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Recently, considerable interest has been directed to red-fluorescence photodiagnosis of brain and other tumours during
surgery using the protoporphyrin IX natural precursor, 5-aminolaevulinic acid. In the present study we focused on the role of
the rate-limiting enzyme porphobilinogen deaminase in glioma C6 cell activity, differentiation and sub-cellular distribution.
Over-expression of the human housekeeping porphobilinogen deaminase in the glioma cells, using the housekeeping-
porphobilinogen deaminase plasmid, induced a G1 cell cycle attenuation accompanied by increases in enzyme activity and c6
differentiation toward astrocytes. Visualisation of subcellular localisation of the porphobilinogen deaminase using the
independent techniques of fluorescence immuno-staining with specific anti-human porphobilinogen deaminase antibodies and
cellular expression of porphobilinogen deaminase fused to green fluorescent protein, revealed (unexpectedly) a major fraction
of porphobilinogen deaminase in the nucleus and only a minor fraction in the cytoplasm. Both C and N terminals of
porphobilinogen deaminase fused to green fluorescent protein revealed a major fraction of the newly synthesized fused
porphobilinogen deaminase in the nucleus. Furthermore, newborn rat brain cells grown in a primary culture showed the same
localisation pattern of porphobilinogen deaminase in the nuclei. Stimulation of C6 glioma cell differentiation by butyrate
induced a marked decrease in porphobilinogen deaminase both in the nucleus and in the cytoplasm as determined by
Western blotting and fluorescence immuno-localisation. These findings suggest a possible dual role for housekeeping
porphobilinogen deaminase in fast dividing glioma cells, one related to the porphyrin synthesis pathway and another coupled
to nuclear function, which might be linked to tumorigenesis.
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Malignant gliomas accumulate fluorescing protoporphyrin intra-
cellularly after exposure to the natural precursor 5-aminolevulinic
acid (ALA), similar to a variety of tumours and leukemic cells
(Malik and Lugaci, 1987; Malik et al, 1989, 1996, 1998; Peng et
al, 1997a,b; Stummer et al, 1998a,b; Kennedy et al, 1990; Kennedy
and Pottier, 1992). This phenomenon has been exploited for
complete removal of malignant gliomas (Stummer et al, 1998a,b).
The intraoperative identification of tumor tissue was performed
by application of ALA prior to surgery and subsequent observation
with the operating microscope with excitation using a violet-blue
(375 – 440 nm) xenon light, a 455-nm long-pass filter and verifica-
tion by analysis of fluorescence spectra. Protoporphyrin-
fluorescence guided-resection resulted in residual tumour removal,
which improved patient prognosis (Stummer et al, 1998a,b).

The biosynthetic pathway of protoporphyrin and heme (Kennedy
et al, 1990; Peng et al, 1997a,b) consists of several enzymatic steps: (1)
Glycine + Succ.CoA ? 5-aminolevulinic acid (ALA) ? porphobili-
nogen (PBG); (2) 4PBG ? uroporphyrinogen ? copropor-
phyrinogen ? protoporphyrin + Fe++ ? heme. All heme synthesis
enzymes are exclusively localized in the cytoplasm except for the first
enzyme (ALA-synthase) and the two last enzymes (protoporphyrino-
gen oxidase and ferrochelatase) that are known to function as

mitochondrial enzymes. Jorgensen et al (2000) recently showed in
paraffin embedded specimens that porphobilinogen deaminase
(PBGD), the most studied enzyme in heme synthesis, is localized in
the cytoplasm of rat kidney. Supplementation of ALA circumvents
the rate-limiting enzyme ALA synthase (Malik and Lugaci, 1987)
and enhances the accumulation of protoporphyrin if the activity of
the PBGD, at the second check point, is sufficiently high. One possi-
ble rationale for the specificity of protoporphyrin accumulation in
rapidly dividing cancer cells is that their enhanced metabolism
demands additional heme, which is needed for increased aerobic
ATP supply connected to the energy demands of the tumour. Malig-
nant transformation of various cell lines by retrograde transforming
viruses and other means leads to increased PBGD activity (Rasetti et
al, 1963; Kondo et al, 1993). Similarly, the malignant lymphoproli-
ferative diseases of chronic lymphocytic leukaemia and lymphoma
were found to have higher PBGD activity in their peripheral lympho-
cytes than normal control subjects (Leibovici et al, 1988). However, it
is unclear whether the increase in PBGD activity was caused by malig-
nant transformation or whether it was dependent on the increased
growth rate.

The purpose of the present study is to elucidate the role of
PBGD in C6 glioma cells, focusing on the correlation between cell
proliferation and subcellular localisation of the protein. Our find-
ings indicate possible nuclear functions of PBGD, which may be
involved in the proliferation and differentiation of glioma cells
apart from the basic cytoplasmic enzymatic activity of PBGD in
porphyrin synthesis.

E
xp

erim
en

tal
T

h
erap

eu
tics

Received 22 March 2001; revised 20 November 2001; accepted 10
December 2001

*Correspondence: Z Malik; E-mail: malikz@mail.biu.ac.il

British Journal of Cancer (2002) 86, 1006 – 1011

ª 2002 Cancer Research UK All rights reserved 0007 – 0920/02 $25.00

www.bjcancer.com



MATERIALS AND METHODS

Cell culture

Rat C6 glioma cells were grown in a DMEM medium (Biological
Industries, Kibbutz Beit-Haemek, Israel), supplemented with 10%
foetal calf serum and antibiotics, on tissue culture plates (Corning,
Staffordshire, UK) and incubated at 378C in a humidified atmos-
phere with 8% CO2. The cells were recultured twice a week, using
Trypsin-EDTA for detachment.

Primary newborn brain cell culture

Newborn rats brains were removed under sterile conditions,
washed with PBS followed by trypsinisation under stirring for
10 min at room temperature. The supernatant was removed into
a 50 cc test tube containing foetal calf serum (Biological Industries,
Beit Haemek, Israel). After 10 min of centrifugation at 1200 r.p.m.,
the pellet was resuspended in DMEM supplemented with foetal calf
serum, L-glutamine and antibiotic. The primary cell culture was
plated for 20 h at the same conditions as the C6 cells.

Preparation of human PBGD cDNA expression vectors

The coding region of the erythrocyte PBGD cDNA was amplified
from a human spleen cDNA library in bacteriophage lGT10 (a gift
from P Sankhavarar, Yale University) using 5’-GAAGATCTATGA-
GAGTGATTCGCGTGGGTACC-3’ forward primer and 5’-GGAAT-
TCTTAATGGGCATCGTTAAGCTGCCG-3’ reverse primer. The
PCR product was used as a template for a PCR reaction using the
forward primer: 5’-GAAGATCTATGTCTGGTAACGGCAATGCG-
GCTGCAACGGCGGAAGAAAACAGCCCAAAGATGAGAGTGAT-
TCGCGTGGGT-3’ and the reverse primer 5’-GGAATTCTTA-
ATGGGCATCGTTAAGCTGCCG-3’. The PCR product was inserted
into the pLY-3 plasmid (pEGFP-C1 plasmid [Clontech, Palo Alto,
CA, USA]) we created using SmaI and Eco47III restriction enzymes
that lacked the green fluorescent protein (GFP) coding region, yield-
ing a new plasmid called pHK-PBGD plasmid, which expresses the
housekeeping PBGD (HK-PBGD) in mammalian cells.

The PBGD coding region was cut out from pHK-PBGD using
BglII and EcoRI restriction enzymes and it was ligated to pEGFP-
C1 or pEGFP-N1 (Clontech, Palo Alto, CA, USA) in frame to
the C- or N-terminal of GFP. The ligation product expressed EGFP
fused to HK-PBGD. Constructs were verified by sequencing (Weiz-
mann Institute Biological Services, Rehovot, Israel).

Cell transfection with mitochondrial-GFP and
PpIX localisation

For transient transfection, C6 cells were incubated with serum-free
medium for 40 min followed by 6 h incubation with transfection
solution containing 0.65 mg ml71 of mitochondrial GFP plasmid
(pEGFP-Mito) (Clontech, Palo Alto, CA, USA) (encoding the
GFP which translocalised specifically into mitochondria) and
6.7 mg ml71 lipofectamine reagent (GIBCO-BRL, NY, USA) in
DMEM. Following transfection, the cells were transferred to a rich
medium containing serum and antibiotic. Six hours before detec-
tion of PpIX localisation in the transfected cells, the cells were
incubated with serum-free medium containing 0.6 mM amino-
levulinic acid (Sigma, St. Louis, USA).

Stable and transient cell transfection

The pHK-PBGD plasmid was transfected into C6 cells, using lipo-
fectamine reagent (GIBCO-BRL, NY, USA) according to the
manufacturer’s protocol. For stable transfection, a selective
medium containing 850 mg ml71 neomycin, also known as gene-
ticin 418 (GIBCO-BRL, NY, USA) was added to the cells 24 h

post-transfection. The surviving neomycin-resistant colonies on
each plate were then subcloned by dilution and grown to establish
the sub-lines. For selection maintenance, the cells were selectively
grown in a medium containing 100 mg ml71 geneticin. For PBGD
fused to GFP as a transient transfection, the procedure was exactly
as mentioned above, without adding neomycin. The cells were
examined 24 h post transfection.

Western blotting

Proteins were quantified using the Bradford assay (Bio-Rad, CA,
USA) and resolved in a 12% polyacrylamide gel. Thereafter,
proteins were transferred onto nitrocellulose membranes using a
semi-dry transfer apparatus (Bio-Rad, CA, USA). After blocking
of the membranes with 5% skim milk and 0.06% Tween-20 in
PBS, membranes were incubated with primary PBGD antibody (a
generous gift from HemeBiotech, Sweden), and goat anti-rabbit
secondary antibody (Jackson Immuno-Research, Pennsylvania,
PA, USA) in the same solution. Immuno-reactive proteins were
visualised with an enhanced chemiluminescence detection kit
(Amersham, Little Chalfont, UK) used as recommended by the
manufacturer.

PBGD, glial fibrilary acid protein (GFAP) and vimentin
immunolabelling, and GFP – PBGD detection

Cells were seeded in eight-well slide chambers. Twenty-four hours
later, cells were fixed using 4% paraformaldehyde and subse-
quently treated with 0.5% Triton X-100 for 30 min. Blocking
was carried out with 6% skim milk, 3% BSA5and 0.2%
Tween-20 in 100% FCS. Cells were then exposed to one of the
next primary antibodies overnight at 48C: Rabbit polyclonal
anti-PBGD antibody (HemeBiotech, Stockholm, Sweden), rabbit
polyclonal anti-GFAP antibody (Dakopatts, Glostrup, Denmark)
or mouse monoclonal anti-vimentin antibody (Dakopatts, Glostr-
up, Denmark) Reacting rhodamine-conjugated anti-rabbit and
anti-mouse antibodies (Jackson Immuno-Research, Pennsylvania,
PA, USA). The cells were visualized with fluorescence microscopy
(Olympus AX70).

Fluorescence microscopy

Fluorescence microscopy was performed using an Olympus AX70
microscope attached to a SpectraCubeTM SD-200 spectral imaging
system (Applied Spectral Imaging, Migdal HaEmek, Israel) oper-
ated as described by Malik et al (1996). Photography was carried
out with an 660 objective. For Rhodamine the excitation was at
570 nm and an image acquired at 610 – 700 nm; for GFP, excita-
tion was at 420 nm and emission at 515 – 630 nm.

PBGD enzymatic activity assay

PBGD is assayed by determining the absorbance of uroporphyrin
that is formed by light-induced oxidation of uroporphyrinogen,
which is the immediate product of the enzymatic deamination.
106 C6 cells were detached from plates 24 h after plating, and
resuspended in PBS without Ca2+/Mg2+. After centrifugation, the
pellet was resuspended in 1 ml 50 mM tris (pH 8.2). 250 ml lysate
were incubated with an equivalent amount of Triton-X-100
contained tris buffer and 100 ml of 0.5 mM porphobilinogen
(PBG) (Porphyrin Products, UT, USA) for 1 h at 378C with shak-
ing. The reaction was stopped by addition of 10% TCA under
exposure to ambient room light at room temperature for
10 min. After 10 min centrifugation (3300 r.p.m.), the supernatant
was collected to the spectrofluorometer (ex. 409 nm, em. 595 nm)
(Spectronic Instruments, Leeds, UK). PBGD specific activity is
expressed as pmol uroporphyrin formed per mg protein per 1 h
units.
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Nucleus – cytoplasm fractionation

C6 cells were harvested and resuspended in Tris-HCl buffer supple-
mented with EDTA, EGTA and the antiproteases leupeptine,
aprotinine, PMSF and DTT (Sigma, St. Louis, USA). For
nucleus – cytoplasm fractionation, cells were homogenised on ice
followed by centrifugation at 2500 r.p.m. for 10 min (twice), and
the nuclear fraction was resuspended in the above buffer. For
Western blotting of each fraction, Triton-X-100 was added and
the samples were immersed in nitrogen liquid and thawed at
378C intermittently, followed by centrifugation at 14 000 r.p.m.
for 20 min.

RESULTS

The capacity of C6 glioma cells to synthesize protoporphyrin
following ALA supplementation is revealed in Figure 1; protopor-
phyrin accumulated in the mitochondria and cytosol. The
mitochondria were identified by mitochondrial-targeted GFP (the
GFP contains a mitochondrial targeting sequence directing the
protein to translocalize into mitochondria), which partially co-
localizes with the red protoporphyrin fluorescence.

In order to affirm the postulated association between PBGD
activity, C6 cycle and tumour outgrowth, we over-expressed house-
keeping PBGD in C6 glioma cells by stable transfection with the
pHK-PBGD plasmid. Western blotting of C6 endogenous PBGD
as well as of stable transfected cells over-expressing PBGD, shows
an intense PBGD expression in the transfected cells (Figure 2A).
As an outcome of over-expression, PBGD activity was increased
fourfold from 9 to 38 pmol uroporphyrin mg71 protein per 1 h
(Figure 2B). The increased activity in PBGD was accompanied by
attenuation at the G1 phase of the cell cycle as revealed by flow
cytometry (Figure 3A). The G1 value of the PBGD transfected cells
was 63% (Figure 3, A2) in comparison to 40% of control C6 glio-
ma cells (Figure 3, A1) or those transfected with a control pEGFP
plasmid (data not shown). The increase in G1 population of the
PBGD over-expressing cells was the result of a marked reduction
in the S phase fractions. No significant S/G2 transitions were
revealed in this experiment. The accumulation of C6 cells in the
G1 phase may represent a differentiation process leading to differ-
entiated astrocytes. The transition from a vimentin producing
phenotype of highly proliferating control cells to GFAP intermedi-
ate filament phenotype in the PBGD over-expressing cells (Figure
3B) indicates a differentiation process into astrocytes (Toda et al,
1994). An intense vimentin and basal GFAP staining was observed
in non-transfected cells (Figure 3, B2 and B1, respectively), while
GFAP immunofluorescence dramatically increased upon PBGD
over-expression and the vimentin was down regulated (Figure 3,
B3 and B4, respectively). The immunofluorescence of both vimen-

tin and GFAP was revealed in the perinuclear region and in
filametous structures, and the intense satellite-like structure of
GFAP is known as typical to astrocytes.

These results suggested that we attempt to visualise PBGD at the
sub-cellular level. To that end we used fluorescence immuno-
labelling using specific human PBGD antibodies and cellular
expression of the fusion protein GFP-PBGD. These two indepen-
dent techniques allowed visualisation of the subcellular
localisation of endogenous as well as over-expressed PBGD in the
C6 glioma cells (Figures 4 and 5). As was expected, a fraction of
the PBGD immuno-fluorescence complex was found in the cyto-
plasm (Figure 4B,C). However, as can be seen in Figure 4B,C,
the major fraction of the PBGD immuno-complex was detected
in the nucleus. Nuclear PBGD localisation was a typical result in
over 90% of the C6 cells in all experiments. Furthermore, newborn
rat brain cells grown for 20 h as a primary culture showed the
same nuclear localisation of PBGD (Figure 4D).

Over-expression of PBGD fused to GFP (at either the C or N
terminals) in the glioma cells revealed that the major fraction of
the newly synthesised fused proteins is localised in the nucleus
(Figure 5C,D). This confirmed the results found using immuno-
labelling. Control cells transfected with wild-type GFP alone
showed diffused distribution of the label throughout the cell
(Figure 5A), while control NLS-GFP (Figure 5B) was localised
specifically in the nucleus.

These results pointed to a possible dual role for PBGD in rapidly
dividing cells, one that is related to the porphyrin synthesis path-
way and another coupled to nuclear function. Therefore, the C6
glioma cells were stimulated by butyrate, to induce differentiation,
and the nuclear vs cytoplasmic distribution of PBGD was analysed
using Western blotting (Figure 6). In the control uninduced glioma
cells, the endogenous PBGD was comparatively high both in the
isolated nuclei and the cytoplasmic fraction. After 24 h of butyrate
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Figure 1 Co-localisation of PpIX and mitochondrial-GFP in C6 glioma
cells. The cells were transiently transfected with mitochondrial-GFP plasmid
pEGFP-Mito and incubated for 6 h with 0.6 mM ALA. The green fluores-
cence of GFP and the PpIX localisation in the cells were shown by green
and red filters as detected by fluorescence microscopy (left and right
panels, respectively) with an 660 objective.
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Figure 2 Over-expression of PBGD in C6 glioma cells. (A) Western
blotting of HK-PBGD. (B) The enzymatic activity of PBGD in control C6
and over-expressing cells (**P50.005, as measured from five different
experiments).
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induction, PBGD decreased both in the nuclear fraction as well as
in the cytoplasmic fraction. This trend was further seen after 48 h,
at which time the total PBGD was reduced and it was distributed
between the nucleus and cytosol. Fluorescence immuno-localisation
of the PBGD in the butyrate-stimulated cells revealed a marked
reduction in the nucleus and the cytoplasm (Figure 7). This result
of pronounced nuclear PBGD localisation in the undifferentiated
cells, and reduced nuclear and cytoplasmic distribution was found
in all experiments that were carried out.

DISCUSSION

The regulatory role of porphobilinogen deaminase in PpIX synth-
esis following ALA administration is considered the rate-limiting
determinant and thus porphobilinogen deaminase is the key
enzyme controlling photodiagnosis and photodynamic therapy
(Gibson et al, 1998). Transient transfection of cells with the cDNA
of PBGD was successful in elevating enzyme activity in both the
human mammary tumour cell line MCF-7 and the human
mesothelioma cell line, H-MESO-1, but this did not result in a
comparable difference in the levels of PpIX (Hilf et al, 1999).
PBGD has always been considered exclusively as a cytoplasmic
enzyme of the heme biosynthesis pathway (Sassa, 1990). Jorgensen
et al (2000) have shown immuno-histochemical localisation of
PBGD in various rat tissues, in which PBGD was unevenly distrib-
uted among various cell types in a given tissue. However, nuclear
localisation was not indicated. Interestingly, our present results
reveal that a major fraction of the PBGD is localised specifically
to the nucleus, while a relatively minor fraction is found in the
cytoplasm. Since our study discusses an additional, novel, function
of a known protein, which derived from its sub-cellular localisa-
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Figure 3 The effect of PBGD over-expression on the cell cycle (A) and
GFAP/vimentin intermediate filaments phenotype (B) in C6 glioma cells.
A1- cell cycle of C6 control cells, A2- C6 cells over-expressing the house-
keeping PBGD. The GFAP/vimentin immuno-staining is shown in B. B1, B3
– immuno-staining with rabbit polyclonal anti-GFAP antibody and B2, B4 –
mouse monoclonal anti-vimentin antibody immuno-staining as detected by
fluorescence microscopy.

Figure 4 Nuclear localisation of PBGD in C6 cells detected by fluorescence immuno-labelling. (A) is a control in which anti-PBGD antibody was with-
drawn from the samples, (B) is the endogenous PBGD, (C) is the over-expressing human housekeeping PBGD and (D) is the endogenous PBGD immuno-
labelling of newborn primary brain cells. The nuclear vs cytoplasmic distribution of PBGD was a typical result in all experiments, which in most of the C6 cells
was highly pronounced.

Figure 5 Over-expression of human housekeeping PBGD fused to GFP.
Green fluorescence of C6 cells expressing GFP fused to the N-terminal
(C), or to the C-terminal (D), 24 h post-transfection. The negative and
positive controls for nuclear GFP localisation were cells expressing wild
type GFP-N1 plasmid revealing diffused fluorescence (A) and cells
expressing the SV-40 NLS GFP plasmid showing nuclear localisation (B).
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tion, we confirmed the localisation findings also by immuno-label-
ling and GFP-tagging. The independent localisation methods, both
demonstrating a nuclear fraction of PBGD, strongly indicate a
nuclear-specific transport and a possible nuclear function of this
protein. Nuclear localisation was seen for both the endogenous
PBGD and the over-expressed human-housekeeping PBGD in
glioma cells. Tagging the GFP to either the N or C termini showed
the same results, which means that the PBGD nuclear localisation
signal is not located in the ends of the protein.

It is well documented that nuclear localisation signals often
contain lysine – arginine inner repeats separated by non-specific
residues (Martelli et al, 1999). Sequence analysis of the human
PBGD protein revealed RR X5 RK X17 RK repeats between resi-
dues 149 and 180, which may fulfil the requirements for a nuclear
localisation signal. Nuclear localisation of PBGD is consistent with
its involvement in G1 attenuation. The enzymatic activity of
PBGD in the over-expressing cells was increased fourfold, and
in addition, G1 cell cycle attenuation was revealed. It is well
known that cells that pass the G1 phase are committed to
complete cell division. Regulation of the G1 phase in a cell cycle
is complex and involves many different families of proteins
(Donjerkovic and Scott, 2000), some of which are cell-type speci-
fic and thus related to cell differentiation (Coffman and

Studzinski, 1999). Our model system, based on a rapidly prolifer-
ating rat C6 glioma cell line which has oligodendrocytic,
astrocytic, and neuronal properties (Parker et al, 1980; Segovia
et al, 1994), is widely used to study differentiation processes.
Astrocyte-like differentiation involves a shift from vimentin synth-
esis toward glial fibrillary acidic protein (GFAP) production
(Roymans et al, 2000) followed by morphological changes. Our
present results show typical morphological changes to an astro-
cyte-like phenotype revealing perinuclear GFAP satellite-like
formation in the PBGD transfected cells. This result correlates well
with a reduction in vimentin synthesis. Since these findings are
joined both to G1 attenuation and to C6 differentiation in
PBGD-transfected cells, we assume that PBGD plays an additional
role in cell differentiation or in other cellular processes. Piatigor-
sky provided evidence for multiple protein functions for a single
protein involved in different cellular mechanisms (Piatigorsky,
1992). The d-aminolevulinic acid dehydratase, which is also an
enzyme that participates in the heme biosynthesis pathway, has
been shown to play an additional role as inhibitor of the 26S
proteasome (Guo et al, 1994).

Schoenfeld showed that increased activity of PBGD is strongly
correlated with an increased growth rate in both non-malignant
and malignant cell lines (Schoenfeld et al, 1988). The power of
elevated activity of PBGD to produce PpIX was clinically demon-
strated for malignant gliomas (Stummer et al, 1998b); oral cavity
cancer (Leunig et al, 2000a); colonic and gastrointestinal dysplasia
(Stepp et al, 1998); peritoneal endometriosis (Hillemanns et al,
2000); laryngeal neoplasms (Leunig et al, 2000b); malignant lesions
of the oesophagus (Hinnen et al, 1998); lower urinary tract
tumours (Kriegmair et al, 1999); bladder cancer (Kriegmair et al,
1996); malignant mucosa in head and neck cancer (Betz et al,
1999); Barrett’s oesophagus and adenocarcinoma (Stepp et al,
1998); basal and squamous cell carcinoma (Orenstein et al, 1995,
1996, 1997; Malik et al, 1998) and coetaneous lymphoma (Oren-
stein et al, 2000).

A direct correlation between the intracellular accumulation of
PpIX and malignancy could not always be found, as in the case
of Barrett’s esophagus and adenocarcinoma. However, higher heme
biosynthetic enzyme activities (i.e. PBGD) and lower PpIX precur-
sor concentrations were found in squamous carcinoma (Hinnen et
al, 2000).

Consistent with the increased activity of PBGD in proliferating
cells, our results show decreased nuclear and cytoplasmic PBGD
levels in differentiating cells. Additionally, Lindberg showed
recently that mutant mice lacking the PBGD gene exhibit a marked
decrease in large-caliber axons and manifest general motor neuro-
pathy (Lindberg et al, 1999). This reduced activity of PBGD
correlates with an additional role for PBGD in differentiation.

Photodiagnosis and protoporphyrin IX-dependent phototherapy
are highly successful techniques with a wide range of clinical
therapeutic application (Peng et al, 1997a,b). On the basis of the
present findings, we may conclude that the intracellular changes
in PBGD levels is intimately connected to differentiation. The
markedly increased capacity of tumours to produce and
accumulate PpIX, which is directly associated with elevated PBGD
activity, possibly reflects an intrinsic virtue of the tumour
metabolic capacity.
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Figure 6 Western blot detection of PBGD localisation in C6 glioma cells
during differentiation. PBGD in nuclear (upper panel) and cytoplasmic
(lower panel) fractions was detected after 24 and 48 h of 2.5 mM

butyric-acid treatment.

No treatment

24 h. butyrate

Figure 7 PBGD immuno-localisation in C6 glioma cells during differen-
tiation. Intact cells are shown in the upper panel, while cells treated for
24 h with 2.5 mM butyric-acid are shown in the lower panel. This result,
of pronounced nuclear PBGD localisation in undifferentiated cells and a
reduced nuclear and cytoplasmic distribution, was found in all experiments
that were carried out.
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