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A B S T R A C T

The inference of amorphous bulk density, while straightforward for nonporous, soluble materials, may present a
formidable challenge in some of the most important classes of industrial applications, involving melts, porous
solids, and non-soluble organic pharmaceuticals, with varied implications depending on the material’s level of
technological interest. Within nanotechnology and the life sciences in particular, accurate determination of
amorphous true density is a frequent requirement and a regular puzzle, when, e.g., neither the Archimedean
principle nor gas pycnometry may be applied, the former being only applicable to insoluble compounds, while the
latter yielding skeletal density – an overestimate of true density to the extent of blind pores – and its efficiency is
affected by the choice of the gas medium. In these cases, it is feasible to infer amorphous density from diffraction
experiments through the use of the reduced Pair Distribution Function (PDF). Although an estimate of crystalline
density has been known to be possible via the PDF shape, here we outline a new method extending this facility to
include the estimation of amorphous density.

� Amorphous density may be inferred from the position of a local minimum of the reduced PDF profile, the latter
extracted via a Fourier transformation of collected diffraction intensity.

� The PDF minimum is located within the PDF range bounded by rmin = 2p/Qmax and the position of the first
coordinationpeak,whereQmax isthemaximumlengthof thescatteringvectorachieved inthediffractionexperiment.

� Amorphous density is calculated as the ratio of the value of the reduced PDF at the local minimum, divided by
the term 4pr, where r is the real space coordinate of the local minimum.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Specifications Table
Subject area: Materials Science
More specific subject area: Computational Materials Science
Method name: PDFD: PDF (number) density
Name and reference of original method: Not applicable
Resource availability: Supplementary Material

ethod details

In the case of perfectly periodic materials, it is possible to utilize pair correlation statistics in
rder to estimate the material’s bulk number density, r0. For these materials, the reduced PDF,
ymbolized as G(r), is the sum of peak information and of a straight sloping baseline expressed as
4pr0r and intrinsically feasible to work out from the PDF shape. However, upon increasing
eviation from bulk crystallinity, this baseline becomes affected by the dominating presence of an
ttenuating particle shape factor, g(r), and is, then, expressed as �4pr0g(r)r [1]. The extreme case of
inearity deviation towards high values of the real space coordinate, r, is that of completely
morphous materials [2–7], in which case r0 may not be estimated from the tangent of the baseline
s the latter is no longer a straight line [8]. In some cases, numerical estimation (i.e. the
dentification of PDF peaks and, as a result, of what constitutes baseline) has been cited as possible
ia modelling [1], but in practice this is not readily applicable to the amorphous state. Additionally,
lthough in principle the PDF baseline may be estimated from a Fourier transform of Small Angle
cattering (SAS) data [8], the pair density function, r(r), which feeds into the calculation requires use
f ab initio structural models, and we are not aware of such paradigms applied to amorphous
aterials in the literature.
Aiming to provide a reliable alternative for the determination of amorphous density from

iffraction intensity datasets, here we propose a simple but functional methodology which relies on a
umerical manipulation of the reduced PDF. Following we outline the proposed methodology in two
teps.

1 Collection of diffraction intensity and relation to G(r). To derive an approximation of amorphous
number density, we employ the fundamental relation between diffraction and the PDF, by first
performing a diffraction experiment, correcting the collected spectra for incoherent, multiple and
background scattering and then Fourier transforming (FT) the coherent/elastic part of the collected
intensity, I(Q), to obtain the reduced PDF, G(r), as

G rð Þ ¼ 2
p

ZQmax

Qmin

F Qð Þsin Qrð ÞdQ ð1Þ

here F(Q) is the reduced structure factor, for which F(Q)2=I(Q) and F(Q)=Q[S(Q)-1] where S(Q) is the
aterial’s structure factor [3]. Eq. (1) is independent of the radiation source and gives best results
rimarily for electron diffraction (driven by recent breakthroughs in Transmission Electron
icroscopy ePDF analysis of nanoparticles and disordered materials [9]) but also for monochromatic
owder X ray diffraction (XRD).
I(Q) is experimentally collected over a range of reciprocal space vectors, Q, the lower and upper

imits of which – Qmin and Qmax respectively – are functions of the limitations set on the range of
cattering angles, 2u, and on the radiation wavelength, l, by the experimental apparatus, via Q = 4psin
u)/l. To derive physically meaningful PDF curves, the FT in Eq. (1) mandates that Qmax is chosen such
hat F(Qmax) = 0 (or S(Qmax) = 1), in order to avoid finite-size effects/artifacts in the low r range. The best
ractice would then be to compare G(r) shapes calculated across a range of Qmax cut-off values,
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sampling the reduced PDF at real space intervals no larger than the Nyquist rate, equal to p/Qmax

(oversampling will not cause harm, however), while always seeking to disregard peaks/shoulders
which do not consistently appear on all PDF curves under consideration. Additionally, Qmax cut-off’s
causing noticeable G(r) peak position shifting should be disregarded. The part of G(r) common to all
Qmax cut-off’s can then be safely considered for use in the next step.

2 Real space G(r) sampling and numerical manipulation. PDF importance lies in the pair
correlation statistics which connect G(r) to the material’s (bulk) number density, r0, via the atomic
PDF, g(r)

g rð Þ ¼ 1 þ G rð Þ
4prr0

ð2Þ

where r0=N/V, N is the number of atoms in the structure contained in volume V [10]. However, by
definition, the atomic PDF is also the ratio of the non-negative pair density function, r(r), divided by
r0

g rð Þ ¼ r rð Þ=r0 ð3Þ
Hence, r(r) may possess a local minimum for which Eq. (3) will be close to zero, and from Eq. (2) it

follows that for this local minimum, G(r) � -4prr0; on the additional provision that G(r) is sampled for
r values at least equal to rmin = 2p/Qmax, we may write

G rð Þ
4pr

� �r�rmin

min

�����
����� ¼ r rð Þ � r0j j � r0 ð4Þ

The current methodology is applicable to any amorphous system, as all of its individual steps - i.e.
a) collecting diffraction intensity, I(Q), b) correcting the collected intensity dataset depending on the
diffraction method (Qmax), c) Fourier-transforming I(Q) to G(r): via Eq. (1), d) calculating the ratio G(r)/
4pr following Eqs. (2)–(4) and e) calculating amorphous density from the value of the minimum of G
(r)/4pr - are system independent and, as a result, generally applicable. In essence, the current
contribution is aimed at making explicit two points of increased merit regarding amorphous G(r);
these are:

1 That it is feasible to infer amorphous density via the ratio G(r)/(4pr) and we explain this in the main
body of the paper (Eqs. (2)–(4)). These equations are system independent, i.e. they are valid for any
purely amorphous system, or for amorphous parts of, say, quasicrystalline materials which may be
detected – for example – on a TEM.

2 That an estimate of amorphous density may be inferred from the value of the G(r)/(4pr) minimum
of the G(r) usable range. However, for our methodology to provide accurate density values, the I(Q)
corrections need to be optimal, as G(r) shape is entirely dependent on I(Q) corrections and on the
shape of S(Q) dataset towards the high Q’s; the latter will affect the local minimum yielding the
number density of the low r’s of the G(r).

The ability of the current methodology to provide an accurate density estimate is intrinsically
dependent on the quality of the diffraction dataset. This quality is partially dependent on the
attainable Qmaxwhich, by extension, affects the low r region through Eq. (1) and the ‘usable’ G(r) range
- i.e. the part which is physically meaningful and which is most likely to contain the most negative
value for the ratio G(r)/(4pr). We note here that as rmin = 2p/Qmax it follows that G(r) does not have any
physical significance below rmin, because Qmax is the resolution limit of the diffraction method; hence
the lower limit of the usable G(r) range is inherently set by rmin. As the G(r) curves towards
increasingly positive values with increasing r, after the first coordination peak (also see reference [8]
and references therein), it is justified to consider the position of the first coordination peak as a natural
upper limit of the usable G(r) range; as a reminder, the usable G(r) range is comprised of the most
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egative G(r)/(4pr) values, which are systematically located between rmin and the first coordination
eak for all amorphous spectra, with no exceptions.

ethod validation

In order to exemplify the use of Eq. (4), here we determine the number density of a mixed Fe-Si-Al-
a-Mg-Cr-Cu-Ni oxide system in the vitreous state, which we originally discussed elsewhere7. For
ompleteness, we note that the sample was aerodynamically levitated by a compressed air flow and
elted to 1500 �C by a 100 W CO2 laser source. While in flight, the laser beam was switched off, leading

o rapid quenching of the sample by the air stream, producing a glassy near-spherical particle with a
ensity of up to 0.088 atoms/Å3 (3.54 g/cm3) based on a CCD measurement of the particle’s diameter.
uring levitation, high-energy XRD intensities were collected at a photon wavelength of 0.20194 Å
61.39 keV) yielding a Q range of up to 21 Å�1 at low scattering angles (up to 40� 2u).

The G(r) was extracted from I(Q) based on Eq. (1) (the diffraction dataset was Fourier-transformed
ia IGOR PRO

TM
running a custom subroutine [7], in the absence of window functions in order to avoid

purious effects). The calculation of amorphous number density based on G(r) is implemented in the
preadsheet included as supplementary material. The procedure first involves inputting the G(r) vs. r
ataset (spreadsheet cells downwards from B9 and A9 respectively) and the determination of rmin (see
preadsheet cell H3 and purple dashed line in Fig.1a and b) via Qmax (spreadsheet cell H1), followed by
dentification of the usable G(r) range, i.e. the part of the spectrum lying from rmin up to some
nteratomic distance for which G(r) intercepts the x-axis. Here, we set this distance equal to the
osition of the first coordination peak (see spreadsheet cell H2 and yellow dashed line in Fig.1a and b).

ig. 1. a) G(r) and b) G(r)/(4pr) profiles of the glass sample. In both plots, rmin (vertical dashed green line) is equal to 0.3 Å,
orresponding to a Qmax of 21 Å�1 and the first coordination peak (vertical dashed yellow line) is located at 1.65 Å
corresponding to the Si��O bond), as established in our precursor work [6]. Usable spectra are shown in red, superimposed on
oth profiles. Application of Eq. (4) yielded a number density of 0.098 atoms/Å3 based on the local minimum at 0.61 Å, as
arked by the green circle in Fig. 1b. Use of this number density resulted in the baseline fit designated by the green line in
ig. 1a. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
rticle).

04 G.S.E. Antipas, K.T. Karalis / MethodsX 6 (2019) 601–605



The usable part of G(r) is designated by a red line superimposed on the PDF profile in Fig. 1a
(spreadsheet column C). We then apply Eq. (4) to the usable G(r) range by first dividing G(r) by 4pr
(spreadsheet column D) and considering only the negative part of the G(r)/(4pr) range (spreadsheet
column F and spectrum designated by the red line in Fig. 1b) for which we proceed to identify all of its
local minima. This is done by first calculating the tangent for all pairs of consecutive points on the G(r)/
(4pr) plot (spreadsheet column G) and then identifying a tangent sign reversal for each of these pairs,
the sign reversal flagging the local minimum (spreadsheet column H). We then store the position, r, as
well as the G(r)/(4pr) value for each of the local minima identified. On the basis of Eq. (4), the local
minimum with the most negative value, rd, is selected as the closest approximation to the material’s
number density, r0, (point designated by the green circle in Fig. 1b and its absolute value in
spreadsheet cell H6). In order to visualize the PDF baseline of the glass sample, we may then draw the
-4pr0r term between r = 0 and rd (see green solid line in Fig. 1a) and extend it towards high r values
(dashed green line in Fig. 1a), the baseline touching the local minimum prior to the first coordination
shell, which appears to be a plausible fit to the G(r) profile. In this example, the calculated r0 compared
favorably against the experimentally established number density [6] to within 15.3%.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.
org/10.1016/j.mex.2019.03.005.
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