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Abstract

cancers.

under positive selection.

Background: The maintenance of chromosomal integrity is an essential task of every living organism and cellular
repair mechanisms exist to guard against insults to DNA. Given the importance of this process, it is expected that
DNA repair proteins would be evolutionarily conserved, exhibiting very minimal sequence change over time.
However, BRCAT, an essential gene involved in DNA repair, has been reported to be evolving rapidly despite the
fact that many protein-altering mutations within this gene convey a significantly elevated risk for breast and ovarian

Results: To obtain a deeper understanding of the evolutionary trajectory of BRCAT, we analyzed complete BRCAT
gene sequences from 23 primate species. We show that specific amino acid sites have experienced repeated
selection for amino acid replacement over primate evolution. This selection has been focused specifically on
humans and our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). After examining
BRCAT polymorphisms in 7 bonobo, 44 chimpanzee, and 44 rhesus macaque (Macaca mulatta) individuals, we find
considerable variation within each of these species and evidence for recent selection in chimpanzee populations.
Finally, we also sequenced and analyzed BRCA2 from 24 primate species and find that this gene has also evolved

Conclusions: While mutations leading to truncated forms of BRCA1 are clearly linked to cancer phenotypes in
humans, there is also an underlying selective pressure in favor of amino acid-altering substitutions in this gene.
A hypothesis where viruses are the drivers of this natural selection is discussed.

Keywords: DNA damage response, Simian primates, Cell cycle, Positive selection

Background

Defects in the BRCAI or BRCA2 genes are responsible for
most hereditary forms of breast cancer and account for as
many as 10% of all breast cancer cases [1]. Women with a
strong family history of cancer who possess a harmful
BRCA1 or BRCA?2 allele are at high risk for developing
breast cancer within their lifetime (80% and 60%, respect-
ively) [2,3]. In addition, BRCAI mutation carriers have a
30-40% chance of developing ovarian cancer, while BRCA2
mutations also increase the risk of ovarian, pancreatic,
prostate, and male breast cancer [2]. Cancers occur when
heterozygous individuals experience a somatic loss of het-
erozygosity event at the BRCAI or BRCA2 locus, leaving
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only the abnormal allele intact. Because both gene products
play a critical role in key cellular processes such as
DNA repair, cell cycle control, and transcriptional regu-
lation, it is clear why inactivating mutations are so detri-
mental. The importance of these proteins is further
evidenced by the fact that both BRCA1 and BRCA2 null
mice are embryonic lethal [4].

Given their indispensible functions in maintaining the
integrity of the genome, one might expect strict evolu-
tionary conservation of BRCAI and BRCA2 over time.
Indeed, some regions of BRCAI have experienced puri-
fying selection strong enough to operate even on syn-
onymous mutations [5]. However, contrary to this line of
reasoning, a number of groups have documented the rapid
evolution of BRCAI [6-11] and BRCA2 [10] in mammals.
Rapid evolution occurs when a gene experiences positive
natural selection for new, advantageous mutations that
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arise in a population. Because advantageous mutations
commonly involve a change in protein sequence (non-syn-
onymous mutations), recurrent rounds of positive selection
in a gene lead to rapid evolution of the encoded protein se-
quence over time. For BRCAI, the evolutionary rate was
particularly elevated on the branches leading to humans
and chimpanzees (Pan troglodytes) [6]. The identification of
this signature in BRCAI suggests that some alleles and
polymorphisms currently circulating within the human
population may offer a selectable advantage. However, both
the cause and consequence of this unexpected mode of
evolution seen in BRCA1 remain unknown.

Here, we report an extensive evolutionary analysis of the
primate BRCA1 gene. In previous studies of BRCA1I evo-
lution, only exon 11 was examined with a limited number
of primate species included in the analyses [6-11]. To ex-
tend previous studies, we have generated full-length
BRCAI sequences for 17 additional primate species. Using
this more extensive dataset, we validate the finding of
positive selection in humans and their closest ape relatives
(in our study, chimpanzees and also bonobos (Pan panis-
cus)). We also show that specific codons in BRCAI have
experienced recurrent positive selection over evolutionary
time, both within and outside of exon 11, resulting in a
small number of highly variable residue positions in an
otherwise highly conserved protein. In addition, we se-
quenced exon 11 of BRCA1 from populations of chimpan-
zee, bonobo, and rhesus macaque (Macaca mulatta)
individuals and found that several unique polymorphisms
exist within these populations. Two polymorphisms in the
chimpanzee population were found to be in Hardy-
Weinberg disequilibrium suggesting that selection may
still be operating on this gene in modern times. Lastly,
exon 11 of BRCA2, another important genetic determin-
ant for hereditary breast and ovarian cancers, was also se-
quenced from diverse primate species. This gene also
bears the surprising signature of positive selection. It is
unclear why these critical genes bear this unusual evolu-
tionary signature, but we present one possible hypothesis
involving interactions between DNA repair proteins and
viruses.

Results

BRCAT1 is evolving under positive selection in primates

To expand our understanding of the positive selection
shaping BRCA1 in primates, we obtained cell lines from
17 simian primate species, harvested total RNA, and cre-
ated ¢cDNA libraries. From these, the 5.6 kilobase full-
length coding region of BRCAI was sequenced. These
sequences were combined with full-length BRCAI se-
quences from six primate species with available genome
projects, creating an alignment of 23 full-length BRCAI
sequences. 17 out of the 23 full-length sequences have
never before been analyzed (asterisks in Figure 1A).
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The type of selection that a gene has experienced can be
inferred from its rate of accumulation of non-synonymous
(changing the encoded amino acid; denoted dN) and syn-
onymous (silent; dS) substitutions over time. Protein-
altering mutations are far less likely to be tolerated than
synonymous mutations, and so dN/dS << 1 for the vast
majority of genes encoded by human and other mamma-
lian genomes [12]. Some genes, such as pseudogenes,
evolve neutrally with dN/dS~1 because there is not
strong selection for or against new mutations in these
genes. Finally, selection in favor of non-synonymous mu-
tations results in a dN/dS > 1. These genes are classified as
being under positive selection, and are experiencing con-
tinued selection for “innovation” at the protein sequence
level. In these genes, not only has the penalty against
protein-altering mutations been relaxed, but this very type
of mutation is being selectively retained. Using PAML
[13], we fit the full-length BRCA1 alignment (Additional
file 1) to models of positive selection where a subset of co-
dons is allowed to evolve with dN/dS > 1 (M2a, M8) and
to null models not allowing positive selection (M1la, M7,
MS8a). Likelihood ratio tests revealed that the dataset fit
the positive selection models significantly better than the
null models (p < 0.05, Table 1). Thus, BRCAI has experi-
enced selection in favor of non-synonymous mutations
over the speciation of simian primates.

We next estimated dN/dS values on each branch on
the primate evolutionary tree using the free-ratio model
in PAML. As expected, most branches exhibited a dN/
dS <1 (Figure 1A). The branch leading to humans had
the most elevated signal with a dN/dS of 2.79. The sec-
ond highest value of dN/dS on the BRCAI tree is found
on the branch leading to the last common ancestor of
bonobos and chimpanzees, with a dN/dS of 2.66. Be-
cause the free-ratio model is highly parameterized, we
next compared one-ratio and two-ratio models to deter-
mine whether selection has differentially affected the hu-
man, chimpanzee, and bonobo clade. As shown in
Figure 1B, our simian primate dataset fit the two-ratio
model significantly better than the one-ratio model, with
the human, chimpanzee, and bonobo clade exhibiting a
dN/dS of 1.78, while all other branches had a dN/dS of
0.59. In summary, our extended primate dataset shows
that BRCA1I is experiencing positive selection, and that
the most intense selection has operated on the human/
chimpanzee/bonobo clade.

Based on a comparison of extant and predicted ances-
tral sequences, humans are estimated to have accumu-
lated 25 substitutions in the BRCAI gene since their
divergence from chimpanzees and bonobos six million
years ago, 22 of which are non-synonymous (Figure 2A).
In order to understand how unusual this is, we looked at
the evolution of other genes, specifically ones encoding
BRCAT1l-interacting proteins, along the branch leading to
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Figure 1 Evolution of BRCAT over the course of primate speciation. A. dN/dS values for each branch of the primate phylogeny were
calculated using the free-ratio model in PAML [13]. Branches exhibiting dN/dS values > 1 are shown in bold italics. Dashes (=) represent branches
where zero synonymous substitutions are predicted to have occurred. On these branches, dS=0 and dN/dS can therefore not be calculated.
In these instances, the numbers of non-synonymous (N) and synonymous (S) substitutions predicted to have occurred along each branch are
indicated in parentheses (N:S). Of these, branches that experienced 4 or more non-synonymous substitutions are in bold italics. Asterisks indicate
new sequences generated in this study. B. The human, bonobo, and chimpanzee clade was isolated and dN/dS values were calculated using the
one-ratio and two-ratio models in PAML. The two-ratio model was a better fit as determined by the likelihood ratio test shown in the box. w0 is
the calculated dN/dS for all branches under the one-ratio model, or for background branches under the two-ratio model, and w1 is the dN/dS for
the isolated branches in the two-ratio model.

humans. Because we do not have extended sequence sets
for all of these genes, we took a simpler approach. For
each gene, we aligned the human, chimpanzee, and
gorilla sequences and manually counted the number of
human-specific substitutions (any position where the hu-
man gene sequence differs from both the chimpanzee
and gorilla gene sequence). These were categorized as
non-synonymous (N) or synonymous (S) based on how
they affected the codon in which they were found. When
these values are normalized to gene size, BRCAI has the
highest enrichment of non-synonymous substitutions
[(N/kb)/(S/kb)]. Care must be taken in comparing this
metric between genes, because different genes have dif-
ferent equilibrium codon frequencies, and therefore have
different mutational opportunities for synonymous and
non-synonymous mutations. However, the BRCAI gene
has an enrichment ratio that is more than 4-fold higher
than any of the other genes shown (Figure 2B).

BRCAI encodes a 220 kDa protein with two conserved
domains: an N-terminal RING domain and two tandem
C-terminal BRCT domains (Figure 2C). The RING

domain has E3 ubiquitin ligase activity that is essential
in the DNA damage response. The BRCT motifs func-
tion as a protein-protein interaction module that binds
phosphorylated proteins involved in DNA repair, cell
cycle control, chromatin remodeling, and transcription.
There is also a coiled-coil region between these two do-
mains. Interestingly, all but one of the non-synonymous
substitutions predicted to have occurred in the human/
bonobo/chimpanzee clade fall outside of these known
structural motifs (Figure 2C).

Human variation at selected sites in BRCA1

The M8 model allows a class of codons to evolve under
positive selection (dN/dS > 1). 10 codons were identified
as belonging to this class with a high posterior probabil-
ity (P = 0.85 or above). These codons do not lie in the re-
gion of BRCAI where it was previously reported that
selection might be acting against synonymous mutations
[5], potentially given rise to a false signature of dN/dS >
1. Instead, all 10 sites show high variability between pri-
mate species at the protein level, often encoding very
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Table 1 PAML Analysis of BRCA1 and BRCA2

M1a-M2a Wy codon freq.? 2AInL® df p-value© M1a-M2a wg codon freq.? 2AInL® df p-value€

BRCAT1 04 61 10.0 2 0.0066 BRCA2 04 f61 213 2 <0.0001
04 f3x4 6.1 2 0.0466 04 3x4 16.1 2 0.0003
1.6 61 10.0 2 0.0066 1.6 f61 213 2 <0.0001
1.6 f3x4 6.1 2 0.0466 1.6 3x4 16.1 2 0.0003

M7-M8 wg codon freq. 2AInL¢ df¢ p-value© M7-M8 wg codon freq.” 2AInL¢ df¢ p-value©

BRCA1 04 61 10.6 2 0.0049 BRCA2 04 f61 233 2 <0.0001
04 f3x4 6.2 2 0.0447 04 3x4 18.6 2 <0.0001
16 f61 106 2 0.0049 1.6 61 233 2 <0.0001
16 f3x4 6.2 2 0.0447 1.6 f3x4 186 2 <0.0001

M8a-M8 wg codon freq.? 2AInL® df p-value© M8a-M8 wg codon freq? 2AInL® df p-value©

BRCA1 04 61 10.1 1 0.0015 BRCA2 04 61 199 1 <0.0001
04 f3x4 6.2 1 0.013 04 3x4 15.1 1 0.0001
1.6 61 10.1 1 0.0015 1.6 f61 19.9 1 <0.0001
1.6 f3x4 6.2 1 0.013 1.6 3x4 15.1 1 0.0001

?Initial seed value for w (dN/dS).
PModel of codon frequency.

“Twice the difference in the natural logs of the likelihoods (2 x AlnL) of the two models being compared (a model that allows positive selection (M2a or M8) is
compared to a null model (M1a, M7, M8a)). This value is used in a likelihood ratio test along with the degrees of freedom (df). The p-value indicates the confidence with

which the null model can be rejected.
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Figure 2 BRCA1 evolution in the human, bonobo, and chimpanzee clade. A. dN/dS values for BRCAT were calculated on each branch of the
primate tree using the free-ratio model in PAML. dN/dS values > 1 are shown in bold italics. The numbers of non-synonymous (N) and synonymous (S)
substitutions predicted to have occurred along each branch are indicated in parentheses (N:S). The asterisk represents the last common ancestor of humans,
bonobos, and chimpanzees. MYA, million years ago. B. The number of human-specific non-synonymous (N) and synonymous (S) substitutions in BRCAT and
other genes encoding BRCAT-interacting proteins. The length of each gene is shown in kilobases (kb). Non-synonymous and synonymous substitutions are
shown as number of substitutions per kilobases (N/kb and S/kb, respectively). An “enrichment ratio” of N/kb over S/kb was also calculated. C. A domain
diagram of BRCA1 is shown with the RING domain, coiled-coil domain (C-C), and BRCT domains indicated. On this are superimposed all of the
non-synonymous substitutions predicted to have occurred in the tree shown in panel A since the divergence of humans, bonobos, and chimpanzees
from their last common ancestor (asterisk in A). Vertical lines indicate substitutions specific to humans, lines with white circles are substitutions specific
to bonobos, and lines with grey circles are substitutions specific to chimpanzees. Lines with black circles indicate substitutions common to both

bonobos and chimpanzees.
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dissimilar amino acids (first four rows in Figure 3A). Next,
these positively selected codon positions were examined for
variability within the human population. The Breast Cancer
Information Core (BIC, http://research.nhgri.nih.gov/bic/)
is a repository of human BRCA1 polymorphisms. Using this
database, we identified single nucleotide polymorphisms
(SNPs) at amino acid sites 170, 888, 890, 1203, and 1443
(Figure 3A). At four out of these five sites (position 888,
890, 1203, and 1443), we find that some human BRCAI al-
leles encode a unique amino acid not observed in any of
our primate sequences. In addition, SNPs known to cause
human disease occur in six out of 10 sites. In all cases,
these disease-linked SNPs are not amino acid-altering mu-
tations, but rather more radical frame-shifting or nonsense
mutations (Figure 3A). In particular, nonsense mutations
occurring in codon 1443 are among the most common mu-
tations documented in the BIC. In Figure 3B, all 10 sites of
positive selection were mapped onto a domain diagram of
BRCA1 (bottom) along with the most common human
non-synonymous SNPs found in the BIC (top). As de-
scribed previously for mutations accumulated in the
human/chimpanzee/bonobo clade, all but one of the
positively selected residues (1370S in the coiled-coil
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domain) lie outside of any known structural motifs. In
summary, the 10 codon positions identified in this analysis
are highly variable between primate species and within the
human population, and are involved in the etiology of can-
cers associated with this gene. Disease-associated SNPs at
these sites tend to be radical, protein-truncating muta-
tions. However, a presumably distinct phenomenon ap-
pears to be driving selection in favor of non-synonymous
point mutations at these positions.

BRCAT1 variation in other primate populations

So far, we have documented sequence differences be-
tween the BRCAL1 proteins of different primate species.
We have shown that non-synonymous substitutions are
accumulating in BRCAI faster than expected under con-
strained, or even neutral, evolution. We next wished to
explore whether positive selection is still acting on
BRCAI in modern populations. There is already evi-
dence that this is true in the human population, because
several BRCA1 SNPs have been found to depart from
Hardy-Weinberg equilibrium in European populations
[14,15] and in Australia [6]. We wished to determine if
the same might be true in bonobo and chimpanzee

A.

the bottom represent sites of positive selection (grey - P > 0.85, black - P

significance, and grey stars are those with unknown significance.
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Figure 3 Specific codons in BRCAT have experienced positive selection during primate speciation. A. Shown are the ten codons that have
evolved under positive selection (dN/dS > 1) in primates with a P > 0.85. Codons with a P > 0.95 are indicated with asterisks. The amino acids
encoded at these positions in human BRCA1 are shown, along with those found in hominoids, old world monkeys, and new world monkeys. In
addition, human SNPs and disease mutations also found at these sites are listed. X refers to a single nucleotide mutation that results in a
termination codon. B. A domain diagram of BRCA1 is shown with the RING domain, coiled-coil domain (CC), and BRCT domains. The triangles at

shown at the top of the diagram as stars. The black stars indicate disease-causing mutations, white stars represent variants with no known clinical

* disease-causing mutations

} unknown clinical significance
X} no clinical significance

/\ sites of positive selection P>0.85
A sites of positive selection P>0.95

>0.95). The 12 most common human variants recorded in the BIC are
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populations. We amplified and sequenced the largest
BRCA1 exon, exon 11 which is ~3.4 kilobases and com-
prises ~61% of the BRCAI coding region, from the gen-
omic DNA of seven bonobo and 44 chimpanzee individuals
(Table 2). In bonobos, we found nine polymorphic sites,
eight of which were single nucleotide polymorphisms
(SNPs), with three of these being non-synonymous. Eight
of the SNPs were in Hardy Weinberg equilibrium.
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Interestingly, one bonobo individual was also homozygous
for a seven amino acid deletion (A1058-1064) (Table 2).
Hardy-Weinberg equilibrium was rejected for this poly-
morphism, although the support was weak and did not
survive correction for multiple testing (Table 2). The
chimpanzee sequence set revealed nine SNPs, seven of
which were non-synonymous. Interestingly, in this larger
sample set (n=44), three of the non-synonymous SNPs

Table 2 SNP Analysis of BRCA1 in Bonobo, Chimpanzee, and Rhesus Macaque Individuals

Species SNPs® Genotype p- Human® Human Polymorphisms
an A pp  Vvalue® BIC® 1000 genomes®
Bonobo n=7 14931 6 1 0 0.841 |
T582M 6 1 0 0.841 T
L833L 4 3 0 0471 L dUpAAGTATCCAT*
V1047V 5 1 1 0.128 Vv
G1048G 5 1 1 0.128 G G1048D, G1048V, G1048G ~ G1048D, G1048V, G1048G
T1051 5 1 1 0.128 T
A1058-1064""P 6 0 1 0.008
V1061V 6 1 0 0.841 \ delA* delA*
G1062G 6 1 0 0.841 G
Chimpanzee n =44 E309KH"P 19 14 11 0023 K K309T K309Q, K309T
E427K 34 9 1 0663 E
55785 40 4 0 0.752 S S578Y S578Y
G5905™P 20 12 12 0.004 S S590G $590G
K731E 19 16 9 0.122 K delAGAAG* delAGAAG*
1925T 34 9 1 0663 \ 1925L 1925V, 1925L, insT*
510425 4 3 0 0823 S
G1077R™P 42 1 1 1.4E-5 G G1077W, G1077G
G1100E 20 16 8 0.155 G
Rhesus n=44 A225A 42 2 0 0.888 A
N3755 43 1 0 0.920 N delA*, N3765 delA*, N376S
R466R 42 2 0 0.888 K K467X* K467X*
T487S 43 1 0 0.920 T insA* insA*
N684N 29 14 1 0.647 N
V739M 38 6 0 0624 Vv V740L V740L, insA*
D773G 29 15 0 0173 G
D852D 40 4 0 0752 D insA* insA*
N923H 40 4 0 0752 N
K936K 40 4 0 0.752 K
A1167E 40 4 0 0.752 A
Q1203R 29 14 1 0.647 R R1203Q, R1203G, R1203X*  R1203Q, R1203G, R1203X*

®Numbering refers to the amino acid position in the respective primates. In the case of rhesus macaques, amino acids 375 to 936 correspond to amino acids 376

to 937 in humans.

Pp-values were calculated using a chi-squared test with a df = 1. A p-value cutoff (after Bonferroni correction) < 0.0056, 0.0056, and 0.0042 for bonobos,

chimpanzees, and rhesus macaque, respectively, was considered statistically significant. Tests that survived this correction have the p-value listed in italics.
“Amino acid found in the human BRCA1 protein at each of the positions listed.
9Human variants found at the positions indicated in the Breast Cancer Information Core.
*Human variants found at the positions indicated in the 1000 Genomes database.

“Known human disease-causing variant.
HWD g\ps found to be in Hardy-Weinberg Disequilibrium.
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were found to be in Hardy Weinberg disequilibrium, sug-
gesting that selection is acting either for (E309K and
G590S) or against (G1077R) these mutations. The support
for one of these (E309K) was weak and did not survive
correction for multiple testing (Table 2). It is particularly
intriguing to see that humans also share with chimpanzees
this same S/G SNP at position 590. In both the bonobo
and chimpanzee populations, all synonymous SNPs were
in Hardy-Weinberg equilibrium.

We also sequenced exon 11 from 44 rhesus macaque in-
dividuals. Rhesus macaques are not part of the human/
chimpanzee/bonobo clade and are instead distantly-related
members of the Old World monkey clade (Figure 1A). In
these macaques, we found 12 SNPs in BRCAI, with seven
being non-synonymous (Table 2). This includes a SNP
found at position 1203, a site of positive selection in the
inter-species dataset. This codon is also the site of a known
disease-linked mutation in humans; however, the cancer-
linked SNP at this position introduces a stop codon. None-
theless, all of these are in Hardy-Weinberg equilibrium.

Caution must be used when interpreting signatures of
selection acting on polymorphisms in primate popula-
tions. When sampling primates, it is not possible to get
completely random and non-related population sets. De-
viations from Hardy-Weinberg equilibrium may occur
due to factors other than selection. Reasons for falsely
rejecting Hardy Weinberg equilibrium include 1) non-
random mating, 2) small population sizes which magnify
the effects of genetic drift, 3) introduction of new alleles,
4) population subdivision or admixture, 5) biases in se-
quencing errors, and 6) linkage disequilibrium with an-
other locus under selection. Because the chimpanzee
population consists of individuals from two different
subspecies, admixture could plausibly lead to rejection
of Hardy Weinberg equilibrium.

We also performed the McDonald-Kreitman and Taji-
ma’s D tests on our datasets (data not shown). The tests
were not significant and therefore do not support selec-
tion acting on any of these polymorphisms. False conclu-
sions in this test can again result from a population with
hidden structure. In summary, while the analyses using
the simian primate dataset consisting of 23 species sug-
gest that recurrent positive selection has been acting on
BRCAI over the course of several million years, the
Hardy-Weinberg equilibrium tests performed here and
by others indicate that selection is acting on modern day
humans, and possibly also chimpanzees.

BRCA2 is also evolving under positive selection in primates
Because of the rapidly evolving nature of BRCAI, we
also completed an evolutionary analysis of BRCA2, an-
other strong determinant for hereditary breast and ovar-
ian cancer. Although BRCA2 has been shown to be
under positive selection, only a small number of primate

Page 7 of 13

species was included in this study [10]. We sequenced
the ~5 kilobase exon 11 from 18 primate species. Exon
11 is the largest of 27 exons and encodes about 50% of
the entire BRCA2 protein. The sequences, along with six
additional sequences from available genome projects,
were assembled into a multiple alignment (Additional
file 2). We fit the alignment to positive selection and
null models as described above. The positive selection
models were again a significantly better fit to the se-
quence set than the null models, with a p value < 0.0003
(Table 1). In summary, BRCA2 is under positive selec-
tion in primates as well, although this signature appears
not to be concentrated on the human/chimpanzee/bo-
nobo clade (Additional file 3).

In contrast to BRCA1, BRCA2 is a 390 kDa nuclear pro-
tein that is exclusively involved in the homologous recom-
bination pathway for repairing double-strand breaks. The
eight BRC motifs and the extreme C terminus mediate in-
teractions with and recruitment of Rad51, a protein that
catalyzes strand invasion during homologous recombin-
ation [16-18]. All eight BRC repeats are encoded within
exon 11. The M8 model estimates that five codons are
evolving under positive selection with posterior probabil-
ity >0.85 (Figure 4A). Two of these positively selected
sites were found to have a human polymorphism docu-
mented in the BIC (Figure 4A). When all five sites of posi-
tive selection are mapped onto a domain diagram of
BRCA2 (Figure 4B), they cluster within the first three
BRC domains (1008, 1225, and 1426) and the intervening
regions (1159 and 1272). To examine this further, we
aligned the amino acid sequence of all eight BRC repeats
of human BRCA2 and highlighted sites 1008, 1225, and
1426 (Figure 5A). Surprisingly, all three sites of positive
selection lie adjacent to a hydrophobic motif (FxxA)
known to mediate interactions with Rad51 (Figure 5A red
box). Since the co-crystal structure of the BRCA2 BRC4
in complex with Rad51 is available, we mapped these
three sites to their analogous positions in BRC4 and found
that they are in close proximity to the Rad51 binding
interface (Figure 5B, PDB: 1INOW) [19]. The clustering of
these residues near this interface might provide a clue to
the driver of natural selection at these sites.

Discussion

Nearly all known cases of recurrent positive selection in
primate genomes involve genes in one of three categories:
1) immunity, 2) environmental perception (such as odor-
ant and taste receptors), or 3) sexual selection and mate-
choice [21,22]. This is due to the fact that ever-changing
external stimuli (i.e. pathogens, environmental odors/
tastes, etc.) drive the selection of new allelic variants. For
example, immunity factors that are constantly challenged
by pathogens exhibit some of the most striking signatures
of positive selection seen in primate genomes [23-28].
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Figure 4 Codons in exon 11 of BRCA2 that have experienced positive selection in primates. A. 5 codons in exon 11 of BRCA2 were found
to be under positive selection in primates. All sites had a P > 0.95 (indicated with asterisks) except for S1008 (P = 0.9). The amino acid encoded by
human BRCAZ at each of these codons is shown. The amino acids encoded by hominoids, old world monkeys, and new world monkeys are also
shown. Human SNPs and disease mutations deposited to the BIC are listed at the bottom. B. A domain diagram of BRCA2 is depicted with the 8
BRC repeats, helical DNA binding domain (helical DBD), OB folds, and nuclear localization signals (NLS). Only exon 11 was sequenced in this study
(section in white). The sites of positive selection are represented as triangles at the bottom of the diagram. The 11 most common protein-altering
variants in the BIC are marked as stars at their respective locations at the top. Black stars correspond to disease-causing mutations, white stars are
variants with no known clinical significance, and grey stars are positions with unknown significance.

Here, immunity genes will experience positive selection for
protein-altering mutations that improve recognition of a
relevant pathogen. Conversely, the pathogen will counter-
evolve to escape detection, again placing selective pressure
on the host population for new mutations that improve the
immunity protein. This cycle can repeat itself indefinitely,
resulting in an ever-escalating host-virus arms race. There-
fore, it is surprising to see that BRCAI and BRCA2, genes
that do not classically fit into any of the three categories
listed above, are evolving in a similar manner to these
highly adaptive immunity genes. In addition to the two de-
scribed here, other DNA repair genes have also been shown
to evolve under positive selection [29,30], but the driver be-
hind this unusual finding remains to be identified.

An intense battle exists between host DNA repair ma-
chinery and viruses, and we propose that this could con-
tribute to the evolutionary signatures documented here.
Many viruses are known to interact with the DNA repair
machinery and cell cycle regulators [31,32]. One funda-
mental issue is that the free ends of viral genomes are
exposed, in contrast to the host's DNA, which is capped

by telomeres. Despite this, many viruses need to access
the nucleus where the host's DNA repair machinery rec-
ognizes these un-capped viral genome ends as “damaged”
cellular DNA, activating the DNA damage response. In
order for productive infection to proceed, viruses must ac-
tively thwart these host repair pathways. For example,
DNA repair proteins interfere with the adenovirus life-
cycle by concatenating the ends of newly synthesized viral
DNA, inhibiting efficient packaging into viral progeny
[33]. In turn, adenovirus has evolved a way around this
blockade by encoding proteins that mislocalize or degrade
the specific host factors involved. Depending on the virus
involved, host DNA repair factors can also be hijacked to
facilitate viral replication. For instance, herpes simplex
virus-1 simultaneously activates DNA repair constituents
that aid in viral genome replication [34,35] and counter-
acts those that do not [36,37]. Human immunodeficiency
virus 1 is also known to activate the DNA damage re-
sponse and manipulate cell cycle checkpoints through the
actions of its accessory protein Vpr [38,39]. Additionally,
several studies have shown that specific DNA repair
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BRCA2 BRC4

Thr1 426

A.

BRC-1 NHSFGG-EJFRTASNKEIKLSEHNIKKSKMFFKDIEE
BRC-2 —NEVGFRGFEFYSAHG KLNVSTEALQKAVKLESDIEN
BRC-3 —FETSDTEFQTASGKNISVAKESEFNKIVNFEDQKPE
BRC-4 —KEPTLLGFHTASGKKVKIAKESLDKVKNLEDEKEQ
BRC-5 —IENSALAFYTSCSRKTSVSQTSLLEAKKWLREGIF
BRC-6 —FEVGPPAFRIASGKIVCVSHETIKKVKDIEFTDSES
BRC-7 —SANTCGIFSTASGKSVQVSDASLONARQVESEIED
BRC-8 -NSSAFSGESTASGKQVSILESSLHKVKGVLEEFDL
B.

Figure 5 The sites of positive selection lying within the BRC repeats of BRCA2 are located adjacent to the Rad51 binding region. A. The
8 BRC repeats of the human BRCA2 protein were aligned using ClustalX. The red and peach colored boxes are the motifs within the BRC repeats
thought to facilitate binding with Rad51 [20]. Residues 1008, 1225, and 1426 are colored in green, orange, and yellow, respectively. All three sites
lie just adjacent to the FxxA motif which interacts with two hydrophobic pockets in the Rad51 oligomer. B. The co-crystal structure of BRC4 (blue)
in complex with Rad51 (grey) is shown (PDB ID TNOW [19]). The FxxA muotif is depicted in red. Residues 1008, 1225, and 1426 are shown in green,

orange, and yellow, respectively.

proteins play critical roles in retroviral genome integration
[40-43] while others seem to decrease the efficiency of in-
fection [44-46].

One can imagine that these and other viruses that ac-
cess the nucleus during replication could feasibly inter-
act with BRCA1 or BRCA2, driving the selection of
variants that ultimately lead to decreased susceptibility
to infection. However, it is possible that variant alleles
selected for this purpose would have detrimental conse-
quences to protein function in the context of host DNA
repair. Most of the deleterious BRCAI and BRCA2 vari-
ants characterized thus far introduce stop codons or
frame-shifts that result in premature truncation of the
protein, the consequences of which manifest as cancer
at relatively early ages. The effects of non-synonymous

point mutations, such as those documented here, might
be expected to be much more subtle. The effects of sub-
tle mutations are more difficult to assess because the
resulting genomic instability may only be realized later
in life and can be confounded by other genetic or envir-
onmental influences. We therefore propose a hypothesis
where viruses are driving the intriguingly rapid rate of
evolution seen in BRCAI and BRCA2, potentially giving
rise to antagonistic pleiotropy. This would be analogous
to the malaria and sickle cell anemia trade-off that is
well documented [47].

Conclusions
The BRCA1 and BRCAZ2 proteins play key roles in the
repair of damage to chromosomal DNA. We have
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expanded the analysis of the evolution of these genes,
showing that both have been subject to recurrent posi-
tive selection during simian primate speciation. Al-
though the force or forces driving the diversifying
selection of these genes is unknown, the result is that
the sequence of these proteins has been altered in
humans and our closest living relatives. It remains to
be seen whether this is an instance of antagonistic plei-
otropy, where positive selection driven by one force
causes functional consequences in another context, po-
tentially the formation of cancers [48].

Methods

Non-human primate samples

Of the 44 chimpanzee samples evaluated in this study, 34
were obtained from the Chimpanzee Biomedical Research
Resource (NIH8U420D011197-13), which is supported
through a cooperative agreement with the National Insti-
tutes of Health (NIH). This NIH-supported colony is
housed at the MD Anderson Cancer Center’s Michale E.
Keeling Center for Comparative Medicine and Research
(KCCMR) in Bastrop, TX. The origins of the chimpanzees
comprising the KCCMR colony are highly diverse with only
a few closely related (siblings/offspring) animals in the col-
ony (Additional file 4). Blood from 34 chimpanzees was
collected directly into PAXgene Blood RNA Tubes (PreAn-
alytix) at the same time other blood samples were obtained
as part of the prescheduled annual veterinary exam for each
animal. Another 10 chimpanzee genomic DNA samples
were purchased from Coriell (Additional file 5).

All 44 rhesus macaque samples evaluated in this study
were obtained from animals housed at the KCCMR in
collaboration with researchers at this institution. The
colony at the KCCMR is a closed breeding colony com-
prised of approximately 980 rhesus macaques of Indian-
origin that originated from a colony of 286 founder ani-
mals in 1988 (degree of relatedness can be found in
Additional file 6). Blood from these animals was col-
lected directly into PAXgene Blood RNA Tubes (PreAn-
alytix) at the same time other blood samples were
obtained as part of the prescheduled annual veterinary
exam for each animal.

Bonobo genomic DNA samples were obtained from
the integrated primate biomaterials and information re-
source (IPBIR) of the Coriell Institute or extracted from
blood samples obtained from the Columbus zoo and the
Language Research Center, Georgia State University. All
seven individuals are unrelated (Additional file 7).

The remaining non-human primate samples were ac-
quired as cell lines purchased from the Coriell Institute
under a U.S. Fish and Wildlife Service permit (sources
and unique identifiers are listed in Additional file 8).
This study was approved by the University of Texas at
Austin Institutional Review Board.
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Primate BRCA1 and BRCA2 sequencing

Human BRCAI and BRCA2 coding sequences were ob-
tained from GenBank (accession number NM 007294 and
NM 000059, respectively). BRCA1 and BRCA2 sequences
from chimpanzee, gorilla, orangutan, rhesus macaque, and
marmoset were obtained using the BLAT alignment tool
on the UCSC genome database (http://genome.ucsc.edu/).
For the remaining 18 primate sequences, primary or im-
mortalized cell lines were grown in standard media sup-
plemented with 15% fetal bovine serum at 37°C and 5%
CO,. Cells were collected and RNA was extracted using
the AllPrep DNA/RNA kit (QIAGEN). ¢cDNA libraries
were generated using SuperScript III First-Strand Synthe-
sis Kit (Invitrogen) using oligo dT or random hexamer
primers. PCR products were generated using PCR Super-
Mix High Fidelity (Invitrogen) and directly sequenced or
cloned into pCR4 for sequencing. Primers used for PCR
and sequencing can be found in Additional files 9, 10, 11
and 12. These sequences have been deposited in GenBank
(accession numbers KM017616-KM017652).

Blood from rhesus macaque and chimpanzee individ-
uals was collected in PAXgene Blood RNA Tubes (Pre-
AnalytiX). RNA was extracted using the PAXgene Blood
miRNA Kit (QIAGEN) and genomic DNA was obtained
using the AllPrep DNA/RNA kit (QIAGEN). BRCAI
Exon 11 was amplified from extracted genomic DNA
(chimpanzee, bonobo, and rhesus macaque) using PCR
SuperMix High Fidelity (Invitrogen) and sequenced. De-
tails on PCR and sequencing primers can be found in
Additional file 9 and 10.

PAML analysis

A multiple sequence alignment was generated for BRCA1
and BRCA2 using ClustalX2.1 [49]. The alignments are
straight-forward with only a few small indels (Additional
files 1 and 2). Gene sequences at each ancestral node were
reconstructed using the codeml program in PAML 4.3 [50].
dN/dS values along each branch of the phylogenetic tree
were calculated using the free-ratio model. Substitution
counts given along specified branches are the estimates
made in the free ratio model, but were also calculated by
directly comparing the predicted ancestral and the known
extant sequences and counting differences manually. Both
methods yielded the same values. The one-ratio and two-
ratio models were performed as described previously [51].
To detect selection, multiple alignments were fit to the
NSsites models M1la (null model, codon values of dN/dS
are fit into two site classes, one with value between 0 and 1,
and one fixed at dN/dS = 1), M2a (positive selection model,
similar to M1a but with an extra codon class of dN/dS > 1),
M7 (null model, codon values of dN/dS fit to a beta distri-
bution bounded between 0 and 1), M8a (null model, similar
to M7 except with an extra fixed codon class at dN/dS = 1),
and M8 (positive selection model, similar to M7 but with
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an extra class of dN/dS > 1). Model fitting was performed
with multiple seed values for dN/dS (w) and assuming ei-
ther the 61 or f3x4 model of codon frequencies [52]. Likeli-
hood ratio tests were performed to assess whether
permitting some codons to evolve under positive selection
gives a significantly better fit to the data than models where
positive selection is not allowed [53,54]. These different
model comparisons represent different trade-offs between
power and accuracy [55]. In all cases the positive selection
model was a significantly better fit (p < 0.05), and individual
codons assigned to the dN/dS > 1 class with high posterior
probabilities (P > 0.85 by Bayes Emperical Bayes [56])
were analyzed. The crystal structure was obtained from
the RCSB Protein Data Bank (http://www.pdb.org) and
residues under positive selection were mapped using
MacPyMol (http://www.pymol.org).

Hardy-weinberg equilibrium test

Single nucleotide polymorphisms (SNPs) were annotated
for each bonobo, chimpanzee, and rhesus macaque indi-
vidual. Allele frequencies were calculated for each SNP
and tested for departure from Hardy-Weinberg equilibrium
(http://www.oege.org) [57]. Chi squared values were calcu-
lated using 1 degree of freedom. A p-value (after Bonferroni
correction) < 0.0056, 0.0056, and 0.0042 for bonobos,
chimpanzees, and rhesus macaque, respectively, was con-
sidered statistically significant.

Ethics
No new human data was generated or analyzed in this
study.

Additional files

Additional file 1: Alignment of BRCAT sequences. description —
alignment of BRCAT sequences used in the PAML analyses.

Additional file 2: Alignment of BRCA2 sequences. description —
alignment of BRCA2 sequences used in the PAML analyses.

Additional file 3: Evolution of BRCA2 over the course of primate
speciation. dN/dS values for each branch of the primate phylogeny
were calculated using the free-ratio model in PAML [13]. Branches
exhibiting dN/dS values > 1 are shown in bold italics. Dashes (=)
represent branches where zero synonymous substitutions are predicted
to have occurred. On these branches, dS =0 and dN/dS can therefore
not be calculated. In these instances, the numbers of non-synonymous
(N) and synonymous (S) substitutions predicted to have occurred along
each branch are indicated in parentheses (N:S). Of these, branches that
experienced 4 or more non-synonymous changes are italicized.

Additional file 4: Degree of relatedness in Pan troglodyte
(chimpanzee) individuals. description - sex, age, and relatedness of
chimpanzee individuals used in this study.

Additional file 5: Sources and unique identifiers of Pan troglodyte
genomic DNA used to generate BRCAT exon 11 sequences.
description - sources and unique identifiers of chimpanzee genomic
DNA used in this study.

Additional file 6: Degree of relatedness in Macaca mulatta
(rhesus macaque) individuals. description - relatedness of rhesus
macaque individuals used in this study.
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Additional file 7: Pan paniscus (bonobo) individuals information.
description — sex and sources of bonobo samples used in this study.

Additional file 8: Sources and unique identifiers of cell lines used
to generate primate cDNA libraries and sequences. description —
sources and unique identifiers of cell lines used in this study.

Additional file 9: Primers used for BRCAT amplification and
sequencing. description — Primers used to amplify and sequence BRCAT.

Additional file 10: Sequences of primers used for BRCA1
sequencing. description — sequences of primers used to amplify and
sequence BRCAT.

Additional file 11: Primers used for BRCA2 amplification and
sequencing. description — primers used to amplify and sequence BRCA2.

Additional file 12: Sequences of primers used for BRCA2
sequencing. description — sequences of primers used to amplify and
sequence BRCA2.
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