 con-
centrations	 such	 as	 glutathione	 transferases	 (GSTs)	 and	
superoxide	 dismutases	 (SODs)	 that	 metabolize	 products	
derived	from	oxidative	stress	such	as	superoxides,	lipids,	
and	DNA	products	can	also	result	in	increased	oxidative	
stress	(Kruse	et	al.,	2000;	Singh	&	Bhat,	2012;	Suwanpradid	
et	al.,	2014;	Wang	et	al.,	2018).	Thus,	measurement	of	gene	
expression	levels	of	enzymes	involved	in	both	increasing	
oxidative	 stress	 as	 well	 as	 maintaining	 antioxidant	 de-
fenses	can	help	us	better	understand	the	influence	of	these	
pathways	on	pulmonary	function	and	disorders.	Thus,	we	
specifically	 evaluated	 expression	 of	 candidate	 genes	 in	
major	pathways	contributing	to	oxidative	stress.	We	eval-
uated	seven	genes	that	increase	ROS	production	and	two	
genes	 involved	 in	antioxidant	defenses.	The	seven	genes	

involved	 in	 increased	ROS	production	 include	NDUFB3,	
a	 subunit	 of	 complex	 I	 and	 the	 largest	 complex	 in	 ETC	
(Calvo	et	al.,	2012;	Haack	et	al.,	2012;	Leman	et	al.,	2015),	
ALOX12,	 and	 ALOX15	 that	 are	 involved	 in	 lipid	 peroxi-
dation	(Brash,	1999;	Mashima	&	Okuyama,	2015;	Pallast	
et	al.,	2009;	Praticò	et	al.,	2004;	Seiler	et	al.,	2008;	Suzuki	
et	al.,	2015),	PLA2G7	 that	 is	 involved	 in	 lipid	hydrolysis	
(Miwa	et	al.,	1988;	Stafforini,	2009;	Stafforini	et	al.,	1999,	
2006),	and	ARG2	(Suwanpradid	et	al.,	2014;	Yang	&	Ming,	
2014),	MPO	and	LPO	(Anatoliotakis	et	al.,	2013;	Aratani,	
2018;	Stamp	et	al.,	2012)	that	form	short-	lived	intermedi-
ate	free	radicals.

In	this	article,	we	will	study	the	associations	between	
gene	expression	of	the	nine	oxidative	stress	markers	and	
pulmonary	 function	 defined	 by	 FEV1	 and	 FVC	 in	 the	
Coronary	 Artery	 Risk	 Development	 in	 Young	 Adults	
(CARDIA)	study.	We	hypothesized	that	higher	expression	
levels	of	genes	that	increase	oxidative	stress	and	lower	ex-
pression	of	antioxidant	genes	would	be	associated	with	a	
lower	 lung	function	measurement,	and	with	a	 faster	de-
cline	in	lung	function.

2 	 | 	 METHODS

2.1	 |	 Study population

2.1.1	 |	 Ethical	compliance

All	 study	 methods	 were	 carried	 out	 in	 accordance	 with	
relevant	guidelines	and	regulations.	All	CARDIA	partici-
pants	 provided	 a	 signed	 informed	 consent	 before	 study	
participation	 and	 sign	 a	 new	 informed	 consent	 form	 at	
every	examination.

CARDIA	 is	 a	 cohort	 study	 with	 5115	 participants	
who	 were	 recruited	 at	 baseline	 examination	 during	 the	
year	 1985–	1986	 at	 four	 field	 centers	 (Birmingham,	 AL;	
Chicago,	 IL;	 Minneapolis,	 MN;	 and	 Oakland,	 CA).	 The	
study	 included	 approximately	 equal	 number	 of	 Blacks	
and	Whites;	men	and	women,	respectively.	The	follow-	up	
rates	in	CARDIA	are	72%	at	year	20	(2005–	2006)	and	year	
25	 (2010–	2011),	 and	 71%	 at	 year	 30	 (2015–	2016).	 The	
detailed	 methods,	 instruments,	 and	 quality	 control	 pro-
cedures	for	the	CARDIA	study	have	been	previously	de-
scribed	 (Friedman	 et	 al.,	 1988;	 Hughes	 et	 al.,	 1987).	 All	
study	methods	were	carried	out	in	accordance	with	rele-
vant	guidelines	and	regulations.	All	CARDIA	participants	
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provided	a	 signed	 informed	consent	before	 study	partic-
ipation	 and	 sign	 a	 new	 informed	 consent	 form	 at	 every	
examination.

The	cross-	sectional	analyses	performed	to	study	asso-
ciations	between	year	25 gene	expression	levels	and	year	
30  lung	 function	 measurements	 included	 2527	 partici-
pants.	The	 longitudinal	 analyses	 performed	 to	 study	 as-
sociations	between	10-	year	decline	in	lung	function	from	
year	20	to	year	30	and	year	25 gene	expression	levels	in-
cluded	2271	participants.	Participants	with	missing	 lung	
function	 data,	 missing	 gene	 expression	 measurements,	
and	 missing	 covariates	 were	 removed	 prior	 to	 analysis	
(Ramasubramanian	et	al.,	2020).	We	performed	 the	sen-
sitivity	analysis	by	removing	participants	with	COPD	and	
asthma	 when	 evaluating	 the	 association	 between	 year	
25 gene	expression	levels	and	year	30 lung	function.	For	
sensitivity	 analyses,	 55	 participants	 with	 COPD	 and	 476	
participants	 with	 asthma	 were	 removed	 for	 the	 cross-	
sectional	 analysis	 while	 47	 participants	 with	 COPD	 and	
442	participants	with	asthma	were	removed	from	the	lon-
gitudinal	analysis.

2.2	 |	 Spirometry

Spirometry	 was	 performed	 using	 a	 dry	 rolling-	seal	 OMI	
spirometer	(Viasys	Corp,	Loma	Linda,	CA)	at	year	20	ex-
amination	and	a	portable	spirometer	EasyOne	Diagnostic,	
NDD	Medical	Technologies,	Andover,	MA)	at	year	30	fol-
lowing	the	American	Thoracic	Society	Guidelines	(Miller	
et	al.,	2005).

2.3	 |	 Gene expression analysis

Whole	 blood	 was	 collected	 in	 the	 PAXgene	 Blood	 RNA	
tubes	(Qiagen	Inc.)	at	the	year	25	examination.	mRNA	was	
isolated	using	the	PAXgene	Blood	RNA	kit	(Qiagen	Inc.)	
at	 the	Molecular	Epidemiology	and	Biomarker	Research	
Laboratory	(MEBRL)	according	to	the	manufacturer's	in-
structions.	 The	 detailed	 methods	 for	 measurement	 and	
normalization	 of	 gene	 expression	 using	 the	 nCounter	
analysis	 system	 (Nanostring	 Inc.)	 were	 published	 previ-
ously	(Ramasubramanian	et	al.,	2020).	Briefly,	normaliza-
tion	of	the	gene	expression	was	done	with	a	combination	
of	 positive	 control	 normalization,	 housekeeping	 gene	
normalization,	 and	 CodeSet	 content	 normalization	 to	
correct	major	sources	of	error	including	pipetting	errors,	
instrument	scan	resolution,	batch	variations,	and	sample	
input	 variability.	 Specifically,	 both	 positive	 control	 nor-
malization	and	the	CodeSet	content	normalization	help	to	
adjust	 for	 batch	 variation	 and	 assay	 variation	 related	 to	
specific	reagents	and	beads	used	in	the	nCounter	analysis	

system	(Nanostring	Inc.).	The	raw	counts	of	the	gene	ex-
pression	 of	 sample	 were	 first	 multiplied	 by	 the	 sample-	
specific	positive	control	normalization	factor,	then	by	the	
housekeeping	gene	normalization	factor,	and	the	CodeSet	
normalization	 factor	 to	 obtain	 the	 final	 gene	 expression	
counts.

2.4	 |	 Measurement of covariates

The	 covariates	 used	 for	 this	 analysis	 are	 smoking	 and	
BMI.	Smoking	was	determined	using	a	pack-	years	varia-
ble	which	was	measured	by	cigarette	pack-	years	(cigarette	
packs	smoked	per	day × number	of	years	smoking).	BMI	
was	defined	as	a	continuous	variable	and	was	calculated	
as	 weight	 (kg)	 divided	 by	 height	 (meters)	 squared.	 Year	
25 measurements	of	BMI	and	smoking	status	were	used	
in	this	analysis.

2.5	 |	 Statistical methods

Characteristics	of	participants	at	year	25	among	five	levels	
of	the	nine	genes	were	assessed	by	using	Chi-	square	tests	
for	categorical	variables	and	one-	way	ANOVA	for	contin-
uous	variables.	The	lower	limit	of	detection	for	the	gene	
expression	counts	was	set	at	16	and	all	counts	lower	than	
the	 lower	 limit	of	detection	was	set	16	prior	 to	analysis.	
The	gene	expression	of	ALOX12,	ALOX15,	ARG2,	GSTT1,	
LPO,	 MPO,	 NDUFB3,	 PLA2G7,	 and	 SOD3	 were	 divided	
into	quartiles.	Linear	regression	models	were	used	to	eval-
uate	 the	 association	 of	 predicted	 lung	 function	 at	 exam	
year	30	and	10-	year	decline	 in	 lung	 function	 (from	year	
20	to	year	30)	with	year	25 gene	expression	levels	of	the	
nine	oxidative	stress	genes.	Percent	predicted	lung	func-
tion	 was	 defined	 as	 the	 ratio	 of	 observed	 lung	 function	
over	predicted	lung	function	and	predicted	lung	function	
was	calculated	using	the	Hankinson	equation	for	the	cor-
responding	age,	 sex,	 race,	and	height	of	 the	participants	
(Hankinson	et	al.,	1999).	Multivariable	 linear	 regression	
models	were	used	to	assess	the	association	of	lung	func-
tion	at	CARDIA	exam	year	30	and	10-	year	decline	in	lung	
function	with	year	25 gene	expression	levels	after	adjust-
ment	for	center,	cigarette	pack-	years,	and	BMI.	Sensitivity	
analysis	 was	 performed	 by	 removing	 participants	 with	
asthma	and	COPD	at	years	20	and	30,	and	evaluation	of	
the	association	of	lung	function	at	CARDIA	exam	year	30	
and	 10-	year	 decline	 in	 lung	 function	 with	 year	 25  gene	
expression	levels	of	the	nine	oxidative	stress	genes	in	the	
subset	 of	 participants	 without	 COPD/asthma.	 All	 the	 p-	
values	 ≤0.05	 were	 considered	 statistically	 significant.	
Statistical	 analyses	 were	 carried	 out	 using	 SAS	 software	
version	9.4	(SAS	Institute).
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3 	 | 	 RESULTS

3.1	 |	 Characteristics at year 25 
examination

The	participants	in	the	highest	quartile	of	NDUFB3	were	
more	 likely	 to	 be	 female	 (69.37%	 vs.	 51.94%;	 p-	value	
<0.0001),	younger	(49.11	vs	50.32;	p-	value = 0.005),	cur-
rent	 smokers	 (16.37%	 vs.	 10.07%;	 p-	value  =  0.03),	 have	
higher	BMI	(31.87	vs.	28.88;	p-	value	<0.0001),	and	higher	
C-	reactive	protein	(4.35	vs.	2.14;	p-	value	<0.0001).	Current	
smokers	 had	 higher	 pack-	years	 in	 the	 fourth	 quartile	 of	
NDUFB3	(21.21	vs.	16.58;	p-	value = 0.02).	Participants	in	
the	highest	quartile	of	MPO	were	more	likely	to	be	male,	
participants	in	the	highest	quartile	of	ALOX12	were	more	
likely	to	be	male	and	have	lower	C-	reactive	protein,	par-
ticipants	 in	 the	 highest	 quartile	 of	 PLA2G7	 were	 more	
likely	to	be	White,	have	lower	BMI	and	C-	reactive	protein	
(data	in	Tables	S1a-	1h,	Table	1).

3.2	 |	 Association between year 
30 lung function and year 25 gene 
expression profiles

Year	30	predicted	FVC	was	nominally	lower	in	the	high-
est	quartile	of	NDUFB3	as	compared	to	the	lowest	level	of	
NDUFB3,	with	a	difference	of	2.30%	(95%	CI:	06.8%-	3.93%;	

p-	value = 0.04;	Table	2).	None	of	the	other	genes	were	as-
sociated	with	year	30	FEV1	or	FVC	(Table	S2).	A	p-	value	of	
0.003	(nine	markers	with	two	outcomes = 0.05/18 = 0.003)	
to	determine	statistical	significance	using	Bonferroni	cor-
rection	for	multiple	comparisons	indicates	that	the	asso-
ciations	are	not	statistically	significant.

3.3	 |	 Association between 10- year 
decline in lung function and year 25 gene 
expression profiles

Decline	in	FEV1	from	year	20	to	year	30	was	higher	in	the	
highest	 quartile	 of	 NDUFB3	 as	 compared	 to	 the	 lowest	
quartile	 of	 NDUFB3	 (3.73%	 vs.	 1.64%;	 p-	value  =  0.001).	
Decline	 in	 FVC	 from	 year	 20	 to	 year	 30	 was	 nominally	
higher	in	the	highest	quartile	of	ARG2	as	compared	to	the	
lowest	 level	 of	 ARG2	 (3.79%	 vs.	 2.48%;	 p-	value  =  0.02).	
Decline	 in	 FEV1	 and	 FVC	 was	 nominally	 lower	 in	 the	
highest	 quartile	 of	 PLA2G7	 as	 compared	 to	 the	 lowest	
quartile	 (2.21%	 vs.	 3.35%;	 p-	value  =  0.02	 for	 FEV1	 and	
2.62%	 vs.	 3.86%;	 p-	value  =  0.005;	 Table	 3).	 None	 of	 the	
other	genes	were	associated	with	10-	year	decline	in	lung	
function	from	year	20	to	year	30	(Table	S3).	After	adjust-
ment	 for	multiple	comparisons	using	Bonferroni	correc-
tion	 (a	 corrected	 p-	value	 of	 0.003)	 only	 the	 association	
between	NDUFB3	and	10-	year	decline	in	FEV1 remained	
statistically	significant.

T A B L E  1 	 Participant	characteristics	at	year	25	with	respect	to	NDUFB3 gene	expression	levels

Characteristics

NDUFB3 gene expression levels

p- value
0– 25 percentile 
(n = 566)

>25 to 50 
percentile 
(n = 570)

>50 to 75 
percentile 
(n = 567)

>75 to 100 
percentile 
(n = 568)

Age	(years) 50.32	(3.56) 50.29(3.48) 50.24	(3.60) 49.73(3.62) 0.02

Race 0.05

%Blacks 42.76 40.53 40.56 47.71

Sex <0.0001

%	Female 51.94 53.16 59.26 69.37

Smoking 0.03

%	Never 63.78 67.02 64.55 63.91

%	Former 26.15 21.40 22.05 19.72

Smoking	pack-	years	among	
former	smokers

7.16	±	7.97 7.39	±	8.86 7.48	±	8.16 7.74	±	8.64 0.96

%	Current 10.07 11.58 13.40 16.37

Smoking	pack-	years	among	
current	smokers

16.58	±	11.81 16.89	±	11.56 20.18	±	11.48 21.21	±	13.63 0.02

BMI 28.89	(6.12) 29.22	(6.53) 29.36	(6.77) 32.19	(8.10) <0.0001

Alcohol	consumption	(ml/day) 11.95	(24.76) 10.66	(16.81) 11.06	(17.19) 9.40	(20.38) 0.40

C-	reactive	protein	(µG/ML) 2.14	(3.15) 2.56	(4.25) 2.78	(5.07) 4.35	(5.80) <0.0001
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3.4	 |	 Sensitivity analysis after 
exclusion of asthma and COPD patients

All	ARG2	and	NDUFB3	quartiles	had	a	similar	distribution	
of	asthma	and	COPD	patients	(ARG2:	19.37%	vs.	19.18%;	
p = 0.64	and	1.90%	vs.	2.54%;	p = 0.81	and	NDUFB3:	18.1%	
vs.	21.11%;	p = 0.08	and	1.59%	vs.	2.70%;	p = 0.58).	The	
distribution	 of	 asthma	 across	 PLA2G7	 quartiles	 was	 dif-
ferent	(22.19%	vs.	14.13%;	p = 0.001)	and	distribution	of	
COPD	across	quartiles	of	PLA2G7	was	similar	(2.85%	vs.	
1.27%;	p = 0.27).	Eliminating	asthma	and	COPD	patients	
from	 the	 analysis	 did	 not	 substantially	 change	 the	 ob-
served	associations.	Year	30	FVC	was	lower	in	the	fourth	
NDUFB3	 quartile	 versus	 the	 first	 NDUFB3	 quartile	 (dif-
ference:	2.69%	[95%	CI:	0.94,	4.45];	p = 0.01).	The	10-	year	
decline	of	FEV1	was	higher	in	the	highest	NDUFB3 level	
versus	the	first	NDUFB3	quartile	(difference:	−1.69%	(95%	
CI:	 −2.89,	 −0.50);	 p  =  0.02)	 and	 the	 10-	year	 decline	 of	
FVC	 was	 lower	 in	 the	 highest	 PLA2G7  level	 versus	 the	
first	 PLA2G7	 quartile	 (difference:	 1.03%	 [95%	 CI:	 −0.14,	
2.21];	p = 0.01).

4 	 | 	 DISCUSSION

This	study	found	that	faster	10-	year	decline	in	FEV1	was	
associated	 with	 higher	 NDUFB3  gene	 expression	 levels	
after	adjusting	for	multiple	comparisons	using	Bonferroni	
correction.	Faster	10-	year	decline	in	FVC	was	nominally	
associated	with	higher	expression	of	ARG2	and	faster	10-	
year	decline	in	FEV1	and	FVC	were	nominally	associated	
with	lower	PLA2G7	though	both	these	associations	were	
no	 longer	 significant	after	adjustment	 for	multiple	com-
parisons.	For	most	part,	 the	 results	 for	NDUFB3,	ARG2,	
and	 PLA2G7	 are	 consistent	 with	 our	 hypothesis	 that	
higher	 gene	 expression	 levels	 are	 associated	 with	 lower	
lung	function.	The	other	six	genes,	which	were	included	
in	these	analyses	were	not	associated	with	FEV1	and	FVC.

Previous	studies	on	oxidative	stress	and	lung	function	
have	 measured	 markers	 such	 as	 p-	TBARS	 in	 LDL	 cho-
lesterol	 and	 Glutathione	 (GSH)	 in	 blood	 and	 plasma	 to	
study	associations	with	FEV1	and	FVC.	A	study	done	 in	
137	nonsmokers	 found	 that	p-	TBARS	was	negatively	as-
sociated	with	%FEV1	(p-	value = 0.02),	indicating	the	role	

T A B L E  2 	 Association	between	year	30 lung	function	and	year	25 gene	expression	levels

Markers First quartile
Second 
quartile Third quartile

Fourth 
quartile

Difference between first 
and final levels

p- value 
for trend

Year	30%predicted	FEV1

ARG2 92.90 ± 0.64 92.34 ± 0.64 92.41 ± 0.64 92.46 ± 0.64 0.44	(−1.21,	2.33) 0.54

NDUFB3 92.94 ± 0.64 92.87 ± 0.64 93.01 ± 0.64 91.31 ± 0.64 1.63	(−0.17,	3.42) 0.08

PLA2G7 91.49 ± 0.64 92.22 ± 0.64 93.26 ± 0.64 93.16 ± 0.64 −1.68	(−3.46,	0.10) 0.08

Year	30%predicted	FVC

ARG2 94.88 ± 0.58 94.14 ± 0.58 94.26 ± 0.58 93.74 ± 0.58 1.14	(−0.47,	2.76) 0.29

NDUFB3 95.05 ± 0.58 94.53 ± 0.58 94.69 ± 0.58 92.75 ± 0.58 2.30	(0.68,	3.93) 0.04

PLA2G7 93.36 ± 0.58 94.12 ± 0.58 95.15 ± 0.58 94.40 ± 0.58 −1.04	(−2.66,	0.58) 0.25

Note: All	percent	predicted	estimates	are	represented	as	percentage ± SE.	The	differences	are	represented	with	the	95%	CI.	Linear	regression	models	with	
adjustment	for	center,	smoking	pack-	years,	and	BMI.

T A B L E  3 	 Association	between	10-	year	change	in	lung	function	from	year	20	to	year	30	and	year	25 gene	expression	profiles

Markers First quartile
Second 
quartile

Third 
quartile

Fourth 
quartile

Difference between first 
and final levels

p- value for 
trend

%	predicted	FEV1—	10-	year	decline

ARG2 2.41 ± 0.40 1.78 ± 0.40 2.61 ± 0.40 3.29 ± 0.40 −0.87	(−1.99,	0.25) 0.08

NDUFB3 1.64 ± 0.49 2.39 ± 0.40 2.37 ± 0.40 3.73 ± 0.41 −2.09	(−3.22,	−0.95) 0.001

PLA2G7 3.35 ± 0.41 2.37 ± 0.40 2.20 ± 0.40 2.21 ± 0.40 1.15	(0.02,	2.27) 0.02

%	predicted	FVC—	10-	year	decline

ARG2 2.48 ± 0.40 2.50 ± 0.40 2.84 ± 0.40 3.79 ± 0.40 −1.31	(−2.42,	−0.20) 0.02

NDUFB3 2.35 ± 0.40 2.81 ± 0.39 2.84 ± 0.40 3.65 ± 0.41 −1.30	(−2.43,	−0.18) 0.07

PLA2G7 3.86 ± 0.40 2.69 ± 0.40 2.48 ± 0.40 2.62 ± 0.39 1.24	(0.12,	2.35) 0.005

Note: All	percent	predicted	estimates	are	represented	as	percentage ± SE.	The	differences	are	represented	with	the	95%	CI.	Linear	regression	models	with	
adjustment	for	center,	smoking	pack-	years,	and	BMI.
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of	 lipid	peroxidation	in	 lung	health	(Schunemann	et	al.,	
1997).	 Another	 study	 also	 reported	 an	 inverse	 associa-
tion	 between	 TBARS	 and	 %FVC	 (p-	value  =  0.02;	 Ochs-	
Balcom	 et	 al.,	 2005).	 In	 addition,	 dietary	 antioxidants	
such	 as	 Vitamin	 C,	 Vitamin	 E,	 and	 Lutein/zeaxanthin	
were	positively	associated	with	%FEV1	and	%FVC	(Ochs-	
Balcom	et	al.,	2005).	However,	gene	expression	 levels	of	
enzymes	that	affect	oxidative	stress	have	not	been	evalu-
ated	previously.

Our	 findings	 suggest	 that	 higher	 levels	 of	 expression	
of	NDUFB3	was	associated	with	10-	year	decline	in	FEV1	
and	nominally	associated	with	lower	year	30	percent	pre-
dicted	FVC.	NDUFB3	is	one	of	the	genes	involved	in	the	
oxidoreductase	genes	 involved	 in	 the	NADH	dehydroge-
nase:	 ubiquinone	 complex	 I,	 which	 is	 a	 mitochondrial	
subunit	needed	for	electron	transfer.	Consistent	with	our	
findings,	 a	 previous	 study	 has	 found	 an	 upregulation	 in	
these	 cluster	 of	 oxidoreductase	 genes,	 involved	 in	 com-
plex	I,	among	individuals	with	severe	cystic	fibrosis	(CF)	
lung	disease	compared	with	mild	CF	disease	and	non-	CF	
control	subjects	 (Wright	et	al.,	2006).	Upregulated	 levels	
of	arginase	have	been	found	to	be	associated	with	pulmo-
nary	diseases	like	asthma,	COPD,	and	cystic	fibrosis	(Bratt	
et	al.,	2011	Sep;	Maarsingh	et	al.,	2008,).	Although	cystic	
fibrosis,	asthma,	and	COPD	have	different	pathophysiol-
ogy,	lower	lung	function,	and	accelerated	decline	in	lung	
function	has	been	observed	in	these	three	diseases	(James	
et	 al.,	 2005;	 Peat	 et	 al.,	 1987;	 Tantucci	 &	 Modina,	 2012;	
Vandenbranden	et	al.,	2012).	In	a	childhood	asthma	study	
done	 among	 433	 case-	parent	 triads,	 genetic	 variation	 in	
ARG2 had	an	increased	risk	of	childhood	asthma	(Li	et	al.,	
2006).	Consistent	with	these	findings,	we	found	that	faster	
10-	year	decline	of	percent	predicted	FVC	was	associated	
with	 higher	 level	 of	 ARG2.	 Previous	 studies	 have	 found	
that	deficiency	of	PLA2G7,	which	occurred	due	to	a	mis-
sense	mutation	that	resulted	in	complete	loss	of	activity,	
was	 found	to	be	higher	among	asthmatics	 in	a	Japanese	
population	(Stafforini	et	al.,	1999).	Two	other	variants	in	
PAF-	AH	were	also	associated	with	asthma	 in	Caucasian	
population,	and	deficiency	in	serum	PAF-	AH	was	higher	
among	asthmatic	children	(Kruse	et	al.,	2000;	Miwa	et	al.,	
1988).	Consistent	with	these	findings,	we	found	that	10-	
year	 decline	 of	 FEV1	 and	 FVC	 was	 slower	 in	 the	 high-
est	 levels	 of	 PLA2G7.	 However,	 increased	 expression	 of	
PAF-	AH	 is	 also	 associated	 with	 release	 of	 components	
such	 as	 free	 F2-	isoprostanes	 which	 increase	 oxidative	
stress.	We	 hypothesize	 that	 the	 action	 of	 PAF-	AH	 is	 de-
pendent	 on	 the	 local	 environment	 and	 the	 specific	 bio-
logical	 effect	 of	 PLA2G7	 on	 lung	 health	 will	 need	 to	 be	
clarified	in	future	studies.

Long-	term	 follow-	up	 of	 participants	 and	 representa-
tive	sample	with	inclusion	of	men	and	women,	and	Black	
and	White	 participants	 are	 some	 of	 the	 strengths	 of	 the	

study.	Gene	expression	measurements	of	biomarkers	are	
useful	 when	 protein	 measurements	 of	 biomarkers	 are	
not	 available.	 Our	 study	 has	 several	 limitations	 such	 as	
lung	 function	 measurements	 and	 gene	 expression	 mea-
surements	being	performed	in	different	years,	restricting	
our	understanding	of	 the	temporal	relationship	between	
gene	 expression	 of	 biomarkers	 and	 lung	 function	 and	
gene	 expression	 measurements	 are	 available	 at	 a	 single	
time	point,	 limiting	our	ability	 to	study	 the	 longitudinal	
relationship	 with	 lung	 function.	 In	 addition,	 different	
methods	used	for	measuring	FEV1	and	FVC	at	year	20	(a	
dry	 rolling-	seal	 OMI	 spirometer)	 and	 year	 30	 (portable	
spirometer)	 could	 have	 influenced	 the	 measurements.	
However,	 measurements	 at	 both	 time	 points	 were	 per-
formed	 following	 the	 ATS	 guidelines	 reducing	 the	 vari-
ation	across	both	measurements.	Gene	expression	 levels	
of	these	oxidative	stress	markers	could	be	correlated	with	
differences	in	cell	composition	such	as	the	proportion	of	
monocytes,	T-	lymphocytes.	Since	complete	blood	counts	
are	not	available	in	CARDIA	at	year	25,	differences	in	cell	
composition	 may	 be	 a	 potential	 confounder	 in	 the	 ob-
served	association.	The	observed	results	indicate	an	asso-
ciation	between	higher	gene	expression	levels	of	NDUFB3	
and	faster	decline	 in	FEV1	and	possible	associations	be-
tween	ARG2,	PLA2G7,	and	lung	function.	These	findings	
need	to	be	confirmed	in	independent	studies.

In	 conclusion,	 these	 results	 suggest	 that	 high	 levels	
of	 gene	 expression	 of	 these	 markers	 are	 associated	 with	
lower	 lung	 function,	 independent	 of	 cigarette	 smoking,	
and	 BMI.	 Hence,	 measuring	 gene	 expression	 levels	 of	
other	 markers	 in	 mitochondrial	 dysfunction	 pathways	
and	 arginine	 pathways	 at	 multiple	 time	 points	 in	 inde-
pendent	datasets	may	help	us	identify	the	genes	involved	
in	lung	function	decline	and	understand	how	these	path-
ways	affect	lung	health.
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