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Abstract: LncRNAs impart crucial effects on various biological processes, including biotic stress
responses, abiotic stress responses, fertility and development. The apple tree is one of the four
major fruit trees in the world. However, lncRNAs’s roles in different tissues of apple are unknown.
We identified the lncRNAs in five tissues of apples including the roots, phloem, leaves, flowers,
and fruit, and predicted the intricate regulatory networks. A total of 9440 lncRNAs were ob-
tained. LncRNA target prediction revealed 10,628 potential lncRNA–messenger RNA (mRNA)
pairs, 9410 pairs functioning in a cis-acting fashion, and 1218 acting in a trans-acting fashion. Func-
tional enrichment analysis showed that the targets were significantly enriched in molecular functions
related to photosynthesis-antenna proteins, single-organism metabolic process and glutathione
metabolism. Additionally, a total of 88 lncRNAs have various functions related to microRNAs
(miRNAs) as miRNA precursors. Interactions between lncRNAs and miRNAs were predicted,
1341 possible interrelations between 187 mdm-miRNAs and 174 lncRNAs (1.84%) were identified.
MSTRG.121644.5, MSTRG.121644.8, MSTRG.2929.2, MSTRG.3953.2, MSTRG.63448.2, MSTRG.9870.2,
and MSTRG.9870.3 could participate in the functions in roots as competing endogenous RNAs
(ceRNAs). MSTRG.11457.2, MSTRG.138614.2, and MSTRG.60895.2 could adopt special functions in
the fruit by working with miRNAs. A further analysis showed that different tissues formed special
lncRNA–miRNA–mRNA networks. MSTRG.60895.2–mdm-miR393–MD17G1009000 may participate
in the anthocyanin metabolism in the fruit. These findings provide a comprehensive view of potential
functions for lncRNAs, corresponding target genes, and related lncRNA–miRNA–mRNA networks,
which will increase our knowledge of the underlying development mechanism in apple.
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1. Introduction

Long non-coding RNAs (lncRNAs) are a group of poorly conserved RNA molecules
that are longer than 200 nucleotides and have no protein encoding abilities [1,2]. They
interact with large molecules, such as DNA, RNA, and proteins. Other known functions
of lncRNAs consists of regulating protein modification, chromatin remodeling, proteins’
functional activity, and RNA metabolism in vivo through cis or trans activation at the tran-
scriptional, post-transcriptional, and epigenetic levels [3]. Most lncRNAs exhibit specific
spatial structures and spatiotemporal expression patterns. According to the positions of
lncRNAs relative to adjacent protein-coding genes in the genome, lncRNAs can be divided
into the following five types: sense lncRNAs, antisense lncRNAs, bidirectional lncRNAs,
intronic lncRNAs (incRNAs), and large intergenic lncRNAs (lincRNAs) [4–7].

In plants, lncRNAs are involved in diverse biological processes such as phosphate
homeostasis, flowering, photomorphogenesis, the stress response, and fertility [8,9]. As
previously reviewed in greater detail, they also play the following important roles: (1) being
processed into shorter ncRNAs [10]; (2) acting as both targets and endogenous target mimics
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for the miRNAs [11–14]; (3) repressing histone-modifying activities and directing epigenetic
silencing through interaction with specific chromatin domains [15–18]; (4) functioning as
molecular cargo for protein relocalization [19,20]; and (5) regulating post-translational
processes via protein modifications and protein–protein interactions [21].

LncRNAs can function during tissue development, during sexual reproduction, and
in response to external stimuli such as drought, salinity, heat stress, and infections in
plants [22–26]. NATs, HID1, APOLO, ASCO, COLDAIR, COOLAIR (Arabidopsis) [14,16,27–29],
MtENOD40 (Medicago truncatula) [19], LDMAR (rice) lncRNAs [30,31], which are associated
with diverse biological processes, were identified and their physiological functions were
initially demonstrated. Most of the knowledge on lncRNAs’ regulatory networks was
derived from animals and model plants. To date, only a few lncRNA mechanisms have
been revealed in apples, so little is known about the systematic and consensus lncRNA
regulatory networks. Further research into apple lncRNAs is warranted to elucidate the
regulatory networks of the lncRNAs in apples.

In the present study, we identified lncRNAs from five tissues of ‘Gala’ apples. A to-
tal of 9440 lncRNAs were obtained, some of which showed tissue-specific gene expres-
sion. The lncRNA–mRNA and lncRNA–miRNA–mRNA interaction-based functional roles
showed that these lncRNAs mediated the regulation of photosynthesis-antenna proteins,
single-organism metabolic process, glutathione metabolism, and flower coloration. These
findings enhance our understanding of the putative regulatory functions of lncRNAs in
apple development.

2. Results
2.1. Identification and Characteristics of lncRNAs in ‘Gala’ Apples

In total, 318.52 Gb of clean data were produced for the RNA-seq from roots, phloem,
leaves, flowers, and fruit of ‘Gala’ apples. After mapping them to the apple reference
genome, 147,848,711, 142,596,329, 145,428,347, 127,673,515, and 146,376,167 raw reads corre-
sponding to 119,295,520, 116,145,301, 99,284,229, 104,031,259, and 117,814,110 valid reads
were identified in the roots, phloem, leaves, flowers, and fruit from the RNA sequencing
(Table S1). On average, the ratio of valid reads, Q30, and GC content in the five libraries
were 78.4%, 94.5% and 46.0%, respectively (Table S2).

Not all reads obtained by RNA-seq were lncRNAs, and transcripts longer than 200 nt
with at least two exons were selected as lncRNA candidates. Further screened using coding
potential calculator (cpc)/coding-non-coding index (cnci)/protein family (pfam)/coding
potential assessment tool (cpat) was conducted, which differentiated protein-coding genes
from non-coding genes (Figure 1a). A total of 9440 lncRNAs were obtained from the five
tissues of ‘Gala’ apple. Intergenic lncRNAs, sense lncRNAs, antisense lncRNAs and intronic
lncRNA accounted for 73.9%, 15.1%, 7.7%, and 3.3% of them, respectively (Table S3 and
Figure 1b). The lengths of the lncRNAs ranged from 202 to 10,450 bp. The majority (49.53%)
of lncRNA’s lengths were around 400–600 bp (Table S4 and Figure 1b).

The Circos plot revealed a non-random distribution of lncRNAs in the chromosomes.
Some chromosomal regions had few lncRNAs, and some had a high density of lncRNAs.
The lncRNAs were more widely distributed in chromosomes 5, 10, and 15, which accounted
for 7.56%, 7.07%, and 6.85%, respectively, while chromosome 14 had the fewest, at 291.
Different types of lncRNAs on chromosomes had differences in their distribution char-
acteristics. Sense lncRNAs were mainly distributed at both ends of chromosomes. They
had the highest number of lincRNAs and the distribution was dense. Intronic lncRNAs
were sparsely distributed on chromosomes, but the distribution density varied greatly in
different regions. Antisense lncRNAs generally tended to be located at one end of the
chromosome (Table S4 and Figure 1c).
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Figure 1. Screening and classification of lncRNAs. (a) Results of screening using cnci, cpc, pfam, and 
cpat. (b) Classification of lncRNAs. (c) Distribution of lncRNAs identified in chromosomes (green: 
sense lncRNAs; red: lincRNAs; blue: intronic lncRNAs; grey: antisense lncRNAs). 

2.2. Comparative Analysis of mRNAs and lncRNAs 
We were able to discover the differences in the structure and sequence of mRNAs 

and lncRNAs by comparing the lengths, numbers of exons and ORFs. The sequence 
lengths of the lncRNAs were below 1000 bp, accounting for 70.19% of the total, with most 
being below 400 bp, while the sequence lengths of the mRNAs were mainly over 3000 bp, 
accounting for 25.74% (Figure 2a,b). Regarding the number of exons in each lncRNA, most 
of the lncRNAs had two exons, which accounted for 71.99% of the total; the greatest num-
ber of exons in one lncRNA was 15. However, slightly over 5% of mRNAs had only one 
exon, and a single mRNA could contain more than thirty exons (Figure 2c,d). The ORF 
lengths of the lncRNAs and mRNAs were predicted, and were concentrated at less than 
300 bp. However, the maximum length of the lncRNAs was about 500 bp, while the max-
imum length of the mRNAs was more than 2000 bp, which was related to their respective 
average lengths; the lncRNAs themselves were relatively short (Figure 2e,f). By compar-
ing the expression levels of the mRNAs and lncRNAs using an FPKM boxplot of all the 
transcripts, the expression levels of the two were found to be similar, with low expression 
levels in most of them and high expression levels in some. On the median line, the mRNA 
expression was slightly lower than the lncRNA expression (Figure 2g, Tables S4 and S5). 

Figure 1. Screening and classification of lncRNAs. (a) Results of screening using cnci, cpc, pfam, and
cpat. (b) Classification of lncRNAs. (c) Distribution of lncRNAs identified in chromosomes (green:
sense lncRNAs; red: lincRNAs; blue: intronic lncRNAs; grey: antisense lncRNAs).

2.2. Comparative Analysis of mRNAs and lncRNAs

We were able to discover the differences in the structure and sequence of mRNAs and
lncRNAs by comparing the lengths, numbers of exons and ORFs. The sequence lengths of
the lncRNAs were below 1000 bp, accounting for 70.19% of the total, with most being below
400 bp, while the sequence lengths of the mRNAs were mainly over 3000 bp, accounting
for 25.74% (Figure 2a,b). Regarding the number of exons in each lncRNA, most of the
lncRNAs had two exons, which accounted for 71.99% of the total; the greatest number of
exons in one lncRNA was 15. However, slightly over 5% of mRNAs had only one exon, and
a single mRNA could contain more than thirty exons (Figure 2c,d). The ORF lengths of the
lncRNAs and mRNAs were predicted, and were concentrated at less than 300 bp. However,
the maximum length of the lncRNAs was about 500 bp, while the maximum length of the
mRNAs was more than 2000 bp, which was related to their respective average lengths; the
lncRNAs themselves were relatively short (Figure 2e,f). By comparing the expression levels
of the mRNAs and lncRNAs using an FPKM boxplot of all the transcripts, the expression
levels of the two were found to be similar, with low expression levels in most of them and
high expression levels in some. On the median line, the mRNA expression was slightly
lower than the lncRNA expression (Figure 2g, Tables S4 and S5).

Alternative splicing is a very common phenomenon in eukaryotic plants. The pre-
cursor mRNA (pre-mRNA) of a single gene can be processed at different splicing sites to
produce multiple mature mRNA subtypes, which is called alternative splicing. About 60%
of multi-exon genes can undergo alternative splicing in plants, which plays an important
role in plant growth and development. The number of alternative-splicing isomers of the
lncRNAs was significantly lower than that of the mRNAs when examining the screened
lncRNAs. Overall, 1336 lncRNAs had more than two isomers, with the most being thirty
five isomers for one of the lncRNAs; 26,400 mRNAs had more than two isomers. The
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highest number of isomers was found for an mRNA with 302 isomers. This indicated that
mRNAs had more variable splicing than lncRNAs (Figure 2h).
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Figure 2. Comparison of the lncRNAs and mRNAs identified. (a) Length distribution of the lncRNAs.
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2.3. Differential Expression of lncRNAs in Tissues of ‘Gala’ Apples

To evaluate the prevalence and spatial expression of lncRNAs in ‘Gala’ apples, we ana-
lyzed the expression of lncRNAs in roots, phloem, leaves, flowers, and fruit. The prevalence
was relatively low in different tissues. In total, 2676 lncRNAs were shared in the five li-
braries, while 346, 491, 243, 721, and 184 lncRNAs were expressed only in the roots, phloem,
leaves, flowers, and fruit (Table S6 and Figure 3a). We normalized the expression profiles
of the 2676 prevalent lncRNAs based on their FPKM values, which permitted us to conduct
quantitative comparisons of the levels of lncRNAs among the different tissues. Significant
differences among the five tissues were found except between the flowers and leaves; the
expression of lncRNAs in the fruit was lower than that in the other tissues (Figure 3b).
Interestingly, MSTRG.120812.1, NSTRG.120812.2, MSTRG.120812.3, MSTRG.65728.1, and
MSTRG.51285.3 were enriched in all five tissues, the first three of which came from Chr15,
and the last two of which came from Chr08 and Chr06. This indicated that these lncRNAs
had the important basic functions for different tissues in apples.
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Figure 3. Tissue–specific expression characteristics of the lncRNAs identified. (a) Venn diagram
showing the number of lncRNAs identified in five tissues of apples. (b) The overall abundance
patterns of lncRNAs according to FPKM calculations (ns: no significant difference; **: significant
difference level at p < 0.01; ****: significant difference level at p < 0.0001).

2.4. Analysis of miRNA Precursors in lncRNAs

The lncRNAs that were precursors of miRNAs were predicted by comparing them
with miRNA sequences in the miRBase database. We identified 88 lncRNAs as potential
precursors for 74 miRNAs belonging to 18 families. One lncRNA could act as a precur-
sor for several miRNAs. For example, MSTRG.121641.28 could be a precursor for five
members of the mdm-miR156 families. Furthermore, the same miRNA could have more
than one precursor. For example, there were 10 lncRNAs that could be precursors for
mdm-miR156a (Table S7).

2.5. Target Gene Prediction for lncRNAs

We used two prediction methods based on the interaction modes for lncRNAs and
target genes. First, lncRNAs putatively regulate the expression of their neighboring genes,
which can be cis-target genes if they are within the 100 kb of the lncRNAs. There were
9410 lncRNAs that were predicted to have one or more target genes, and there were even
44 target genes for one lncRNA (Table S8). Second, in the LncTAR software, complementary
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sequences were used between lncRNAs and mRNAs to calculate the pairing site free energy
and standardized free energy, and those below the standardized free-energy threshold
(<−0.1) were considered to be the trans-target genes of the lncRNAs. There were only
1218 lncRNAs that were predicted to have target genes, many of which only had one target
gene, but MSTRG.41634.1 had 39 trans-target genes (Table S9).

2.6. Analysis of Function of lncRNAs

LncRNAs may serve as precursors of miRNAs and also have cis-targeting and trans-
targeting relationships with genes. Therefore, it was speculated that lncRNAs can not
only play a role in the regulation network for miRNAs but also directly regulate the
expression of target genes. In order to understand the possible functions of lncRNAs, we
analyzed the tissue-specific networks for miRNA binding and the functions of cis-target
and trans-target genes.

Among the 88 lncRNAs that were predicted to be the precursors of miRNAs, 21 were
expressed in all five tissues. The results indicated that their functions were relatively
common and important. These mainly served as precursors for mdm-miR156, mdm-
miR160, mdm-miR164, mdm-miR166, mdm-miR167, mdm-miR171, mdm-miR172, mdm-
miR482, mdm-miR535, mdm-miR828, and mdm-miR5225. Two lncRNAs, MSTRG.17430.4
and MSTRG.10845.2, were specifically expressed in the flowers. These two lncRNAs were
predicted to be precursors of mdm-miR156 and mdm-miR160, respectively. Six lncRNAs
were specifically expressed in the leaves, which were predicted to be precursors of mdm-
miR164, mdm-miR167, mdm-miR172, and mdm-miR5225. LncRNA MSTRG.63448.2 was
specifically expressed in the roots, which was predicted to be a precursor of mdm-miR156.
LncRNA MSTRG.60895.2 was specifically expressed in the fruit, which was predicted to be
a precursor of mdm-miR393 and mdm-miR7126.

The GO term enrichment analysis of the differentially expressed cis-target genes and
trans-target genes of the lncRNAs in the five tissues allowed us to understand the biological
functions of the differentially expressed genes. For the cis-target genes, 30 main functions
were selected for analysis, among which the intracellular part was the most enriched, with
1889 genes, but there was no significant difference among the tissues. The expression
levels of genes in the GO-term enrichment of single-organism signaling, ribonucleoprotein
complex binding, and extracellular organelles showed large differences among the five
tissues. For example, the flowers and fruit had a lower expression of single organism
signaling, while the phloem had a higher expression level (Figure 4a). The KEGG pathway
enrichment analysis showed that there were significant differences in different tissues
for photosynthesis-antenna proteins, with the highest expression in the leaves and the
lowest in the root. In addition, the phenylalanine metabolism was the highest in the
fruit, but lower in other tissues (Figure 4b). For the trans-target genes, there were only
three GO-term enrichment clusters, which were as follows: ion binding, single-organism
metabolic process, and heterocyclic compound binding. Roots and fruit demonstrated
a higher expression of these than the flowers, phloem, and leaves (Figure 4c). Three
KEGG pathway enrichments were formed for trans-target genes, including glutathione
metabolism, phagosome, and glycosylphosphatidylinositol (GPI)-anchor biosynthesis; the
flowers had a higher expression for glutathione metabolism than the others (Figure 4d).

2.7. lncRNA-miRNA Interaction Network in Apples

In order to understand whether lncRNAs could be targets of miRNAs and further affect
the post-transcriptional regulation of genes in apples, the potential regulation networks
between lncRNAs and miRNAs were predicted. Only the known apple miRNAs and
expectation scores ≤ 3 were analyzed here. In total, 1341 possible interrelations between
187 mdm-miRNAs and 174 lncRNAs (1.84%) were predicted. Multiple lncRNAs (or mdm-
miRNAs) were predicted to interact with at least one mdm-miRNA (or lncRNA). For
example, MSTRG.24932.13 could be targeted by 32 mdm-miRNAs, and mdm-miR172a
could target 26 lncRNAs. The mdm-miR156 family had the most target sites (408) in
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lncRNAs, followed by the mdm-miR172 family with (370). It indicated that the networks
between lncRNAs and miRNAs played a vitally important role in apples, especially for the
mdm-miR156 and mdm-miR172 families (Table S10).
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Furthermore, miRNAs also had the characteristics of spatial–temporal expression;
interactions between lncRNAs and miRNAs were featured to illustrate the functions
in different tissues. There were 291 interactions in all five tissues between 26 miRNA
families and 55 lncRNAs, including mdm-miR156, mdm-miR164, mdm-miR172, and
mdm-miR482. The greatest number of interactions was identified for the mdm-miR156
family, and there were 81 interactions with lncRNAs out of 291 interactions. There
were only 71, 1, 111, 41, and 12 interactions in the roots, phloem, leaves, flowers, and
fruit, respectively (Figure 5a and Table S11). In particular, the module in a network of
MSTRG.121644.5–mdm-miR156, MSTRG.121644.8–mdm-miR156, MSTRG.2929.2–mdm-
miR827, MSTRG.3953.2–mdm-miR395, MSTRG.63448.2–mdm-miR156, MSTRG.9870.2–
mdm-miR159, and MSTRG.9870.3–mdm-miR159 were only predicted in the roots.
MSTRG.11457.2–mdm-miR7126, MSTRG.138614.2–mdm-miR10993, and MSTRG.60895.2–
mdm-miR393 were only predicted in the fruit. They may have special expression and
regulation characteristics in these tissues.
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Figure 5. Tissue-specific characteristics and functions, and prediction of lncRNA-miRNA-mRNA.
(a) Venn diagram of interactions between lncRNAs and miRNAs of five tissues. (b) lncRNA-miRNA-
mRNA networks for mdm-miR482 (orange circle: lncRNAs; green triangle: mdm-miRNAs; blue
arrow: mRNAs). (c) Pearson correlation coefficient for expression of lncRNAs and mdm-miR482 in
five tissues and functions of mRNAs.

In order to further reveal the potential functions of lncRNAs, lncRNA–miRNA–mRNA
networks were constructed. We analyzed the correlation of the expression of lncRNAs and
mRNAs in five tissues. The expression of lncRNAs and mRNAs targeted by miRNAs should
be positively correlated. We extracted lncRNAs and mRNAs whose correlation coefficients
were greater than 0.8 with a significance level of 0.05 (Table S12); then, regulatory network
diagrams were constructed (Figure 5b and Figures S1–S5) and the possible role of the
lncRNA was speculated on through the functional annotation of mRNAs. As Figure 5c
showed, the expression of four lncRNAs and seven mRNAs was highly positively correlated
in five tissues. They were targeted by the mdm-miR482 family, which participated in the
anti-stress response in apples. Thus, MSTRG.76051.5, MSTRG.103191.1, MSTRG.103191.2,
and MSTRG.103191.4 may play a major role in resistance for apples. In addition, other
lncRNAs had special roles in different tissues of the apple. For example, MSTRG.60895.2
may participate in the anthocyanin metabolism in fruit by competing with MD17G1009000
as a target of mdm-miR393, whose auxin signaling F-box 2 was associated with anthocyanin
metabolism (Table S12).

2.8. qRT-PCR Validation

To confirm our identification of lncRNAs, four random lncRNA candidates were se-
lected for experimental validation using a quantitative reverse transcription PCR (qRT-PCR).
The primers were designed based on sequences on both sides of the candidate lncRNAs.
As shown in Figure 6, in this study, four randomly selected lncRNAs all showed expression
patterns consistent with the RNA-seq results. The R squared values for the RNA-seq vs.
qRT-PCR were 0.6137, 0.8999, 0.8593 and 0.9567 for MSTRG.121641.28, MSTRG.121641.3,
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MSTRG.121644.1 and MSTRG.10845.1, respectively. The results indicated that the lncRNAs
identified in the RNA-seq datasets were reliable.
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3. Discussion

LncRNAs show organ, developmental and environmental expression specificity in
plants [32–34]. Thousands of plant lncRNAs have been identified, and some of their
molecular functions have been studied [18,22,29,35–38], but only a few studies have been
conducted for apples [7,39]. Here, we reported a genome-wide identification and potential
function analysis of the lncRNAs in the roots, phloem, leaves, flowers, and fruit of ‘Gala’
apples. Compared with the mRNAs, the lengths of most of the lncRNAs were below
1000 bp, shorter than the mRNAs, and the lncRNAs had fewer exons than the mRNAs,
which was consistent with other plants [40,41]. The alternative splicing of mRNAs was
more common than that of lncRNAs, the main reason for which may be that the number of
exons in the mRNAs was greater than the numbers in lncRNAs.

Studies have indicated that lncRNAs exhibit tissue–specific expression patterns in
plants [34,42]. Here, we compared the expression of lncRNAs in five tissues of ‘Gala’ apple;
the expression of lncRNAs showed tissue–specific expression. The numbers of lncRNAs
identified in different tissues were different, with the highest in the flowers and the lowest
in the fruit, which was consistent with the differential functions and organizations of the
tissues. Even the co-expressed lncRNAs in the five tissues showed significant differences
in their expression levels, indicating that the same lncRNAs had different functions in
different tissues, or their contributions to the function were different. It was interesting
that the expression levels in the leaves and flowers had no significant differences. This
was because the expression levels of several lncRNA were higher in leaves and in flowers,
but were lower in other three tissues. In particular, the FPKM of MSTRG.51285.3 in leaves
and flowers was 2708.85 and 3666.36, but it was 73.56, 297.62, and 28.80 in phloem, roots,
and fruit, respectively. The FPKM of MSTRG.51285.3 accounted for 4.16%, 0.14%, 4.72%,
0.44%, and 0.22% of the total FPKM of 2676 lncRNAs in flowers, phloem, leaves, roots, and
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fruits, respectively. Unfortunately, we did not obtain its function annotation, either on the
regulation of genes or on the interaction with miRNAs. It may work in other ways, and it
is worth further exploring its functionality.

An lncRNA mainly regulates its target genes in two ways. One is the cis-regulation
of neighboring genes, and the other is the trans-regulation of genes with complementary
sequences [43,44]. DROUGHT INDUCED lncRNA (DRIR) enhanced drought and salt stress
tolerance in Arabidopsis thaliana by regulating the expression of genes involved in abscisic
acid (ABA) signaling, water transport, and stress relief processes [45]. Obviously, in this
study, there were more cis-target genes than trans-target genes. The tissue specificity of
the cis-target genes was consistent with that of lncRNAs, since the positively regulated
genes were near lncRNAs. However, the target genes subjected to trans–regulation were
different, and the trans-target genes were predicted based on complementary sequences,
which could better highlight the organization orientation and function. The leaves had the
highest level of expression for photosynthesis-antenna proteins, which were located on the
thylakoid membranes in the chloroplast, and captured light energy which was transferred
to the photosynthetic reaction center [46], although there were low levels in the roots. This
aligned with the photosynthetic function of leaves. This suggested that lncRNAs may play
an important role in photosynthesis. Two lncRNAs, COOLAIR and COLDAIR, were found
to be present in the locus of FLC genes and to critically regulate the FLC genes’ expression
by transcriptional regulation and histone modification, respectively [16,27]. The flowers
had the highest expression for glutathione metabolism. Previous research showed that
flowering was promoted by increasing endogenous glutathione [47]. Hence, lncRNAs may
interact with glutathione metabolism to improve flowering in apples.

LncRNAs can act as precursors for miRNAs and play a regulatory role through miRNA
production. Both miRNAs and lncRNAs have tissue-specific functions. The genome-scale
RNA-seq analysis of flower and fruit tissues from Fragaria vesca proved that lncRNAs
exhibited tissue-specific expression [48]. Of the 2676 prevalent lncRNAs, 21 can serve as
precursors for miRNAs, mainly including the mdm-miR156, mdm-miR160, mdm-miR164,
mdm-miR166, mdm-miR167, mdm-miR482 families, and other families, indicating that the
role of these 21 lncRNAs as miRNA precursors was universal. Regarding tissue-specific
lncRNAs, MSTRG.17430.4 and MSTRG.10845.2 were specifically expressed in flowers and
predicted to be precursors of mdm-miR156 and mdm-miR160, respectively. MiR156 plays
an important role in the flowering of plants [49]. LincRNAs can act as precursors of small
RNAs and regulate diverse metabolic pathways. They can alter miRNA expression by
interacting with the corresponding miRNAs [50]. It was speculated that MSTRG.17430.4
had a regulatory effect on flowering. Mdm-miR160 could regulate anthocyanin metabolism.
The overexpression of mdm-miR160 reduced the content of anthocyanin in flowers [51].
Consequently, MSTRG.10845.2 may play an important role in flower coloration. The present
findings suggested that miR156 regulated root development, nitrogen-fixation activity, and
root biomass levels [52–54]. MSTRG.63448.2 was predicted to be a precursor of mdm-
miR156 in the roots, and miR156 regulates a network of downstream genes to affect the
growth and development of roots.

LncRNAs and miRNAs interact with each other, imposing an additional level of post-
transcriptional regulation. LncRNAs can compete with mRNAs for miRNA molecules,
promoting the regulation of miRNA-mediated target repression. This type of ceRNA
crosstalk has been widely observed in different biological processes and diseases [12,55–57].
In this study, 1341 possible interrelations between 187 mdm-miRNAs and 174 lncRNAs
(1.84%) were predicted. The sequences of the binding sites of the lncRNAs were found to be
conserved. Thus, a single lncRNA can effectively bind to multiple miRNAs [58]. Multiple
lncRNAs (or mdm-miRNAs) were predicted to interact with more than one mdm-miRNA
(or lncRNA). INDUCED BY PHOSPHATE STARVATION 1 (IPS1) was a classic example of a
functionally characterized cytoplasmic lncRNA that acts via target mimicry to sequester
miR-399, which canonically targeted PHOSPHATE2 (PHO2) mRNA [12]. Our study showed
similar results, whereby the mdm-miR156 family had the most interactions with lncRNAs



Int. J. Mol. Sci. 2022, 23, 5931 11 of 17

in all five tissues. MiR156 played an important role in plant development, anabolism
and abiotic stress, and was a regulatory hub for plant growth and development [59,60].
Therefore, specific lncRNAs may play a major role in the apple’s different tissues during
its life through ceRNAs for the mdm-miR156 family. It was worth noting that there were
more interactions in the roots between mdm-miR156 and lncRNAs than those in fruit.
MiR156 involved biotic and abiotic stress in the roots [61–63] and fruit ripening [64,65],
whereas lncRNAs–mdm-miR156 networks played a broader role in the roots than in the
fruit in apples.

LncRNAs and miRNAs reveal spatiotemporal expression specificity [41,66], with spe-
cific networks playing a particular role in organization. There were some interactions
predicted only in specific tissues. For example, interactions between some lncRNAs and
the mdm-miR156, mdm-miR159, mdm-miR395, mdm-miR827 families were only predicted
in the roots. Regarding the functionalities of these families, mdm-miR156 was identified
as a positive regulator of drought resistance in apples [67]. MiR159 was identified as a
post-transcriptional repressor of primary root growth in Arabidopsis thaliana [68]. Mi395
was identified as a general component of the sulfate assimilation regulatory network
in Arabidopsis [69]. MiR827 could enhance drought tolerance in transgenic barley [70].
All of these involved functions in roots; therefore, we concluded that MSTRG.121644.5,
MSTRG.121644.8, MSTRG.2929.2, MSTRG.3953.2, MSTRG.63448.2, MSTRG.9870.2, and
MSTRG.9870.3, which were only expressed in roots and interacted with miRNAs, could
participate in the functions of roots as ceRNAs. In the same way, mdm-miR393, mdm-
miR7126, and mdm-miR10993 interacted with miRNAs only in the fruit, although miR393
could regulate fruit/seed set development in cucumbers [71]. MdARF3 (MD17G1009000)
was reported to negatively regulate anthocyanin anabolism as a fast auxin response fac-
tor [72]. We had reason to speculate that MSTRG.60895.2–mdm-miR393–MD17G1009000
may participate in the anthocyanin metabolism in the fruit of apples.

4. Materials and Methods
4.1. Plant Materials

The materials of the phloem, leaves, flowers, and fruit were collected from the ‘Gala’
apples. The scion of ‘Gala’ was grafted on Malus baccata (L.) Borkh. in 2001, and the tree was
planted in the field of the National Repository of Apple Germplasm Resources (Xingcheng)
in 2002. The roots were harvested from the tissue culture plantlets. All the materials were
frozen using liquid nitrogen and stored at −80 ◦C. Each line had three biological replicates.

4.2. RNA Isolation, Quantification and Qualification

Total RNA was isolated from each sample using the plant RNA isolation kit (Aidlab
Company, Beijing, China) according to the manufacturer’s instructions. rRNA was removed
using the Epicenter Ribo-ZeroTM (Epicentre, Madison, WI, USA) following the manufac-
turer’s procedure. RNA degradation and contamination, especially DNA contamination,
were monitored on 1.5% agarose gels. The RNA concentration and purity were measured
by using the NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, Wilmington,
DE, USA). The RNA integrity was assessed by using the RNA Nano 6000 Assay Kit of the
Agilent Bioanalyzer 2100 System (Agilent Technologies, Santa Clara, CA, USA).

4.3. Library Preparation for lncRNA-Seq

A total of 1.5 µg of RNA per sample was used as input material for rRNA removal
by using the Ribo-Zero rRNA Removal Kit (Epicentre, Madison, WI, USA). Sequencing
libraries were generated by using the NEBNextR UltraTM Directional RNA Library Prep Kit
for IlluminaR (NEB, Ipswich, MA, USA) following the manufacturer’s recommendations
and index codes were added to attribute sequences to each sample. Briefly, fragmentation
was carried out using divalent cations under high temperature in NEBNext First Strand
Synthesis Reaction Buffer (5x). First-strand cDNA was synthesized using random hexamer
primers and reverse transcriptase. Second-strand cDNA synthesis was subsequently per-
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formed using DNA Polymerase I and RNase H. Remaining overhangs were converted into
blunt ends via exonuclease/polymerase activities. After the adenylation of the 3′ ends of
the DNA fragments, the NEBNext Adaptor with a hairpin loop structure was ligated to
prepare for hybridization. In order to select insert fragments, preferentially of 150~200 bp
in length, the library fragments were purified with AMPure XP Beads (Beckman Coulter,
Beverly, MA, USA). Then, 3 µL of USER Enzyme (NEB, Ipswich, MA, USA) was used with
size-selected, and adapter-ligated cDNA at 37 ◦C for 15 min before PCR. Then, PCR was
performed with Phusion High-Fidelity DNA polymerase, Universal PCR primers and an
Index(X) Primer. Finally, the PCR products were purified byAMPure XP system (Beckman
Coulter, Beverly, MA, USA) and the library quality was assessed on the Agilent Bioanalyzer
2100 (Agilent Technologies, Santa Clara, CA, USA) and by qPCR.

4.4. Clustering and Sequencing

The index-coded samples were clustered using the acBot Cluster Generation System
with the TruSeq PE Cluster Kitv3-cBot-HS (Illumina, NEB, Ipswich, MA, USA) according
to the manufacturer’s instructions. After cluster generation, the library preparations were
sequenced on an Illumina Hiseq platform, and paired-end reads were generated.

4.5. Quality Control

The raw data (raw reads) of FASTQ format were first processed through in-house Perl
scripts. In this step, the clean data (clean reads) were obtained by removing adapters from
reads, reads containing ploy-N, and low quality reads from the raw data. At the same time,
the Q30, GC content, and sequence duplication level of the clean data were calculated. All
the downstream analyses were based on clean data with high quality.

4.6. LncRNA Analysis

The transcriptome was assembled using StringTie based on the reads mapped to
the reference genome (Malus × domestica GDDH13 v1.1) (www.rosaceae.org, accessed on
16 May 2022). The assembled transcripts were annotated using the GffCompare program.
The unknown transcripts were used to screen for putative lncRNAs. Four computational
approaches including cpc/cnci/pfam/cpat were combined to sort non-protein coding
RNA candidates from putative protein-coding RNAs in the unknown transcripts. Putative
protein-coding RNAs were removed using a minimum length and exon number threshold.
Transcripts longer than 200 nt and with at least two exons were selected as lncRNA candi-
dates and further screened using cpc/cnci/pfam/cpat, which has the power to distinguish
protein-coding genes from non-coding genes. Furthermore, different types of lncRNAs in-
cluding lincRNAs, intronic lncRNAs, antisense lncRNAs, and sense lncRNAs were selected
using Cuffcompare (http://cole-trapnell-lab.github.io/cufflinks/cuffcompare/index.html,
accessed on 16 May 2022).

4.7. Quantification of Gene Expression Levels

StringTie (1.3.1) (https://ccb.jhu.edu/software/stringtie/index.shtml, accessed on
16 May 2022) was used to calculate the FPKMs of both the lncRNAs and coding genes
in each sample [73]. The gene FPKMs were computed by summing the FPKMs of the
transcripts in each gene group. The FPKM, which means fragments per kilo-base of exon
per million fragments mapped, was calculated based on the lengths of the fragments and
the reads count mapped to these fragment.

4.8. Differential Expression Analysis

The differential expression analysis of two conditions/groups was performed using the
DESeq R package (1.10.1) (http://www.bioconductor.org/packages/release/bioc/html/
DESeq.html, accessed on 16 May 2022). DESeq provides statistical routines for determining
differential expression in digital gene expression data using a model based on the negative
binomial distribution. The resulting p-values were adjusted using the Benjamini–Hochberg

www.rosaceae.org
http://cole-trapnell-lab.github.io/cufflinks/cuffcompare/index.html
https://ccb.jhu.edu/software/stringtie/index.shtml
http://www.bioconductor.org/packages/release/bioc/html/DESeq.html
http://www.bioconductor.org/packages/release/bioc/html/DESeq.html
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approach for controlling the false-discovery rate. Genes with adjusted p-values < 0.01
and absolute values of log2 (Fold change) > 1 as determined by DESeq were assigned as
differentially expressed.

4.9. Gene Functional Annotation

Gene functions were annotated based on the following databases:

Nr (NCBI non-redundant protein sequences).
Pfam (Protein family).
KOG/COG (Clusters of Orthologous Groups of proteins).
Swiss-Prot (a manually annotated and reviewed protein sequence database).
KEGG (Kyoto Encyclopedia of Genes and Genomes).
GO (Gene Ontology).
GO enrichment analysis of the differentially expressed genes (DEGs) was implemented
using the topGO R packages.

We used the KOBAS [74] software to test the statistical enrichment of differentially
expressed genes in KEGG pathways.

The sequences of the DEGs were blast (blastx) to the genome of a related species (the
protein–protein interactions which exist in the STRING database: http://string-db.org/,
accessed on 16 May 2022) to obtain the predicted PPI of these DEGs. Then, the PPIs of these
DEGs were visualized in Cytoscape [75].

4.10. Prediction of miRNA Target Sites in lncRNAs

We identified the targets of miRNAs using TargetFinder, based on the known miRNAs
of apples, the newly predicted miRNAs, and the gene sequence information for ‘Golden
delicious’. Interactions between lncRNAs and miRNAs with expectation score ≤ 3 were
selected. As lncRNAs contain multiple miRNA binding sites, the miRNA target gene
prediction methods can be used to identify the lncRNAs that bind to miRNAs, and the
functions of lncRNAs can be elucidated based on the functional annotation of the miRNA
target genes.

4.11. Quantitative Real-Time PCR Validation

Quantitative real-time PCR (qRT-PCR) was carried out to validate the levels of dif-
ferential expressional lncRNAs from ‘Gala’ apples. According to the instructions of the
TruScript First-strand cDNA SYNTHESIS Kit (Aidlab Company, Beijing, China), 800 ng of
the total RNA was reverse-transcribed with random primers. The reaction system included
800 ng of RNA, 4 µL of 5 × RT Reaction Mix, 0.5 µL of rondam primers/oligodT, 0.5 µL
N6, 0.8 µL of TruScript H− RTase/RI Mix, and RNase free dH2O was added to obtain a
20 µL volume; the reaction conditions were 42 ◦C for 40 min and 65 ◦C for 10 min.

Primers were designed in order to obtain the amplicon from the template (Table
S13). Quantitative real-time PCR (qRT-PCR) was performed using SYBR Green Master
Mix (Vazyme, Nanjing, China). The qRT-PCR aliquot contained 1 µL of cDNA, 3 µL of
ddH2O, 0.5 µL of each of the forward and reverse primers (200 nM), and 5 µL of 2 × SYBR®

Green Supermix. The reaction conditions included initial denaturation at 95 ◦C for 3 min,
followed by 39 cycles at 95 ◦C for 10 s, and 60 ◦C for 30 s, with melt curve analysis (60~95 ◦C,
+1 ◦C/cycle; holding time: 4 s). The levels of the lncRNAs were normalized to qActin. All
the real-time PCR assays were performed with three biological replicates. The relative
expression levels were calculated with the 2−∆∆Ct method [76].

5. Conclusions

We identified lncRNAs in five tissues of the ‘Gala’ apple, a variety widely cultivated
worldwide. A total of 9440 unique lncRNAs were identified from the leaves, phloem, flower,
fruit, and roots. Cis-target and trans-target genes prediction for lncRNAs showed that the
target genes were significantly enriched in molecular functions related to photosynthesis-
antenna proteins, single-organism metabolic process and glutathione metabolism. In

http://string-db.org/
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total, 88 lncRNAs were predicted to be precursors of miRNAs. A total of 1341 possi-
ble interrelations between 187 mdm-miRNAs and 174 lncRNAs (1.84%) were predicted
when performing a search across the miRNAs of Malus in miRBase. It was predicted
that MSTRG.121644.5, MSTRG.121644.8, MSTRG.2929.2, MSTRG.3953.2, MSTRG.63448.2,
MSTRG.9870.2 and MSTRG.9870.3 could participate in the functions of roots as ceRNAs.
MSTRG.11457.2, MSTRG.138614.2 and MSTRG.60895.2 could adopt special functions in
the fruit by working with miRNAs. Potential lncRNA–miRNA–mRNA networks were
constructed, and the possible roles of lncRNAs in different tissues were considered. We
had reason to surmise that MSTRG.60895.2 might participate in anthocyanin metabolism in
the fruit by competing with MD17G1009000 as a target for mdm-miR393.
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