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A B S T R A C T   

COVID-19 rapidly turned to a global pandemic posing lethal threats to overwhelming health care capabilities, 
despite its relatively low mortality rate. The clinical respiratory symptoms include dry cough, fever, anosmia, 
breathing difficulties, and subsequent respiratory failure. No known cure is available for COVID-19. Apart from 
the anti-viral strategy, the supports of immune effectors and modulation of immunosuppressive mechanisms is 
the rationale immunomodulation approach in COVID-19 management. Diet and nutrition are essential for 
healthy immunity. However, a group of micronutrients plays a dominant role in immunomodulation. The de
ficiency of most nutrients increases the individual susceptibility to virus infection with a tendency for severe 
clinical presentation. Despite a shred of evidence, the supplementation of a single nutrient is not promising in the 
general population. Individuals at high-risk for specific nutrient deficiencies likely benefit from supplementa
tion. The individual dietary and nutritional status assessments are critical for determining the comprehensive 
actions in COVID-19.   

1. Introduction 

The coronavirus disease 2019 (COVID-19) is a respiratory disorder 
that is the consequence of severe acute respiratory syndrome cor
onavirus 2 (SARS-CoV-2) infection [1]. Since the first identified case in 
Wuhan, China, it took only three months for a global pandemic of the 
disease due to the highly contagious of this virus through droplets 
transmission [2–5]. 

The host responses to SARS-CoV-2 infection diverse; 78% of newly 
infected persons may remain asymptomatic, while 84.3%, 9.6%, and 
6.1 % of clinical patients present with mild, moderate, and severe 
symptoms, respectively [6,7]. The viral responses of innate and adap
tive immune machinery differ upon the host metabolic determinants, 
including age, sex, nutritional status, smoking habits, and co-existing 
medical conditions [6,8–12]. The findings of asymptomatic and mild 
clinical symptoms in younger individuals signify the role of host status 
in SARS-CoV-2 infection [9,13–15]. 

In contrast to the current anti-viral approach targeting the specific 
pathogen, an emerging strategy aims the host immunity activation to 
fight the virus [16,17]. With the expanding knowledge of cellular im
munity mechanisms, the development of drugs, substances, or measures 
that modulate immune responses contributes to the management of 
many life-threatening infections [18–24]. Small clinical trials in the 
severe infection conditions explored the compassionate options to ac
tivate the early-responding immune effector cells through various im
munoadjuvant agents, such as interleukin-7, anti-programmed death 1, 
interferon-γ, and granulocyte-macrophage colony-stimulating factor 
[16,25]. The clinical management of severe infections commonly in
cludes the modulation of immunosuppressive mechanisms, i.e., the al
leviation of T-cell exhaustion, myeloid-derived suppressor cells, or 
regulatory T cells [16,21,24,26,27]. 

The balance between the immune activation and the counter-reg
ulatory immunosuppression is crucial upon the virus-host encountering 
responses [28,29]. This balance determines the variation of subsequent 
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clinical manifestations. Several micronutrients contribute to these im
munomodulatory effects [16,30–34]. This article reviews some nu
trients that can potentially modulate immunity to SARs-CoV-2 infec
tion. 

2. Nutrients and virus-host immunologic responses 

Micronutrients involve in the continuum of host immune responses 
to the virus from the initial virus-host interaction, innate immune ac
tivation, to adaptive immune responses, as summarized in Fig. 1 
[30,35]. The healthy immunity requires the synergistic contribution 
from multiple micronutrients, and single nutrient barely drives the 
whole immune machinery. However, the viral-host resistance relies on 
the support from a dominant group of nutrients, including vitamins A, 
C, D, E, B6, B12, folate, iron (Fe), zinc (Zn), copper (Zn), selenium (Se), 
and magnesium (Mg) [30,36–38]. 

The first-line defenses against the virus are the physical and bio
chemical barriers of the respiratory tract, which their normal epithelial 
differentiation and growth require vitamin A and Fe [36,37]. Vitamins 
A, C, D, and Zn regulate membrane fluidity, membrane integrity, gap- 
junction communication, and membrane repair [37,39–46]. Vitamin E 
mitigates the membrane lipid peroxidation from reactive oxygen spe
cies [37]. Vitamins A, D, C, and the trace elements Zn, Fe, Cu, and Se 
regulate the membrane-bounded antimicrobial peptide activities and 
mucosal-associated microbiota [30,47,48]. The mucosal migration and 
regulation of immune cell functions also synchronize with the in
tegrated pathways of vitamins B6, B12, and folate [47,49]. 

Interferon (IFN) is a crucial anti-viral innate immune response than 
regulates and shapes the balance of Th1 and Th2 phenotypes in adap
tive immunity [50]. IFN-λs are key antiviral cytokines at the epithelial 
barriers, and induce the inflammatory response and apoptotic cell death 
[50,51]. Apart from that, type I IFNs increase in responses to the viral 
activation of the toll-like receptor 7 and the mitochondrial antiviral- 
signaling [52,53]. Vitamins A, C, D, C, Zn, Fe, Cu, and Se regulate IFNs 
production [30,36,44,45,54–58]. 

Upon the intrusion of SARS-CoV-2 into the airway epithelial cells, 
innate immune cells respond through their movement, migration, dif
ferentiation, proliferation, and activation to counteract the viral re
plication. The cytokines and oxidative burst induce the pro-in
flammatory milieu, while the virus delays and suppress type I IFNs 

responses [35]. Without the optimal counter-regulatory immune reac
tions, the activation of the Th1/Th17 phenotypes of adaptive immunity 
further exacerbates the hyperinflammatory conditions and the ‘cytokine 
storms’ [27,35,59]. However, healthy immunity eventually proceeds to 
the production of SARS-CoV-2 specific antibodies that neutralize the 
virus and resolve the infection [59,60]. 

Vitamins A, C, D, E, B6, B12, and folate, and the trace elements Zn, 
Fe, Cu, Se, as well as the mineral Mg comprise a group of nutrients that 
support the entire continuum of virus-host immune responses. Their 
contributions range from the regulation of number and function of in
nate immune cells such as neutrophils, natural killer cells, monocytes, 
and macrophages [36,37,45,54,61–73], the production of pro-, and 
anti-inflammatory cytokines, the responses to inflammation, the oxi
dative burst function, the reductive-oxidative hemodynamics 
[36,37,45,61–64,71,72,74–85], to the responses of adaptive immunity, 
including differentiation, proliferation, and functions of T-cells 
[32,36,37,45,54,71,77,84,86–95], the interactions with the presenting 
viral antigens [37,54,71,73,96], and the production and development 
of virus-specific antibodies [36,37,45,71,73,97,98]. 

Despite their synergistic contributions to virus-host responses, the 
deficiency state of specific nutrients increases an individual suscept
ibility to the severe clinical manifestation of SARS-CoV-2 infection. The 
following sections explore the consequences of some micronutrient 
deficiencies and the potential effects of their supplementations to 
COVID-19. 

3. Vitamins 

3.1. Vitamin D 

Vitamin D is involved in a wide range of immunomodulatory ac
tivities, including the maintenance of immune barrier integrity 
[40–44,47,48], the production of antimicrobial peptides [99–102], the 
support of monocytes, macrophages, and dendritic cells functions 
[36,37,62–64], the modulation of oxidative burst potential [37,62–64], 
the promotion of anti-inflammatory cytokine production [62,74–76], 
the inhibition of IFN γ [54–58], nuclear factor κB [103], other pro- 
inflammatory cytokines [104,105], and the subsequent responses of 
adaptive immune cells [32,54,71,87–91]. 

The low level of vitamin D increases the risks, severity, morbidity, 

Fig. 1. The immunomodulation strategy and roles of a group of nutrients in different processes of virus-host immune responses.  
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Table 1 
The immunomodulating properties, the risk for the deficiency states, and the impacts of supplementation of a group of nutrients.      

Nutrients Immunomodulating properties Risks for deficiency states Impacts of supplementation  

Vitamin A  • maintaining the barrier integrity and normal 
differentiation of epithelial tissues [37,123]  

• mucosal immune responses and acts as an anti- 
inflammatory agent [39,47,124,125]  

• regulates the number and function of natural 
killer cells and supports the phagocytic and 
oxidative burst activities of macrophages [37,61]  

• the Th1/Th2 phenotypic differentiation and 
development [37,86]  

• downregulates IFN γ, interleukin 2, and tumor- 
necrosis factor α productions by Th1 cells, thus, 
maintains the normal antibody-mediated Th2 
responses [36,37,45]  

• supports antibody production by B cells [37].  

• increased susceptibility to virus-induced respiratory 
tract infections, measles, and diarrhea 
[37,107,126,127]  

• failed to mount the protective immunologic 
responses to the vaccine [128]  

• improves antibody titer responses to 
vaccines [37]  

• Supplementation in vitamin A deficiency 
individuals reduced the incidence of 
Mycoplasma pneumoniae infection [129,130]  

• The supplementation of vitamin A to deficient 
children decreased their risk of all-cause 
mortality and morbidity from infectious 
diseases. Nevertheless, vitamin A 
supplementation showed no benefits for 
pneumonia [107,131,132]. 

Vitamin C  • epithelial barrier integrity [37,45]  

• innate immune cells activities, movement, 
functions, proliferation, and differentiation 
[36,37,45,54,61,65]  

• antimicrobial activities; increases serum 
complement proteins, and the production of IFN 
γ [36,45]  

• antioxidant, maintains the intracellular 
reductive-oxidative homeostasis [37,45,77]  

• roles in antibody production and supports of 
differentiation and proliferation of T-cells 
[36,45]  

• increased the risk and severity of several respiratory 
infections, including pneumonia 
[37,45,107,110,117]  

• shortens the symptoms of the common cold 
in children, reduces the incidence of 
pneumonia in the elderly [107,117–119]  

• combination of vitamin C and red ginseng 
reduced the influenza virus-induced lung 
inflammation and increased the survival rate in 
mice [120].  

• high dose intravenous vitamin C shortens the 
recovery periods of severely ill patients with 
virus-induced acute respiratory distress 
syndrome [77,121,122] 

Vitamin D  • immune barrier integrity [40–44,47,48]  

• production of antimicrobial peptides [99–102]  

• support innate cells functions [36,37,62–64]  

• modulation of oxidative burst [37,62–64]  

• promotion of anti-inflammatory cytokines  

• [62,74–76]  

• inhibition IFN γ [54–58], nuclear factor κB [103], 
other pro-inflammatory cytokines [104,105]  

• support adaptive immune cells [32,54,71,87–91]  

• increases risks, severity, morbidity, and mortality of 
several respiratory conditions, such as rhinitis, 
asthma, tuberculosis, chronic pulmonary disorders, 
viral respiratory infections, and potentially 
including the COVID-19 [106–110]  

• deteriorates several pulmonary conditions 
[112–114]  

• reduced risk of respiratory infections 
[115,116]  

• risk reduction benefit only in the vitamin D 
deficient individuals [61,107] 

Vitamin E  • a potent lipid-soluble antioxidant that protects 
the cell membranes against the oxidative damage 
and supports the integrity of respiratory 
epithelial barriers [37,133,134]  

• enhances the natural killer cell cytotoxic activity 
and decreases prostaglandin E2 production by 
macrophages [36,37,54,61,66,78]  

• modulates the production of IFN-γ and 
interleukin 2 [36,132,135]  

• supports lymphocyte proliferation, T-cell- 
mediated functions, Th1 response optimization, 
and Th2 response suppression [36,37,61]  

• supports the active immune synapses between Th 
cells require vitamin E supports [54]  

• increases the proportion of antigen-experienced 
memory T-cells [96]  

• impairs the functions of both humoral and cell- 
mediated adaptive immunity, thus facilitates viral 
infection with high virulent strains, severe 
subsequent pathologies, and abnormal immune 
responses [71,132,133,136]  

• improves overall immune functions, reduced 
respiratory tract infection incidences, 
severity, lower virus load in lung tissues, and 
increased the antibody titers, particularly in 
the elderly [37,107,135,137] 

Zinc  • modulates the functions of approximately 2,000 
enzymes and 750 transcription factors involving 
in various biological and physiological processes, 
including immunity, growth, and development 
[46,138]  

• antiviral property; inhibits the RNA-dependent 
RNA polymerase enzyme [138,140,141]  

• maintains the integrity of immune barriers [46]  

• enhances the cytotoxic activity of natural killer 
cells and supports the cellular functions, growth, 
and differentiation of innate immune cells 
[37,54,61,67,68]  

• involves in complement protein activities and the 
IFN γ production [36,45]  

• modulation of the cytokine release and the Th17 
and Th9 development [36,54,77,81–83,92,93]  

• influences on the antioxidant proteins [37,77]  

• supports the proliferation of cytotoxic T cells, the 
differentiation, development, and activation of T- 
cells, the cytokine production of Th1 cells, and 
the development of regulatory T cells 
[36,54,77,92–94]  

• increases the risk and morbidity of inflammatory 
disorders, infections, and viral pneumonia, 
particularly in the children and elderly persons 
[37,93,107,110,127,143,144]  

• Zinc supplementation in children reduced 
their susceptibilities, severity of symptoms, 
and the duration of common colds and viral 
pneumonia [77,107,138,145,146]  

• increased serum Zn levels and the number of T- 
cells in nursing home elderly [147] 

(continued on next page) 
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and mortality of several respiratory conditions, such as rhinitis, asthma, 
tuberculosis, chronic pulmonary disorders, viral respiratory infections, 
and possibly also the COVID-19 [106–110]. The potential role of vi
tamin D in the modulation of immune response to viral respiratory tract 
infection (ALRI) has been evidenced in a study involving a young pa
tient with individual genetic polymorphisms of vitamin D receptors 
[111]. Vitamin D influences lung structures, size, volume, and func
tions. Vitamin D deficiency thus worsens several pulmonary conditions 
[112–114]. 

A recent meta-analysis reported the associations of individuals with 
adequate vitamin D levels or daily oral supplementation with vitamin D 
and the reduced risk of respiratory infections [115,116]. The previous 
studies also suggested this risk reduction benefit of the supplementa
tion, but only in the vitamin D deficient individuals [61,107]. With this 
information, vitamin D supplementation is a potential preventive 
strategy of COVID-19 in the individual with an established deficient 
state or has a high risk of vitamin D deficiency. 

3.2. Vitamin C 

Vitamin C supports the epithelial barrier integrity through its con
tributions to the collagen synthesis, keratinocyte differentiation, fibro
blast migration, and proliferation [37,45]. Innate immune cells require 
vitamin C to maintain their activities, movement, functions, prolifera
tion, and differentiation [36,37,45,54,61,65]. Vitamin C promotes the 
antimicrobial activities, increases serum complement proteins, and 
stimulated the production of IFN-γ [36,45]. Vitamin C is a powerful 
antioxidant, thus, maintains the intracellular reductive-oxidative 
homeostasis during the active immune responses [37,45,77]. It also 
plays roles in antibody production from plasma cells together with the 
supports of differentiation and proliferation of T-cells, particularly the 
cytotoxic T-cells [36,45]. 

Vitamin C deficiency increased the risk and severity of several re
spiratory infections, including pneumonia [37,45,107,110,117]. Despite 
many conflicting and inconclusive pieces of evidence, the oral supple
mentation of vitamin C potentially shortens the symptoms of the common 
cold in children. It also reduces the incidence of pneumonia in the elderly 
[107,117–119]. The combination of vitamin C and red ginseng reduced 
the influenza virus-induced lung inflammation and increased the survival 
rate in mice [120]. The treatment with high dose intravenous vitamin C 
shortens the recovery periods of severely ill patients with virus-induced 
acute respiratory distress syndrome [77,121,122]. Concerning its afford
ability, availability, and safety, vitamin C is still a functional option to 
consider in the management of COVID-19. 

3.3. Vitamin A 

Vitamin A is an essential micronutrient for maintaining the barrier 
integrity and normal differentiation of epithelial tissues [37,123]. It 
supports the mucosal immune responses and acts as an anti-in
flammatory agent [39,47,124,125]. Vitamin A regulates the number 
and function of natural killer cells and supports the phagocytic and 
oxidative burst activities of macrophages [37,61]. The Th1/Th2 phe
notypic differentiation and development of T-cells require vitamin A 
[37,86]. It downregulates IFN-γ, interleukin 2, and tumor-necrosis 
factor α productions by Th1 cells, thus, maintains the normal antibody- 
mediated Th2 responses [36,37,45]. Vitamin A also supports antibody 
production by B cells [37]. 

Vitamin A deficiency is a common risk factor for the increased 
susceptibility to virus-induced respiratory tract infections, measles, and 
diarrhea [37,107,126,127]. Young cows with vitamin A deficiency 
failed to mount the protective immunologic responses to the BRSV-NP 
vaccine (amphiphilic polyanhydride nanoparticle-based vaccine en
capsulating the fusion and attachment proteins from bovine respiratory 
syncytial virus), with the subsequent lung infections after challenging 
by the virus [128]. Vitamin A supplementation improves antibody titer 
responses to vaccines [37]. Supplementation of vitamin A to deficient 
individuals reduces the incidence of Mycoplasma pneumoniae infection, 
which is a common post-viral secondary bacterial infection in COVID- 
19 [129,130]. The supplementation in vitamin A deficit children, 6- 
month to 5-year of age, decreased their risk of all-cause mortality and 
morbidity from infectious diseases. Nevertheless, vitamin A supple
mentation showed no benefits for pneumonia [107,131,132]. Con
cerning the potential adverse effects of vitamin A, the supplementation 
is sensible in the COVID-19 management of undernourished individuals 
or those with the evidence of vitamin A deficiency [132]. 

3.4. Vitamin E 

Vitamin E is a potent lipid-soluble antioxidant that protects cell 
membranes against oxidative damage and supports the integrity of re
spiratory epithelial barriers [37,133,134]. It enhances the natural killer 
cell cytotoxic activity and decreases prostaglandin E2 production by 
macrophages [36,37,54,61,66,78]. Vitamin E modulates the production 
of IFN-γ and interleukin 2 [36,132,135]. It supports lymphocyte pro
liferation, T-cell-mediated functions, Th1 response optimization, and 
Th2 response suppression [36,37,61]. The active immune synapses 
between Th cells require vitamin E supports [54]. Vitamin E also in
creases the proportion of antigen-experienced memory T-cells [96]. 

Table 1 (continued)     

Nutrients Immunomodulating properties Risks for deficiency states Impacts of supplementation   

• involves in antibody production, mainly the 
immunoglobulin G [37,97,98]. 

Selenium  • component of selenoproteins that are essential 
for the functions of the immune system and the 
reductive-oxidative homeostasis [61,148]  

• modulates the activities of virus-induced innate 
and adaptive immunity through the regulation of 
IFN α, IFN γ, and IFN β production  

• influences on the functions and differentiation of 
natural killer cells and T-cells, and the antibody 
production [36,45,71,84,95,149,150].  

• increases the risk and virulence of virus-induced 
pulmonary infections, particularly in infants during 
their first six weeks of life [107,132,150,151]  

• maintaining optimal Se status protects 
against several viral infections [148–150]  

• reduced the pathogenicity of influenza virus 
infection in association with diets that contain 
both low and high Se quantities [152]  

• enhances immune responses to the virus in 
deficit individuals [37,132] 

Magnesium  • involves in nucleic acid metabolism, DNA 
replication, leukocyte activation, antigen-binding 
to macrophages, and apoptotic regulation 
[38,72,73]  

• influences both the cell-mediated and humoral 
adaptive immunity [73,153]  

• protect DNA from oxidative damages and reduce 
the superoxide anion production at high 
concentrations [72,85]  

• increases the susceptibility to recurrent upper 
respiratory tract infections [73,153,154]  

• promotes chronic low-grade inflammation through 
the production of pro-inflammatory cytokines, 
acute-phase proteins, and free radicals [155]  

• Normal Mg levels maintain healthy lung 
structure and functions, and lower Mg levels 
are associated with increased respiratory 
complications [156,157] 
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Vitamin E deficiency is rare in humans. The deficit state impairs the 
functions of both humoral and cell-mediated adaptive immunity, thus 
facilitates the viral infection with high virulent strains, severe sub
sequent pathologies, and abnormal immune responses 
[71,132,133,136]. Vitamin E supplementation improves overall im
mune functions, reduces respiratory tract infection incidences, severity, 
lowers virus load in lung tissues, and increases the antibody titers, 
particularly in the elderly [37,107,135,137]. Malnourished individuals 
should benefit from the inclusion of vitamin E supplementation in 
COVID-19 management. 

4. Essential trace elements and magnesium 

4.1. Zinc 

Zinc is an essential trace element that modulates the functions of 
approximately 2,000 enzymes and 750 transcription factors involved in 
various biological and physiological processes, including immunity, 
growth, and development [46,138,139]. Zinc also possesses a variety of 
direct and indirect antiviral properties. For instance, the pyrrolidine 
dithiocarbamate - a Zn ionophore - inhibits the RNA-dependent RNA 
polymerase enzyme that promotes SARS-CoV-2 replication 
[138,140,141]. Zinc maintains the integrity of immune barriers 
through its cofactor function in metalloenzymes [46,142]. It enhances 
the cytotoxic activity of natural killer cells and supports the cellular 
functions, growth, and differentiation of innate immune cells 
[37,54,61,67,68]. Zinc involves in complement protein activities and 
the IFN-γ production [36,45]. It has anti-inflammatory properties by 
the modulation of the cytokine release and the Th17 and Th9 devel
opment [36,54,77,81–83,92,93]. Zinc also exerts anti-oxidant effects 
through its influences on antioxidant proteins [37,77]. It supports the 
proliferation of cytotoxic T cells, the differentiation, development, and 
activation of T-cells, the cytokine production of Th1 cells, and the de
velopment of regulatory T cells [36,54,77,92–94]. Zinc is involved in 
antibody production, mainly the immunoglobulin G antibody 
[37,97,98]. 

Zinc deficiency increases the risk and morbidity of inflammatory 
disorders, infections, and viral pneumonia, particularly in children and 
the elderly [37,93,107,110,127,143,144]. Supplementation of Zn in 
children reduced their susceptibilities, severity of symptoms, and the 
duration of common colds and viral pneumonia [77,107,138,145,146]. 
Zinc supplementation in nursing home elderly increased their serum Zn 
levels and their number of T-cells [147]. Despite the few shreds of 
confirming evidence, Zn supplementation can benefit in the manage
ment of COVID-19, particularly in high-risk individuals for Zn defi
ciency. 

4.2. Selenium 

Selenium is a trace component of selenoproteins that are essential 
for the functions of the immune system and the reductive-oxidative 
homeostasis [61,148]. It modulates the activities of virus-induced in
nate and adaptive immunity through the regulation of IFN-α, IFN-γ, and 
IFN-β production, the influences on the functions and differentiation of 
natural killer cells and T-cells, and the antibody production 
[36,45,71,84,95,149,150]. 

Selenium deficiency increases the risk and virulence of virus-in
duced pulmonary infections through the aberrant immune responses 
and excessive cytokines production, particularly in infants during their 
first six weeks of life [107,132,150,151]. At the same time, the main
taining of optimal Se status through an adequate diet protects against 
several viral infections [148–150]. Dietary selenium supplementation 
potentiates innate antiviral immune responses reducing, for instance, 
the pathogenicity of avian influenza virus infection [152]. Conse
quently, Se supplementation in deficit individuals distinctively en
hances the immune responses to the virus [37,132]. Selenium 

supplementation is the rationale management of COVID-19 in suscep
tible hosts. 

4.3. Magnesium 

Magnesium is a crucial mineral for healthy physiologic functions, 
including bioenergetics, immune responses, and acid-base balance; it is 
involved in nucleic acid metabolism, DNA replication, leukocyte acti
vation, antigen-binding to macrophages, and apoptotic regulation 
[38,72,73]. Magnesium influences both the cell-mediated and humoral 
adaptive immunity [73,153]. It can protect DNA from oxidative da
mages and reduce the superoxide anion production at high concentra
tions [72,85]. Magnesium deficiency increases the susceptibility to re
current upper respiratory tract infections [73,153,154]. A deficiency of 
Mg promotes chronic low-grade inflammation through the production 
of pro-inflammatory cytokines, acute-phase proteins, and free radicals 
[155]. Normal Mg levels maintain healthy lung structure and functions, 
while its lower levels are often associated with increased respiratory 
complications [156,157]. To date, no available study explores the im
pact of Mg supplementation on the clinical virus-induced respiratory 
infection. 

5. Other potential immunomodulators for the COVID-19 
management 

5.1. N-acetylcysteine 

N-acetylcysteine (NAC) is a precursor of glutathione that is a thiol 
reducing agent with antioxidant and anti-inflammatory properties. NAC 
reduces the elasticity and viscosity of mucus and improves the clear
ance of pulmonary secretions. NAC reduces oxidative stress and in
flammation in chronic obstructive pulmonary disease patients. With the 
exposure to the influenza virus, NAC inhibits the production of TNF-α 
in alveolar macrophages, the expression of intercellular adhesion mo
lecule 1 in respiratory epithelial cells, and increases the heme oxyge
nase 1 level in cells [158–160]. The combination of NAC and glu
tathione reduced the antigen levels of human immunosuppressive virus 
1 and their reverse transcriptase activities in a cell line study [161]. A 
murine model study reported the synergistic actions of NAC and Osel
tamivir combination in survival rate improvement- up to 100%- from 
the lethal strain of influenza infection [162]. 

The clinical application of NAC in patients with community-ac
quired pneumonia reported the reduction of oxidative stress and in
flammation, as shown by the improved levels of TNF-α and mal
ondialdehyde [163]. The long-term administration of NAC in elderly 
persons reduced the severity and duration of influenza-like symptoms 
[164]. Concerning the safety profile of NAC, it can be a sensible option 
to include in COVID-19 management despite a few pieces of clinical 
evidence. 

5.2. Polyphenolic compounds 

Polyphenolic compounds are a major class of phytonutrients with 
several biological and pharmacological properties, including anti
oxidant, anti-inflammatory, antibacterial, and antiviral potentials 
[165]. The span of the antiviral property of polyphenols involves the 
viruses from the Coronaviriade family. Resveratrol inhibits the Middle 
East Respiratory Syndrome coronavirus in vitro [166]. Anti-viral face 
masks and the cleaning wipes have their fiber filter surface grafted with 
the polyphenol catechin [167,168]. 

A recent computerized virtual screening of molecular structures 
identified six polyphenol molecules, i.e., sanguiin, theaflavin gallate, 
theaflavin digallate, kaempferol, punicalagin, and protocatechuic acid, 
that potentially target the main protease of SARS-CoV- 2 [169]. Stilbene 
and flavonoid derivatives, such as herbacetin, isobavachalcone, quer
cetin 3-β-d-glucoside, and helichrysetin, inhibit 3C-like protease 

A. Gasmi, et al.   Clinical Immunology 220 (2020) 108545

5



[170,171]. Resveratrol inhibits the virus nucleocapsid protein synth
esis, thus suppress viral replication [166]. Quercetin inhibits the heli
case, an enzyme for viral replication [172]. Other polyphenols such as 
delphinidin and epigallocatechin gallate inhibit the entry attachment of 
the virus [173,174]. These polyphenols and flavonoids have potential 
effects on COVID-19 management. However, these pieces of evidence 
are all from in vitro studies; to date, there is no available in vivo study. It 
is then premature to conclude their clinical applications. 

6. Concluding remarks 

Due to the great impact on medical services and the massive de
mand for health care, COVID-19 rapidly turned into a global pandemic, 
posing a lethal threat to the population despite its low mortality rate. 
The clinical respiratory symptoms include dry cough, fever, anosmia, 
breathing difficulties, and subsequent respiratory failure. No known 
cure is available for COVID-19. Apart from the anti-viral strategy, the 
supports of immune effectors and modulation of immunosuppression is 
the rationale immunomodulation approach in COVID-19 management. 
Diet and nutrition are essential for healthy immunity, but a group of 
micronutrients somehow plays a dominant role in immunomodulation 
[175]. This paper reviews the mechanisms, the effects of their defi
ciency states, and the potential impacts of their supplementations in 
COVID-19, as summarized in Table 1. The deficiency states of most 
nutrients increase the individual susceptibility to virus infection with a 
tendency for severe clinical presentation. Despite a shred of evidence, 
the supplementation of a single nutrient is not promising in the general 
population. The high-risk individual of a specific micronutrient defi
ciency is likely to benefit from the supplementation. The individual 
dietary and nutritional status assessments are critical for determining 
the comprehensive actions in COVID-19. 
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