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Abstract: Polymer nanocomposites are usually characterized using various methods, such
as small angle X-ray diffraction (XRD) or transmission electron microscopy, to gain insights
into the morphology of the material. The disadvantages of these common characterization
methods are that they are expensive and time consuming in terms of sample preparation and
testing. In this work, near infrared spectroscopy (NIR) spectroscopy is used to characterize
nanocomposites produced using a unique twin-screw mini-mixer, which is able to replicate,
at„25 g scale, the same mixing quality as in larger scale twin screw extruders. We correlated
the results of X-ray diffraction, transmission electron microscopy, G1 and G11 from rotational
rheology, Young’s modulus, and tensile strength with those of NIR spectroscopy. Our work
has demonstrated that NIR-technology is suitable for quantitative characterization of such
properties. Furthermore, the results are very promising regarding the fact that the NIR probe
can be installed in a nanocomposite-processing twin screw extruder to measure inline and in
real time, and could be used to help optimize the compounding process for increased quality,
consistency, and enhanced product properties.
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1. Introduction

Layered silicates, such as nanoclays, are the most common nanofiller used in the polymer processing
industry due to their potential of enhancing material properties and the fact that they are less expensive
when compared to other nanofillers like carbon nanotubes or fullerene. Additionally, due to fact that
the nanoclays form of delivery are agglomerated tactoids in the range of microns before processing, the
health risk is very low. The primary reason for the improvement of material property is the reinforcement
of the polymer matrix by means of the particles. The layered inorganic filler platelets also have a
restrictive effect on the polymer chains movability. Layered silicates (most common montmorillonite)
with an aspect ratio up to 1000 are used to enhance Young’s modulus, tensile strength, barrier, and other
mechanical or physical properties [1,2].

Various measurements are used for determining the formed structures (assessing intercalation vs. exfoliation)
and the homogeneity of the filler, including optical microscopy, scanning (SEM) and transmission
(TEM) electron microscopy, mechanical (tensile strength, extensional rheology), and scattering methods
(small angle (SAXS) and wide angle (WAXS) X-ray scattering). Nevertheless, these are all time
consuming, cost intensive, off-line methods and they do not have the possibility of being installed as an
in-line measurement and quality control device directly in the production process.

In this study, a more practical way to determine material homogeneity and properties was used by
applying near infrared spectroscopy (NIR). NIR spectroscopy is an optical, non-destructive method used
to obtain information about the composition of samples and interactions within the sample. The basic
functionality of the NIR technology can be described as follows: a light source is used to transmit near
infrared radiation through a sample. This radiation excites and vibrates the molecular bonds, resulting
in an energy absorbance at specific wave lengths depending on the type of molecule and molecular
bonding, which can be detected by NIR spectroscopy. The wavelength of the absorbance bands in the
NIR spectrum provides the information for identification of substances and chemical functionalities.

NIR measurements have a variety of successful applications in polymer science, including
nanocomposites and the determination of the achievable properties, such as the analysis of
polymerization or copolymerization (mostly done by detecting the characteristic absorption caused by
chemical groups, such as OH groups or vinyl acetate groups in ethylene vinyl acetate), crystallinity,
molecular weight, anisotropy, intermolecular interactions, molar mass, porosity, specific surface
area, tacticity, orientation, concentrations of flame retardants (e.g., melamine cyanurate), density
measurements, and other chemical processes that appear during polymer processing [3–11].

Regarding the evaluation of nanocomposites utilizing NIR, the prevailing conditions in the sample
(chemical, physical bondings, and resulting structures) are closely linked with the properties, which can
therefore be determined with the use of NIR spectroscopy [12–15]. Shinzawa et al. [16,17] examined
the crystalline structure and mechanical properties, as well as the influence of UV-radiation on polylactic
acid (PLA) clay nanocomposites by NIR spectroscopy. Barbas et al. [18] determined the degree of
dispersion of polypropylene-clay nanocomposites utilizing an in-line NIR setup. Laske and Witschnigg
et al. reported that in-line [19], as well as off-line [20], NIR is very suitable for detecting mechanical
and rheological properties. Furthermore the analysis of the melt strength of a polypropylene (PP)
nanocomposite with off-line NIR spectroscopy (correlated with off-line rheotens measurement) has also
been achieved [20].
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Following a more holistic approach, the scope of this paper is to apply NIR on a big number of off-line
samples to ensure statistical stability with a large variety of properties and used characterization methods
to show the possibilities and even more important the limits of this technology and gain information on
possible one-for-all chemometric modeling strategies for quality control purposes.

2. Experimental Section

2.1. Materials

Two polypropylene types PP 575P (Sabic, Sittard, The Netherlands) with a MFI of 10.5 g/10 min
(230 ˝C/2.16 kg) and Moplen HP420 (Lyondell Basell Industries, Rotterdam, The Netherlands) with
a MFI of 8 g/10 min (230 ˝C/2.16 kg) were used. The processed nanofiller (organomodified
montmorillonite clay) with commercial indication Cloisite 20A was supplied by Southern Clay Products
Inc. (Gonzales, TX, USA). To achieve good interactions between the nonpolar PP and the polar
nanofiller, a maleic anhydride compatibilizer Polybond 3200 (Crompton, Middlebury, CT, USA) referred
to as PP-g-MA with a MFI of 115 g/10 min (190 ˝C/2.16 kg) and a maleic anhydride level of 1 wt. %
was used. The nanofiller content was varied from 0 to 6 wt. % [21].

2.2. Production of PP-Nanocomposites

The compounding experiments were done on the twin-screw mini-mixer developed at the University
of Bradford [14]. This device was built in order to achieve high levels of shear and elongation to break up
the organoclay particles into dispersed stacks of silicate tactoids or even thin stacks of layered silicates
for very small samples („25 g) [22]. A 1⁄4 fractional factorial experiment that provides sufficient
degrees of freedom to resolve all main parameter effects as well as all two-factor interaction was utilised.
The experimental design of experiments (DoE) was generated using Design-Expert 7.0 (Stat-Ease Inc.,
Minneapolis, MN, USA). Table 1 describes the DoE runs [21].

Table 1. The DoE run order of the experiments [21].

Run
Speed
(rpm)

Residence
Time (min)

Temperature
(˝C)

Nanoclay
Loading (%)

Compatibiliser
Loading (%)

MFR
(g/10 min)

1 60 8 190 6 2 8

2 20 2 190 6 2 10.5

3 60 8 230 2 6 8

4 60 2 190 6 6 10.5

5 20 8 190 2 6 10.5

6 20 8 190 6 6 8

7 60 8 230 6 6 10.5

8 20 2 230 2 6 10.5

9 20 2 230 6 6 8

10 20 8 230 2 2 8
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Table 1. Cont.

Run
Speed
(rpm)

Residence
Time (min)

Temperature
(˝C)

Nanoclay
Loading (%)

Compatibiliser
Loading (%)

MFR
(g/10 min)

11 40 5 210 4 4 8

12 20 8 230 6 2 10.5

13 60 8 190 2 2 10.5

14 60 2 230 6 2 8

15 20 2 190 2 2 8

16 60 2 190 2 6 8

17 40 5 210 4 4 10.5

18 60 2 230 2 2 10.5

19 20 2 190 0 2 8

20 40 5 210 0 4 8

21 60 8 230 0 6 10.5

The polymer nanocomposite output from each DoE was used to investigate the mechanical properties,
morphology, and rheology [21], as well as the NIR studies reported here.

2.3. Production of Test Specimen

The near infrared spectroscopy measurements were performed on samples from the DoE runs using
plates with a thickness of 2 mm. For the production of these plates a hydraulic vacuum press machine
(Collin 200 PV, Dr. Collin, Ebersberg, Germany) was used.

2.4. Mechanical Properties

Tensile testing was performed according to BS EN ISO 527-1: 1996 using an Instron 5564 Universal
Tester (Instron, Buckinghamshire, UK) with a clip-on extensometer at a cross-head speed of 50 mm/min.
At least five tests were completed for each run.

2.5. Structural Analysis

A Philips X’Pert type PW3040 was used to determine the D-spacing between clay platelets in the
materials. The X-ray beam was Cu Kα1 (λ = 1.5418 Å), and data were collected from 1˝ to 40˝ [21].

For the transmission electron microscopy (TEM), nanotomes of 50–70 nm thickness were cut and
investigated using a Philips CM100 TEM operated at an accelerating voltage of 100 kV. The cutting
of the nanotomes was performed on a strip with 0.5 mm ˆ 0.5 mm ˆ 5 mm of the nanocomposite
embedded in a cured epoxy resin using a DiATOME diamond knife. One sample was analysed for each
DoE Run [21].
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2.6. Rheological Investigations

To gain insight into the shear and extensional flow behaviour of the various compounds, rheological
investigations have been undertaken to assess the effect of the dispersed nanoparticles on the flow.
The analysis was performed on the GeminiTM 200 Advanced Rheometer (Malvern Instruments Ltd.,
Malvern, UK) operated with parallel plate geometry at a shear rate of 0.01 to 100 s´1 [21].

2.7. Fourier Transform Near Infrared (FT-NIR) Measurements

For NIR measurements a Fourier transform near infrared (FT-NIR) spectrometer of i-Red Infrared
Systems with a probe in transmission mode was used. The spectrometer operates at a spectral range
of 12,000–3800 cm´1 (833–2632 nm) and with a resolution of 1.5 cm´1. The probe was connected
to the spectrometer using fiber optics and the spectral data was collected with near infrared process
spectrometer software (NIPS). The chemometric evaluation of the measured spectra was carried out
using the Thermo GRAMS/AI software package from Thermo Fisher Scientific.

For a single spectrum, 50 scans (10 scans per second) were averaged. For each setting, 5 spectra were
used to create a chemometrical model. To avoid drift effects caused by environmental or other parasitic
effects, the measurement settings were chosen randomly.

2.8. Evaluation of NIR Data

The key element of chemometric modelling is to find relations between the composition of the sample,
particle size, and/or mechanical properties. This procedure is extensive, due to the fact that NIR detects
combinations of vibrations and overlapping bands. Therefore, a statistic calculation of a chemometric
model is necessary to find relations between spectral data and properties. The difficulty in building a
chemometric model is the problem of finding the appropriate algorithm, preprocessing method, and the
wavelength range in which the desired property is imaged significantly. Therefore, NIR measurements
require reference investigations to achieve this link between mechanical properties and spectral data. It
is of immense importance for the accuracy of the chemometric model that these values be as precise as
possible [19,20].

The multivariate data applied by NIR spectra are multi-dimensional (n-dimensional space) and it
is therefore necessary to project the data on a two dimensional plane. This procedure is defined
mathematically as an eigenvalue problem [23]:

Z ¨ e “ e ¨ λ (1)

where Z: a square matrix (composed of NIR spectral data); e: eigenvector; λ: eigenvalue (composed of
the reference values).

All performable evaluation methods, such as principal component analysis (PCA), principal
component regression (PCR), or partial least squares (PLS 1 and PLS 2) basically work with this
approach. It is advantageous to exclude some regions with irrelevant spectral information. This can be
done by calculating an absorption spectra from two different spectra. This absorption spectrum shows
those wavelength regions with the highest difference and preferably low signal noise. This region can
then be chosen to achieve highly correlating chemometrical models [23].
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Pre-processing is often beneficial in getting rid of parasitic effects, such as light straying caused by
irregularities in the specimen, which lead to different path lengths when the light passes through the
sample. A way to achieve a correction of these varying path lengths is to normalize the spectra to correct
simple nonlinearities or to use algorithms, such as standard normal variate transformation (SNV) or
multiplicative scatter correction (MSC) [23].

The different samples were measured, pre-treated, and then the PLS 1 algorithm was used to generate
a linear calibration model for calculating the responses from the measured NIR data using reference
values. To gain information about the performance of a model, a cross validation was performed.
Cross validation provides the probability to estimate how accurately a predictive model will perform
in practice. One round of cross-validation involves partitioning a sample of data into complementary
subsets, performing the analysis on one subset (called the training set, which is usually the larger one),
and validating the analysis on the other subset (called the testing set). To reduce variability, multiple
rounds of cross-validation are performed using different partitions, and the validation results are averaged
over the rounds. The principle of cross validation can be seen in Figure 1.
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Figure 1. Principle of cross validation (according to Lohninger [23]).

The quality and the predictive ability of the model is rated basically with the coefficient of
determination R2 and the root mean square error of cross validation (RMSECV). R2 (values between
0 and 100%) shows the correlation of the NIR data with the reference values of the response parameter.
The coefficient of determination R2 should lie above 90% for quantitative calculation. Additionally, a
precise model would have a RMSECV as low as possible. The number of factors used is determined
by the number of process parameters (e.g., temperature, mixing speed, etc.) having an impact on the
investigated property. Nevertheless, too many factors may lead to chemometric models that are less
stable [24].

RMSECV and R2 are calculated as follows:
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Where Ya is the actual measurement value; Yp is the predicted value; Y ,
“

Y are the mean values.
The predicted values are then calculated according to the eigenvalue problem explained further.

Z ¨ e “ e ¨ Yp (3)
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3. Results and Discussion

Generally, a run was neglected for a calculation if it significantly decreased the quality of the
chemometric model. Five of the 23 runs presented in this paper were neglected—this is statistically
acceptable. A neglect from single runs is sometime necessary due to the fact that some material
properties, e.g., G1, are very sensitive on variations in process parameters, e.g., temperature, sample
taking, and point-of-measuring, leading to large deviations in single measured values. Keeping
such “inaccurate runs” can lead to non-correlating spectral data and consequently to less accurate
chemometric models.

3.1. Correlation of NIR Spectroscopy with Tensile Strength [24]

A very good correlation of the tensile strength and NIR spectra was achieved by designing an
optimized chemometric model. The chosen spectral pre-treatment methods were mean center and SNV.
This model gives an excellent coefficient of determination R2 = 95.89% with a RMSECV of 0.5 MPa
and a factor number of 6. The NIR spectral data and the tensile strength for run 3 did not correlate well
and, thus, the model was calculated without this data to improve the quality of the chemometric model.
Figure 2 shows the results for the predicted tensile strength from NIR data versus the measured values.
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3.2. NIR Spectroscopy with Young’s Modulus [24]

The second response of interest is the Young’s modulus. A very good correlation was obtained
by optimizing the chemometric model with mean centering and normalization. The coefficient of
determination, calculated with a factor number of 6, was R2 = 93.29% with a RMSECV of 18.8 MPa.
Figure 3 shows the measured Young’s modulus versus the predicted values from the chemometric model.
No run had to be excluded for this calculation.
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3.3. NIR Spectroscopy with D-Spacing

The third response of interest is the D-spacing obtained by XRD measurements. This measurement is
useful for characterizing nanocomposites and is related to the distance between layered silicate tactoids.
The chemometric model was optimized with mean centering and multiplicative scatter correction
(MSC) [24]. The coefficient of determination obtained was R2 = 92.25% (factors = 6) with a RMSECV
of 0.8 A. Figure 4 shows the results of the measured and calculated values. Runs 1, 10, 15 did not
correlate well and were, thus, not included in this set. The reasons for this has been explained earlier.Materials 2015, 8 9 
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Although this measurement is the standard investigation method for the characterization of the
interparticle distance of the silicate layers, it is time consuming and expensive. The chosen spectral
pre-treatment methods were mean centering and MSC. With the use of five factors, the coefficient of
determination (R2) was calculated to be 92.88% with a RMSECV of 70. Figure 6 shows the actual and
calculated data. During the chemometric modelling run, 3 and 10 were excluded. The reasons for this
have been explained earlier.Materials 2015, 8 10 
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3.5. NIR Spectroscopy with G1 at 0.01 Hz

We also decided to correlate the rheological measurements with the near infrared spectroscopic data.
G1, at a frequency of 0.01 s´1, was correlated and the spectral pretreatment method chosen was mean
centering. With the use of seven factors, the coefficient of determination was calculated as R2 = 93.94%
with a RMSECV of 92 MPa (see Figure 7). During the chemometric modelling runs 7, 8, 19, 20,
and 21 had to be excluded. The correlation values seem at first sight quite usable, however the high
RMSECV shows the high variation of the model. The good value for the coefficient of determination
results primarily from the data points at about 1200 MPa. This phenomenon is the so-called leverage
effect. Through the two values that are very far away from the rest of the data points, an apparent linearity
is simulated, which actually does not exist. If these two data points are excluded, no correlation can be
calculated. This example also shows that the coefficient of determination should not be used alone [20].
A possible reason for the non-correlation with the recorded spectral data could be the temperature and
aggregate state dependency. G1 is the dominant part in the solid phase of the polymer. It decreases
considerably with increasing temperature. Since spectral data and the storage modulus were measured at
different temperatures and in different aggregate states, a correlation can only be found if all investigated
composites are changing by the same factor. If this is not completely the case, no or only bad correlations
can be found.Materials 2015, 8 11 
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Figure 7. Predicted G’ by NIR versus measured.

3.6. NIR Spectroscopy with G11 at 0.01 Hz [24]

The other rheological response of interest was G11 at a frequency of 0.01 s´1. The chosen spectral
pretreatment methods were mean centering and MSC. With the use of 9 factors R2 was calculated to
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be 92.56% with a RMSECV of 13 MPa (see also Figure 8). During this chemometric modelling runs
4, 6, 11, 19 and 20 had to be excluded like mentioned before due to small variations during processing
and measuring. One possible cause, as already mentioned at the discussion of the storage modulus,
could be the temperature and the aggregate state dependency. The loss modulus is the dominant part
in the molten phase of the polymer. Although there is a temperature dependency, it is not as distinct
compared to the storage modulus. Even though the spectral data and the loss modulus were measured at
different temperatures and in different states, the correlation is better here due to the lower temperature
and aggregate state dependency. By removing the above-mentioned single runs, a useful model can
be calculated.Materials 2015, 8 12 
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4. Conclusions

This work shows that the tensile strength, the Young’s modulus, the D-spacing and the interparticle
distance per vol. % clay exhibit good correlations with predictions from near infrared spectroscopy
measurements. With some restrictions, due to the fact that rheological measurements are very sensitive
to process history, it was even possible to correlate the rheological data G11. A correlation for G1 could
not be realized due to the stronger temperature and aggregate state dependency compared to G11.

Very promising chemometric models have been obtained. Although the properties and the spectra
were not collected from the same physical samples, they were obtained on samples from the same
processing runs. The fact that XRD and TEM measurements are expensive and time consuming, the
possibility of characterizing samples by NIR is the most important insight of these investigations.
Although the correlation with the rheological data required an exclusion of more data points and an
increase in the factor number, it could be shown that the NIR technology is able to indicate rheological
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changes in polymer nanocomposites. Because of the certainty that the factor number is more or less
reflecting the number of external coefficients, such as temperature or pressure having an impact on
the investigated properties, it can be seen that rheological data are more prone to external influences
compared to the other investigated properties.

Since near infrared measurements can be made in-line, directly in the melt, real time characterization
and advanced quality control during production of nanocomposites could be achieved. This would
lead to faster development of new nanocomposites and their components, whereas the processing of
the composites would be optimised with reduced costs. However, implementing such a system would
need to be approached with care, to ensure accurate assessments are being made. In practice it
would be beneficial if all the spectral data where measured directly in the melt during the production
of the nanocomposites. The DoE should cover the area of material property, which is of major
interest regarding quality control. Nevertheless, it must be mentioned that the accuracy of a calculated
chemometric model can, at most, be as good as the reference values.
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