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While colorectal cancer (CRC) is third in prevalence and mortality among cancers in

the United States, there is no effective method to screen the general public for CRC

risk. In this study, to identify an effective mass screening method for CRC risk, we

evaluated seven supervised machine learning algorithms: linear discriminant analysis,

support vector machine, naive Bayes, decision tree, random forest, logistic regression,

and artificial neural network. Models were trained and cross-tested with the National

Health Interview Survey (NHIS) and the Prostate, Lung, Colorectal, Ovarian Cancer

Screening (PLCO) datasets. Six imputation methods were used to handle missing data:

mean, Gaussian, Lorentzian, one-hot encoding, Gaussian expectation-maximization,

and listwise deletion. Among all of the model configurations and imputation method

combinations, the artificial neural network with expectation-maximization imputation

emerged as the best, having a concordance of 0.70 ± 0.02, sensitivity of 0.63 ± 0.06,

and specificity of 0.82 ± 0.04. In stratifying CRC risk in the NHIS and PLCO datasets,

only 2% of negative cases were misclassified as high risk and 6% of positive cases

were misclassified as low risk. In modeling the CRC-free probability with Kaplan-Meier

estimators, low-, medium-, and high CRC-risk groups have statistically-significant

separation. Our results indicated that the trained artificial neural network can be

used as an effective screening tool for early intervention and prevention of CRC in

large populations.

Keywords: colorectal cancer, risk stratification, neural network, concordance, self-reportable health data, external

validation

INTRODUCTION

Of all new cancer incidences in the United States, 8.1% are colorectal cancer (CRC) (Falco et al.,
2018; National Cancer Institute, 2018). The 5-year survival rate for CRC ranges from 14% for a
distant stage to 90% for a localized stage. CRC is responsible for 8.3% of all cancer deaths, and
is especially deadly and recurrent when coincident with diabetes and hypertension (Yang et al.,
2012). However, there exists little knowledge of the primary causes of CRC. Thus, current screening

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2020.00006
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2020.00006&domain=pdf&date_stamp=2020-03-10
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jun.deng@yale.edu
https://doi.org/10.3389/fdata.2020.00006
https://www.frontiersin.org/articles/10.3389/fdata.2020.00006/full
http://loop.frontiersin.org/people/522165/overview
http://loop.frontiersin.org/people/532820/overview
http://loop.frontiersin.org/people/74238/overview
http://loop.frontiersin.org/people/431624/overview


Nartowt et al. Robust Machine Learning for Colorectal Cancer

recommendations are only based on family history of CRC
and age. Specifically, the United States Preventative Services
Task Force (USPSTF) recommends screening for individuals
between ages 50 and 75 while the American Cancer Society
recommends screening for individuals between ages 45 and
75 (Collins et al., 2015; Bibbins-Domingo et al., 2016). Both
guidelines recommend screening for anyone with one or more
primary relatives who have ever had CRC. While screening
according to these guidelines indisputably saves lives, high-risk
individuals with no CRC family history and/or aged 18–49 would
clearly benefit from a model that better detects their risk. Low-
risk individuals that are flagged for screening under a new model
(Collins et al., 2015; Bibbins-Domingo et al., 2016), would also
be given information to help them choose whether they want to
be subject to invasive, expensive, and injurious (Benard et al.,
2018; National Cancer Institute, 2019) screening. Hence, it is
important to develop an effective method to estimate CRC risk
non-invasively and cost-effectively.

There have been a lot of previously-developed CRC-
risk models that do not involve biomarkers (Usher-Smith
et al., 2016). Using only professionally-collected routine data
(biological sex, use of non-steroidal anti-inflammatory drugs
(NSAIDs), form of recruitment, non-specific abdominal pain,
bowel-habit, age, BMI, cholesterol, and triglycerides), Betes
et al. achieved a concordance ∼0.7 using a multiple logistic
regression model (Betes et al., 2003). Using data from a self-
completed questionnaire (asking about CRC in first-degree
relatives, BMI, screening, NSAID use, diet, inflammatory
bowel disease, alcohol/tobacco use, and physical activity),
Colditz et al. also built a multiple logistic regression model of
similar concordance ∼0.7 from data on family history, obesity,
screening, diet (multivitamin, alcohol, vegetables, and red
meat consumption), height, physical activity, pharmaceuticals
(prophylactic, post-menopausal hormone, and aspirin use),
and inflammatory bowel disease (Colditz et al., 2000). Both
models are externally tested, i.e., the model is built from
one dataset and its performance is reported on a dataset
from a separate study (Collins et al., 2015). However,
compared to the simple logistic regression models, there
has been no systematic study on the development of more
advanced machine learning models for CRC risk prediction and
stratification for a large population, in consideration of various
imputation methods.

Hence in this work, we aim to identify an effective mass
screening method for CRC risk based solely on personal
health data. We trained and cross-tested various machine
learning models with two large national databases, reporting
performance in terms of the concordance, a performance
metric that is biased but standard (Hanley and McNeil, 1982;
Hosmer and Lemeshow, 2000; Fawcett, 2005; Hajian-Tilaki,
2013). A variety of imputation methods were explored in
handling the missing data. Additionally, a component of
cross-uncertainty is incorporated to the total uncertainty
reported, adding stringency to our testing that to our
knowledge has not been used before. Finally, we furnish
some ideas on how our model can be deployed for real
world applications.

MATERIALS AND METHODS

Two Datasets From Separate Studies
The National Health Interview Survey (NHIS) dataset1 is a cross-
sectional study of the overall health status of the United States.
Each year, roughly 30,000 adults are interviewed on a range of
current and past personal health conditions. The first survey
of the NHIS after a significant revision was administered in
1997 and the next such redesign of the NHIS is scheduled to
appear in 2019, so data from years 1997 to 2017 was used.
Our other study is the longitudinal Pancreatic, Lung, Colorectal,
Ovarian (PLCO) Cancer Screening dataset from the National
Cancer Institute2. The PLCO dataset is a randomized, controlled
longitudinal study on the efficacy of screening for prostate, lung,
colorectal, and ovarian cancer. Between November 1993 and
July 2001, participants were randomized, entered into the trial,
answered a baseline questionnaire (BQ), andwere followed for up
to 14 years, exiting the trial early if they were diagnosed with any
cancer or if they died. To match this PLCO data with the NHIS
dataset, we assumed that answering the PLCO BQwas equivalent
to participating in the NHIS’s interview.

Data was marked by 7 for responses of “Refused,” 8 for
“Not ascertained,” and 9 “Don’t know” in the NHIS1; all these
responses were assumed to indicate data missing completely at
random (Little and Rubin, 2014) (MCAR). This is distinguished
from data not missing at random, which is marked by the table
entry being actually blank (e.g., all pregnancy data has a blank
entry for male respondents). PLCO uses the same scheme of
marking the missingness of data with digit-entries, while data
missing not at random is actually blank.

The United States Preventative Services Task Force guidelines
currently recommend anyone with family history of CRC and/or
aged 50–75 years for screening (Bibbins-Domingo et al., 2016),
while screening at ages 76+ is up to the individual. Thus, ages
18–49 and ages 50–75 form sub-demographics of data that are
of interest. To assess performance in these sub-demographics, we
trained and tested models on these age splits of the data as well as
on all ages.

There are factors appearing in the NHIS dataset but missing in
the PLCO dataset, and vice versa. Specifically, factors appearing
in the NHIS but not in the PLCO are alcohol-use, vigorous
exercise frequency, functional limitations, kidney comorbidity,
and incidence of angina. Factors appearing in the PLCO but not
in the NHIS are non-steroidal anti-inflammatory drug (NSAID)
use, gallbladder inflammation, and incidence of diverticulitis. To
ensure a TRIPOD level 3 cross-testing between separate datasets,
and all its rigor and robustness, all these factors are not used in
our study.

CRC vs. Never Cancer
The NHIS records each respondent’s age at the time of the survey,
and the age(s) at which the respondent was diagnosed with cancer
of the colon and/or rectum, if at all. Respondents were counted as
positive cases of CRC if their diagnosis happened <4 years prior

1National Health Interview Survey (NHIS) (1997–2017).
2Prostate/Lung/Colorectal/Ovarian (PLCO) Cancer Screening Trial (1993–2001).
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to the survey. In each study, a small fraction of the respondents
were recently diagnosedwith CRC.We considered CRC in survey
respondents ages 18–85.

In PLCO and NHIS, the following four types of respondents
were discarded: (1) those diagnosed with CRC more than 4 years
prior to taking the survey (NHIS) or answering the questionnaire
(PLCO), (2) those non-CRC respondents diagnosed with any
other cancer at any time, (3) those CRC respondents diagnosed
with a cancer other than CRC at a time before their CRC
diagnosis, and (4) those CRC respondents having CRC at a
time before randomization (PLCO only). Members of the first
group were discarded because their reported personal health data
was considered irrelevant to their CRC diagnosis. Those in the
second and third groups were discarded because those diagnosed
with any cancer already receive heightened screening attention,
defeating the purpose of assessing their risk. The fourth group
is discarded because before randomization the time (in days) of
CRC diagnosis is not known. Thus, the negative examples were
those who were never diagnosed with any cancer and are referred
to as “never-cancer” (NC) while the positive examples were those
recently diagnosed with CRC and are referred to as “CRC.”

To be considered a positive case of CRC in the PLCO data
remaining after the deletion described above, the respondent
needed to meet both of the following conditions: (1) they were
diagnosed with CRC within 4 years of the BQ and (2) CRC was
the first cancer they had. If both of these conditions were not met,
the respondent was considered part of the non-cancer population
remaining after the above discarding was carried out. Hence,
the outcome variable used in both datasets was the respondent’s
cancer status coded to a 0 or a 1. A value of 0 indicated that
the respondent was never diagnosed with cancer (CRC or any
other cancer). It is assumed that a given respondent would have
already been flagged for screening if previously diagnosed with
any kind of cancer, defeating the purpose of risk-scoring. A value
of 1 indicated that the respondent was diagnosed with CRC
within four (4) years of answering either the PLCO BQ or the
NHIS interview questions. All respondents who fit neither of
these criteria were assumed to be data not missing at random
(Little and Rubin, 2014), and thus discarded (never subject to any
imputation methods).

Performance after training with such an outcome variable
is not relative to the sensitivity and specificity of any gold
standard. In our work, the gold standard of CRC diagnosis is
colonoscopy. Unfortunately, colonoscopy data is missing not at
random for a significant portion of data. Specifically, only NHIS
questionnaires from years 2000, 2005, 2010, and 2015 asked the
respondent if they had ever been screened by the gold standard
(sigmoidoscopy, colonoscopy, or proctoscopy). We therefore
assumed that neither dataset contained any false positive or false
negative cases.

Data Preparation
For reproducibility, we describe how the raw data was
mapped to the datasets used to train and test the machine
learning algorithms (MLAs). The factors of ever having
hypertension, ulcers, a stroke, any liver comorbidity, arthritis,
bronchitis, coronary heart disease, myocardial infarction, and/or

emphysema are binary variables and mapped to 0 for “no” and
1 for “yes.” Diabetic status has one of three discrete values:
not diabetic, pre-diabetic/borderline, and diabetic, respectively.
These conditions were mapped to 0, 0.5, and 1, respectively.
The age factor is continuous and equals the age at response to
the NHIS or PLCO BQ for negative cases and the age at CRC
diagnosis for positive cases. Body mass index (BMI) is likewise
continuous. All such continuous factors were unitized to the
interval [0, 1]. The sex factor is 0 for women and 1 for men. The
variable of Hispanic ethnicity was given a value of 0 for a response
of “NotHispanic/Spanish origin” and 1 otherwise. The variable of
race was set to 1 for responses of “Black/African American only,”
“American Indian only,” “Other race,” or “Multiple race,” and 0
otherwise. The smoking status had a value of 1 for an everyday
smoker, 0.66 for a some-day smoker, 0.33 for a former smoker,
and 0 for a never smoker. The NHIS defines a “never smoker” as
someone who has smoked 100 cigarettes or less over their entire
lifetime, and a “former smoker” as a smoker who quit at least 6
months prior to the survey; this same definition was used to score
PLCO respondents’ smoking status using equivalent fields. The
variable of family history represents the number of first-degree
relatives who have had CRC, and was capped at 3. The family
history variable values of 0, 1, 2, and 3 were mapped to 0, 0.33,
0.66, and 1, respectively.

The Levels of TRIPOD and the
Cross-Testing Uncertainty
Below, we use the terms “training,” “validation,” and “testing” to
describe increasingly-general model performances. Any portion
of data designated as “training” is used to directly adjust the
parameters of the model (e.g., by iterations of gradient-descent
in the space of model parameters for an artificial neural network).
Any portion of data designated as “validation” is not involved in
direct adjustment of model parameters, but is used to stop further
iterations of an algorithm based on whether overfitting happens
(e.g., stopping iterations of gradient descent if the training fitting
error is decreasing but the validation fitting error is increasing).
Finally, any portion of data designated as “testing” is data used
for neither training nor validation. In the literature, the term
“validation” is sometimes used to describe what is actually testing,
often by way of the term “cross-validation” (Picard and Cook,
1984). In this work, we use the term “cross-testing” to avoid any
possible confusion.

We reported concordance, a performance metric, at level
3 of the hierarchy proposed by the Transparent Reporting
of Multivariable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) guidelines (Collins et al., 2015). TRIPOD
level 1a corresponds to testing upon the same dataset used for
training (leaving any overfitting undetected). TRIPOD level 1b
corresponds to n-fold cross-validation (Picard and Cook, 1984).
TRIPOD levels 2a and 2b each correspond to a trained model
tested upon or cross-tested between splits of the data involved
neither in training nor overfitting-detection (“validation”). Level
2a corresponds to random splits of the data, accordingly yielding
normally-distributed random error (Bertsekas and Tsitsiklis,
2008) in Equation (2). Level 2b corresponds to non-random splits
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of the data, yielding systematically-distributed error in Equation
(2). TRIPOD level 3 is where a model trained by data from one
study is tested upon or cross-tested between data from a separate
study. TRIPOD level 4 corresponds to testing a published model
on a separate dataset (Appendix).

Our model has a TRIPOD level of 3, as it was trained upon a
dataset from a longitudinal study and tested on a dataset from
a cross-sectional study and vice versa. Throughout this paper,
cross-testing shall refer to training on NHIS/PLCO and testing
upon PLCO/NHIS, respectively. In this case, the systematic error
from Equation (2) arises from the distributional disparity [in the
Bayesian perspective (Bertsekas and Tsitsiklis, 2008), where each
data entry in the NHIS and PLCO is assumed to be drawn from
separate probability distributions with unknown parameters]
between the PLCO and NHIS datasets due to (among other
things) the fact that the NHIS is cross-sectional while PLCO
is longitudinal. Reporting performance at TRIPOD level 3
demonstrates generalizability of the model’s predictive capacity.

Seven Machine Learning Algorithms
The MLAs used in this work are an artificial neural network
(ANN), logistic regression (LR), naive Bayes (NB), decision tree
(DT), random forest (RF), linear-kernel support-vector machine
(SVM), and linear discriminant analysis (LDA) with automatic
optimization of hyper-parameters (Fisher, 1936; Morgan and
Sonquist, 1963; Rumelhart et al., 1986; Cortes and Vapnik, 1995;
Hosmer and Lemeshow, 2000; Bertsekas and Tsitsiklis, 2008). The
LR, NB, DT, SVM, and LDAMLAs were invoked, respectively, by
the “fitglm,” “fitcnb,” “fitctree,” “fitcsvm,” and “fitcdiscr”MATLAB
functions. The SVM, LDA, and DT MLAs yielded a CRC risk
score using Platt scaling (Platt, 1999). The ANNused a previously
developed in-house MATLAB code.

ANNs are a method of regression (Bertsekas and Tsitsiklis,
2008) as they determine function parameters that minimize
fitting error using iterations of stochastic gradient descent in
parameter space (Bishop, 2006; Andoni et al., 2014; Kingma and
Ba, 2015) through a process called backpropagation (Rumelhart
et al., 1986), and are similar to logistic regressions (LR) (Hosmer
and Lemeshow, 2000). Specifically, an ANN with a logistic
activation function and zero hidden layers is a logistic regression.
With their hidden layers, ANNs model inter-factor coupling as
logistic or hyperbolic-tangential probabilities; these probabilities
are called the activation function of the ANN. ANNs that
use logistic activation functions are multilinear generalizations
of LRs.

The in-house MATLAB coded ANN has two hidden layers
with logistic activation and deployed adaptive gradient descent
via the “Adam” learning rate. It also uses both early stopping and
automatic hyperparameter optimization to minimize overfitting.
There is one input neuron for each factor used, and each hidden
layer has one neuron for each input neuron. Each neuron is
associated with a single weight W and a single bias B, which,
respectively, are the slope and intercept for the linear function
z = z(X) = WX + B with argument X. The linear function
itself is then fed into the neuron’s sigmoidal activation function

(e−z + 1)
−1

. The weights and biases are, respectively, determined

by iterations of the equations W′ = W − α dS
dW

and B′ =

B − α dS
dB

for fitting error S = N−1 ln
∏N

i=1 Ȳ
Yi
i (1− Ȳi)

1−Yi

between the subject’s risk-score and their actual cancer status in
a total of N subjects, a process called backpropagation. In our
backpropagation, we chose to iterate until

∣

∣W′ −W
∣

∣ ,
∣

∣B′ − B
∣

∣ ≤
ε for a small ε we picked.

TheNBmethodmodeled the conditional probability of having
CRC by constructing a Gaussian distribution with a conditional
sample mean and conditional sample variance (Bertsekas and
Tsitsiklis, 2008). This conditioning was based on whether or not
each respondent was drawn from the CRC or the never-cancer
population. That is, the conditional probability P= P(C|8) of the
event 8 of having a set of features (e.g., hypertension, diabetes,
body-mass index) resulting in the event C of having CRC was
given by Bayes theorem as P(C|8) = P(8|C)P(C)/P(8). The
NB method thus incorporated inter-factor coupling, though as
a multiplicative model that assumed the factors to be distributed
independently. Despite this assumption of independence being
almost always incorrect, the NB method’s performance was
competitive with those of more advanced MLAs (Rish, 2001).

The LDA and SVM calculate a decision boundary between
the positive and negative populations that maximized a
likelihood function (Fisher, 1936; Cortes and Vapnik, 1995). The
method assumed homoscedasticity, multicollinearity, and that
the responses were random variables drawn from completely
independent Gaussian distributions. The SVM method similarly
calculated a decision boundary, except without assuming the
feature-values were drawn from a Gaussian distribution. In
general, decision boundary methods are effective because they
resist the effects of outliers.

The DT method constructed a flowchart of factors leading
to CRC. The DT used the variable of lowest entropy (Shannon,
1948; Morgan and Sonquist, 1963) to construct the base of the
tree, and used increasingly less informative variables at higher
branches. Such a flowchart can be easily understood by a human,
and is thus highly desirable in a clinical setting. Finally, we
tested a bootstrap-aggregated (“bagged”) collection of random
trees, better known as a random forest (RF). Such RFs resist the
overfitting that DT are prone to, but lack the transparency and
information that DTs have in making their classifications.

Six Imputation Methods to Handle Missing
Data
The datasets were subject to mean, Gaussian, Lorentzian, one-
hot encoding, expectation-maximization (EM), and listwise
deletion to handle data that are missing completely at random
(Little and Rubin, 2014), some of which over-represented
distributional moments. The six examined imputation methods
have different strengths and weaknesses. Imputation by mean
over-represents the mean. Imputation by drawing from a
Gaussian random variable over-represents the variance about the
mean. Imputation by drawing from a Cauchy random variable
does not over-represent the mean or variance. Imputation by
one-hot encoding (Bishop, 2006) uses the actual missingness of
a data-entry as a feature. Finally, imputation by the (multivariate
Gaussian) expectation-maximization (EM) iterative method
over-represents the covariance between features (e.g., the
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covariance of diabetes with hypertension). The methods that
draw from the Gaussian and Cauchy distributions used
MATLAB’s random number generator in invoking the function
“rand,” and thus are stochastic. Imputation by mean, one-hot
encoding, EM algorithm, and listwise deletion, on the other hand,
are deterministic.

The version of the EM algorithm that we chose assumed that
all variables in each dataset were random variables drawn from
a multivariate Gaussian distribution (Bishop, 2006). Iterations
of the algorithm imputated the MCAR with values that
overrepresented the covariance of each data column with each
other. Since the multivariate Gaussian distribution is completely
specified by its mean and variance, imputation by this method
is incorrect only if the data is not drawn from a multivariate
Gaussian or if the data is not MCAR. Because both the NHIS
and PLCO datasets distinguish between data that is MCAR and
data not missing at random, the effect of non-normal/Gaussian
distribution of missingness remained minimized.

The multivariate-Gaussian EM algorithm is just one of
many types of EM algorithms, as other data distributions
(e.g., a multivariate-multinomial) may be assumed. Because
our data contains a mixture of continuous and binary data-
fields, and because the closed-form properties of the multivariate
Gaussian are well-known (Bishop, 2006), we used Gaussian
expectation-maximization for convenience. Categorical survey
fields are multinomial, and a sufficiently-large number of such
multinomial random variables are Gaussian by the central limit
theorem (Bertsekas and Tsitsiklis, 2008). Ordinal survey fields
have a distribution that in general have non-zero skewness
and kurtosis, and thus are not exactly Gaussian. To avoid
the calculation of the covariance of one multivariate Gaussian
distribution with a non-Gaussian distribution, we just used
a multivariate Gaussian for all fields. “Multivariate-Gaussian
EM imputation” shall be referred to as just “EM imputation”
throughout this paper.

About 1.2% of all data (795,215 respondents) was missing
completely at random. However, about 16% of the 795,215
respondents had one or more of these missing entries. Listwise-
deletion discards any respondent with even one missing entry, so
about 16% of all data is then lost.

Model Evaluation
A popular metric of the performance in discriminating CRC
incidence from non-CRC incidence is concordance, which is
sometimes known as the area under the curve (AUC) of the
receiver-operator characteristic (ROC) plot (Hanley and McNeil,
1982; Hosmer and Lemeshow, 2000; Fawcett, 2005). We reported
concordances from training on NHIS/PLCO and testing upon
PLCO/NHIS (“cross-testing”), which gives a TRIPOD level
(Collins et al., 2015) of 3. Total uncertainty in concordance
across cross-testing (Picard and Cook, 1984) is calculated
using Equation (3).

For individuals ages 18–49 the PLCO dataset2 has a sharply
different prevalence of CRC (379 positives, 12 negatives)
compared to the NHIS dataset1 (114 positives and 76,676
negatives for family history data used; 562 positives and 398,222
negatives for family history data not used). Thus, for this age

range, models were cross-tested between the 2-folds formed by
the following non-random split: (1) the combination of all PLCO
data with NHIS years 1997–2006 and (2) the remaining NHIS
years 2007–2017. This makes the testing level for individuals ages
18–49 drop from TRIPOD 3 to TRIPOD 2b.

Stratifying CRC Risk
The ANN with EM imputation was used to stratify subjects into
low-, medium-, and high CRC-risk groups. The ANN trained on
NHIS data, and used this model to stratify the PLCO subjects into
these risk categories. The PLCO dataset records the time in days
at which the participant was diagnosed with CRC, and that time
was used to build a forecast in the form of a Kaplan-Meier (KM)
survival plot. Performance in risk-stratification was reported to
give both an illustration of immediate clinical application and
a performance metric that is not as biased as concordance is
(Bertsekas and Tsitsiklis, 2008; Hajian-Tilaki, 2013).

RESULTS

Concordance Statistics of Seven Machine
Learning Algorithms
Figure 1 is a ROC plot of the seven MLAs used with datasets
subject to EM imputation. The standard deviation was formed
from the variance from cross-testing between the NHIS and
PLCO datasets, and the variance from screened/unscreened sub-
populations (Hanley and McNeil, 1982) using Equation (3).
Considering the mean concordance minus the total uncertainty
(Equation 3) to be the metric of performance, the top performer
was the ANN, with the SVM and NB as equally-performing
runner-ups. LR (Hosmer and Lemeshow, 2000) offered fourth-
place performance. Our ANN used the same logistic activation
function (Bishop, 2006) as the LR. Our LR was our ANN
with no hidden layers, suggesting the importance of inter-
factor coupling possibly corresponding to complications. The
good performance of the SVM came from not assuming
a particular underlying distribution to the data, while LDA
assumed that the NHIS and PLCO data were drawn from
Gaussian distributions. The good performance of the NB came
from its multiplicative incorporations of inter-factor coupling.
The ANN’s good performance was also roughly insensitive
to which imputation method is used. The SVM and LDA
perform well with one-hot encoding imputated data due to their
resisting overfitting and outliers. RFs offered slightly improved
performance over the DT, but worse than the ANN.

The concordance statistics for cross-testing for all
combinations of MLAs and imputation methods are summarized
in Table 1, showing relevant divisions of the datasets by age,
as well as the effect of making family history data part of the
model vs. leaving it out. The ANN offered performance (mean
concordance minus the uncertainty) that was not only better
than other MLAs but also insensitive to which imputation
method was used. It can also be seen that in the group ages
18–49, among whom recent diagnosis of CRC is rarer (due
in part to a greater prevalence of those bypassed for by-age
screening of the USPSTF’s recommendations), concordance was
driven up by the increased true negative rate (or specificity). The
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FIGURE 1 | Comparison of ROC curves of all seven MLAs, with the mean concordance and its uncertainty reported. Expectation maximization was used to impute

missing data.

TABLE 1 | Mean concordance (standard deviation), multiplied by 100, for various machine learning algorithms, imputation methods, age groups, and with or without

family history of CRC data.

Models for all ages and ages 50–75 were conducted at TRIPOD level 3 and models for ages 18–49 at TRIPOD level 2b. The standard deviation reported has a component of population-

uncertainty from Equation (1) and a cross-uncertainty from Equation (2). The cell shading scheme was determined by subtracting the standard deviation from the mean concordance

statistic, so that darker shading indicates a concordance statistic that not only had a higher mean value, but also a lower uncertainty.

opposite effect was observed in the group ages 50–75. Including
family history data improved performance, but in a manner that
is offset by the fact that it could only be included for a smaller
data. Finally, it can be seen that the EM Gaussian algorithm
tended to give the best concordance. One-hot encoding similarly
performed well.

Testing the ANN at TRIPOD Level 3
In Figure 2 the ANN with EM imputation performed
consistently well as the incorporation of family history data

and age range of subjects varied. The AUCs were greatest for
individuals ages 18–49. The prevalence of CRC was lower in this
group and Figure 2 shows that the concordance was driven up
by the low-cutoff portion of the ROC curve where the sensitivity
of the ANN with EM imputation can be seen to rise sharply.
This sharp rise is due to the high probability of any negative
call being correct in a dataset with such low prevalence of
CRC. As the cutoff increases in Figure 2, the sensitivity exhibits
several sharp drop-offs. In the high-cutoff portion of Figure 2,
the performance of the ANN with EM imputation becomes
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FIGURE 2 | The ROC curves of the ANNs averaged across cross-testing for

different sub-demographics and with/without family history data.

insensitive to the age-demographic, or even the incorporation of
family history data in the model. This trend is in sharp contrast
to the low-cutoff portion of the ROC, where performance in
the group of individuals ages 18–49 was significantly better
than in the high-prevalence group of those ages 50–75. These
results make the case that the concordance is a good measure
of the performance of the ANN with EM imputation relative to
other MLAs.

The improvement in concordance in Figure 2 and Table 1 is
due to the ANN becoming increasingly insensitive when trained
on data from individuals ages 18–49 and thus making more
negative calls. The high number of negative calls in ages 18–49
gives a high specificity, and thus a high concordance.

Risk Stratification by ANN at TRIPOD
Level 3
We stratified survey-respondents by the risk score calculated
by the ANN with EM imputation. Such stratification has been
completed at TRIPOD level 2b in previous work (Hart et al.,
2018; Rofman et al., 2018), and was done here at TRIPOD level 3.
Figure 3 illustrates the stratification of individuals into three risk
score categories. Table 2 shows how many survey-respondents
(CRC and never-cancer) ended up in each category.

In Figure 3, only relative (rather than absolute) values of
risk are relevant, and thus the numbering of the horizontal axis
is not comparable between plots. Unitizing the axis of risk to
the interval [0, 1] is not done. Doing so would be misleading
because differing models have differing levels of risk because the
minimum and maximum values of risk needed for unitization
differ between models. In stratifying NHIS/PLCO using a
PLCO/NHIS-trained ANN, the risk-boundaries constructed as
such were in general not equal, and the interval formed by this
disparity is demarcated by vertical black dotted lines. Cumulative
functions and complement-cumulative functions of negative and
positive populations are plotted. Dotted lines and solid lines

of the same color are complementary cumulative distributions
summing to 100%.

Predicting CRC Incidence in the
Never-Cancer Population
The Kaplan-Meier plots of Figure 4 show the estimated
probability of the never-cancer PLCO population getting CRC
as a function of time in years, taking the CRC population
as a Bayesian given. A cone of uncertainty is indicated. This
cone, which widens at later times, suggests that the never-cancer
population flagged as high risk (see Figure 3 and Table 2) has
an appreciable probability of developing CRC at a later time.
Accordingly, this group regarded as “false positives” actually
would benefit from screening. Because these false positives drive
down the sensitivity and positive predictive value, this builds the
case that concordance is better suited as a relative rather than
absolute metric of performance.

In Figure 4, while the risk stratification into three categories
is done at TRIPOD level 3, the confidence intervals are
at TRIPOD level 1a. This is because they contain only a
population-uncertainty calculated from an expression analogous
to Equation (1).

DISCUSSION

Machine Learning Algorithms for CRC
Prediction
Obtaining a concordance of 0.70 ± 0.02 on training an ANN
with EM imputation gives a test that is competitive with the tests
using routine data itemized in the review by Usher-Smith et al.
(2016), including Betes (Betes et al., 2003) (TRIPOD level 3) and
even the self-completed questionnaire used by Colditz (Colditz
et al., 2000) (TRIPOD level 3). Our model of CRC risk combines
routine data (involving no biomarkers) to form a score of CRC
risk, and thus gives a discriminating and generalizable score of
CRC risk.

Like other clinical tests, the negative calls made by the
ANN with EM imputation have a greater probability of being
correct compared to the corresponding probability of correctness
of its positive calls. This trend can be seen by considering
the model’s strong performance among individuals ages 18–
49 as well as its sensitivity (0.63 ± 0.06) and misclassification
rate of CRC as low risk being significantly worse than its
specificity (0.82 ± 0.04) and misclassification rate of non-CRC
as high risk. Among individuals ages 18–49, the concordance
was driven up by the increase in specificity which was probably
triggered by the greater number of respondents for whom the
ANN with EM imputation could make correct negative calls.
Likewise, better performance was observed when testing the
PLCO-trained model upon NHIS data (compared to testing
the NHIS-trained model upon PLCO data). In NHIS, there
are ∼106 respondents of which ∼103 have CRC, whereas
in PLCO there are ∼105 respondents of which ∼103 have
CRC. Thus, for the PLCO dataset, there were (an order of
magnitude) fewer specificity-boosting negative calls. In typical
clinical practice such a test that makes a negative call gives a
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FIGURE 3 | Stratification of individuals into low-, medium-, and high CRC-risk groups by the ANN with EM imputation. Risk categories are defined by the requirement

that no more than 1% of positive cases be classified as low risk, and no more than 1% of negative cases be classified as high risk.

TABLE 2 | Comparison of our ANN with EM imputation with USPSTF screening guidelines in stratifying PLCO and NHIS respondents into low-, medium-, and high

CRC-risk groups.

recommendation for no further testing, while a positive call gives
a recommendation for further testing by a more accurate (and
costly) test (Simundic, 2017).

This paper reported uncertainty at TRIPOD level 3 wherever
possible. Reporting uncertainty is crucial to determine optimal
performance because concordance can be misleadingly high even

Frontiers in Big Data | www.frontiersin.org 8 March 2020 | Volume 3 | Article 6

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Nartowt et al. Robust Machine Learning for Colorectal Cancer

FIGURE 4 | Plot of the Kaplan-Meier estimator of the CRC-free probability of the PLCO respondents vs. time for the low-, medium-, and high CRC-risk groups

stratified by ANN with EM imputation model. The shaded regions are 95% confidence intervals at TRIPOD level 1a.

when averaged across cross-testing. For instance, imputation of
missing data with the average of a data-field gave a concordance
that was almost 0.80, but with an accompanying uncertainty of
0.20. The performance for which mean minus uncertainty was
greatest was 0.70 ± 0.02 (see Table 1) when ANN with EM
imputation were used.

Improving Performance With Additional
Relevant Factors
The input predictors to the MLAs were selected based on
availability in both the NHIS and PLCO datasets, what Rubin
calls the file-matching problem (Little and Rubin, 2014). Because
of this selection criteria, some of the stronger factor-correlations
with CRC (e.g., NSAIDs, such as aspirin and ibuprofen;
Rodriguez and Huerta-Alvarez, 2001; Betes et al., 2003) needed
to be omitted from the model, as data on use of NSAIDs was
only available in the NHIS dataset for years 2000, 2005, 2010,
and 2015. The risk-stratification demonstrated in Table 2 would
likely be even more effective if these stronger predictors were
used. Indeed, a data-driven approach to detecting CRC risk in
the general public would put priority on recording these strong
predictors more regularly.

ANN With EM Imputation
The concordance of 0.70± 0.02 of our ANNwith EM imputation
is competitive with previous externally-tested (TRIPOD 3)
risk models using routine data (Betes et al., 2003; Usher-
Smith et al., 2016) as input. To our knowledge, calculating an
uncertainty by the law of total variance (Bertsekas and Tsitsiklis,
2008) so as to incorporate both the population-uncertainty
(Hanley and McNeil, 1982; Fawcett, 2005) of Equation (1)
and the cross-uncertainty due to variance in performance
across cross-testing (Picard and Cook, 1984) of Equation (2)
has never been done before. Incorporating this additional
component of cross-uncertainty demonstrates the advantage of

using the ANN. The advantage of the ANN over LR is not
in having a high mean concordance, but rather in having a
much lower uncertainty, which demonstrates the generalizability
of the model. Because of better generalizability, the ANN
with EM imputation is considered the best among all the
model/imputation configurations.

Clinical Deployment
In this work, the developed ANN with EM imputation is used to
predict the colorectal cancer risk for individuals based on their
personal health data. The output of the model, the colorectal
cancer risk score, can be used to help the clinicians make
screening decisions. Generally speaking, true positives require
further screening and true negatives require no screening. False
positives still stand to benefit from our model, which offers
this population their individual cancer risk as a function of
personal health habits they have at different times. Drops in an
individual’s risk score in response to better personal health habits,
such as quitting smoking and treatment of diabetes will provide
positive feedback for that individual in the form of a reduced
risk-score. Furthermore, high-risk never-cancer false positives
warrant heightened screening attention, as demonstrated by the
sharply decreasing Kaplan-Meier probability of high-risk never-
cancer individuals remaining free of CRC over time. In general,
the temporal trend of cancer risk will determine the next step for
the individuals.

CONCLUSION

In this comparative study, we have evaluated seven machine
learning algorithms in combination with six imputation methods
for missing data, all trained and cross-tested with the NHIS
and PLCO datasets. Among various machine learning algorithms
using different imputation methods, the artificial neural network
with Gaussian expectation-maximization imputation was found
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to be optimal, with a concordance of 0.70 ± 0.02, a
sensitivity of 0.63 ± 0.06, and a specificity of 0.82 ±
0.04. In CRC risk stratification this optimal model had a
never-cancer misclassification rate of only 2%, and a CRC
misclassification rate of only 6%. Being a TRIPOD level 3
study, our model with low uncertainty suggests that it can be
used as a non-invasive and cost-effective tool to screen the
CRC risk in large populations effectively using only personal
health data.

DATA AVAILABILITY STATEMENT

The code used in this study is not publicly available due to a
concern of intellectual property proprietary to Yale University.
Requests to access the NHIS datasets should be directed to the
Centers for Disease Control and Prevention (CDC) at https://
www.cdc.gov/nchs/nhis/. Requests to access the PLCO datasets
should be directed to the National Cancer Institute (NCI)
at https://biometry.nci.nih.gov/cdas/plco/.

AUTHOR CONTRIBUTIONS

BN analyzed the data, produced the results, and wrote the
technical details. GH, WM, YL, and GS produced the technical
details, and reviewed the manuscript. JD generated the research
ideas and reviewed the manuscript.

FUNDING

Research reported in this publication was supported
by the National Institute of Biomedical Imaging and
Bioengineering of the National Institutes of Health under
Award Number R01EB022589.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the facilities provided by the
Yale Department of Therapeutic Radiology at which this work
was carried out.

REFERENCES

Andoni, A., Panigrahy, R., Valiant, G., and Zhang, L. (2014). Learning polynomials

with neural networks. JMLR 32.

Benard, F., Barkun, A. N., Martel, M., and von Renteln, D. (2018).

Systematic review of colorectal cancer screening guidelines for

average-risk adults: Summarizing the current global recommendations.

World J. Gastroenterol. 24, 124–138. doi: 10.3748/wjg.v24.

i1.124

Bertsekas, D. P., and Tsitsiklis, J. N. (2008). Introduction to Probability. Belmont,

MA: Athena Scientific.

Betes, M., Munoz-Navas, M. A., Duque, J., Angos, R., Macias, E.,

Subtil, J. C., et al. (2003). Use of colonoscopy as a primary

screening test for colorectal cancer in average risk people. Am.

J. Gastroenterol. 98, 2648–2654. doi: 10.1111/j.1572-0241.2003.

08771.x

Bibbins-Domingo, K., Grossman, D. C., Curry, S. J., Davidson, K. W., Epling,

J. W. Jr., García, F. A. R., et al. (2016). Screening for colorectal cancer us

preventive services task force recommendation statement. J. Am. Med. Assoc.

315, 2564–2575. doi: 10.1001/jama.2016.5989

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York,

NY: Springer.

Colditz, G. A., Atwood, K. A., Emmons, K., Monson, R. R., Willett, W.

C., Trichopoulos, D., et al. (2000). Harvard report on cancer prevention

volume 4: Harvard cancer risk index. Cancer Causes Control 11, 477–488.

doi: 10.1023/A:1008984432272

Collins, G. S., Reitsma, J. B., Altman, D. G., and Moons, K. G. (2015).

Transparent reporting of a multivariable prediction model for

individual prognosis or diagnosis (tripod): the tripod statement.

Br. J. Cancer 162, 55–63. doi: 10.1161/CIRCULATIONAHA.114.

014508

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,

273–297. doi: 10.1007/BF00994018

Falco, M., Wyant, T., and Simmons, K. (2018). What is Colorectal Cancer?

American Cancer Society.

Fawcett, T. (2005). An introduction to receiver-operator characteristic analysis.

Pattern Recogn. Lett. 27, 861–874.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.

Mach. Learn. 20, 273–297.

Hajian-Tilaki, K. (2013). Receiver operating characteristic (ROC) curve

analysis for medical diagnostic test evaluation. Caspian J. Intern. Med. 4,

627–635.

Hanley, J. A., and McNeil, B. J. (1982). The meaning and use

of the area under a receiver operating characteristic (roc)

curve. Radiology 143, 29–36. doi: 10.1148/radiology.143.1.70

63747

Hart, G. R., Roffman, D. A., Decker, R., and Deng, J. (2018). A

multi-parameterized artificial neural network for lung cancer risk

prediction. PLoS ONE. 13:e0205264. doi: 10.1371/journal.pone.

0205264

Hosmer, D. W., and Lemeshow, S. (2000). Applied Logistic Regression. New York,

NY: Wiley. doi: 10.1002/0471722146

Kingma, D. P., and Ba, J. L. (2015). Adam: a method for stochastic optimization.

ICLR 2015 arXiv:1412.6980v9.

Little, R. J. A., and Rubin, D. B. (2014). Statistical Analysis withMissing Data.Wiley.

Morgan, J. N., and Sonquist, J. A. (1963). Problems in the analysis

of survey data, and a proposal. Am. Statist. Assoc. 58, 415–434.

doi: 10.1080/01621459.1963.10500855

National Cancer Institute (2018). Cancer Stat Facts: Colorectal Cancer. National

Cancer Institute.

National Cancer Institute (2019). Tests to Detect Colorectal Cancer and Polyps.

National Cancer Institute.

Picard, R. R., and Cook, R. D. (1984). Cross-validation of regression

models. J. Am. Stat. Assoc. 79, 575–583. doi: 10.1080/01621459.1984.104

78083

Platt, J. C. (1999). “Probabilistic Outputs for Support Vector Machines and

Comparisons to Regularized LikelihoodMethods,” inAdvances in LargeMargin

Classifiers (Cambridge, MA: MIT Press), 61–74.

Rish, I. (2001). An empirical study of the naive bayes classifier. IJCAI 2001 Work

Empir. Methods Artif. Intell. 3, 41–46.

Rodriguez, L. G., and Huerta-Alvarez, C. (2001). Reduced risk of

colorectal cancer among long-term users of aspirin and nonaspirin

nonsteroidal antiinflammatory drugs. Epidemiology 12, 88–93.

doi: 10.1097/00001648-200101000-00015

Rofman, D., Hart, G., Girardi, M., Ko, C. J., and Deng, J. (2018).

Predicting non-melanoma skin cancer via a multi-parameterized

artifcial neural network. Sci. Rep. 8, 1–7. doi: 10.1038/s41598-018-

19907-9

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature 323, 533–536.

doi: 10.1038/323533a0

Shannon, C. E. (1948). A mathematical theory of communication.

Bell Syst. Techn. J. 27, 623–656. doi: 10.1002/j.1538-7305.1948.tb0

0917.x

Frontiers in Big Data | www.frontiersin.org 10 March 2020 | Volume 3 | Article 6

https://www.cdc.gov/nchs/nhis/
https://www.cdc.gov/nchs/nhis/
https://biometry.nci.nih.gov/cdas/plco/
https://doi.org/10.3748/wjg.v24.i1.124
https://doi.org/10.1111/j.1572-0241.2003.08771.x
https://doi.org/10.1001/jama.2016.5989
https://doi.org/10.1023/A:1008984432272
https://doi.org/10.1161/CIRCULATIONAHA.114.014508
https://doi.org/10.1007/BF00994018
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1371/journal.pone.0205264
https://doi.org/10.1002/0471722146
https://doi.org/10.1080/01621459.1963.10500855
https://doi.org/10.1080/01621459.1984.10478083
https://doi.org/10.1097/00001648-200101000-00015
https://doi.org/10.1038/s41598-018-19907-9
https://doi.org/10.1038/323533a0
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Nartowt et al. Robust Machine Learning for Colorectal Cancer

Simundic, A. M. (2017). Extent of diagnostic agreement among

medical referrals. EJIFCC 19, 203–211. doi: 10.1111/jep.

12747

Usher-Smith, J. A., Walter, F. M., Emery, J. D., Win, A. K., and Griffin,

S. J. (2016). Risk prediction models for colorectal cancer: a systematic

review. Cancer Prev. Res. 9, 13–26. doi: 10.1158/1940-6207.CAPR-

15-0274

Yang, Y., Mauldin, P. D., Ebeling, M., Hulsey, T. C., Liu, B., Thomas, M.

B., et al. (2012). Effect of metabolic syndrome and its components on

recurrence and survival in colon cancer patients. Cancer 119, 1512–1520.

doi: 10.1002/cncr.27923

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Nartowt, Hart, Muhammad, Liang, Stark and Deng. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Big Data | www.frontiersin.org 11 March 2020 | Volume 3 | Article 6

https://doi.org/10.1111/jep.12747
https://doi.org/10.1158/1940-6207.CAPR-15-0274
https://doi.org/10.1002/cncr.27923
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Nartowt et al. Robust Machine Learning for Colorectal Cancer

APPENDIX

The Levels of TRIPOD and the
Cross-Testing Uncertainty
Differing levels of TRIPOD have cross-testing uncertainty from
different sources of distributional disparity. There is always a
component of uncertainty due to the finitude of the dataset used,
and that of the concordance is well-known (Hanley and McNeil,
1982; Fawcett, 2005). For a population of N respondents C of
whom have cancer and a MLA giving a concordance of AUC,
what shall be called the “population-uncertainty”52 is a function
of AUC, C, and N alone and given as,

52 =
1

C(N − C)











AUC (1− AUC) + (C − 1)

(

AUC

2− AUC
− AUC2

)

+ (N − C − 1)

(

2AUC2

1+ AUC
− AUC2

)











(1)

For TRIPOD level 1b or higher, an additional uncertainty
component we call the “cross-uncertainty” (τ 2) arises from
cross-validation or cross-testing. This uncertainty, unlike the
population-uncertainty, depends explicitly upon the disparity of
the distribution of the two datasets. If the split of the data is
random (TRIPOD levels 1b and 2a), the cross-uncertainty is
normal or Gaussian (Bishop, 2006; Bertsekas and Tsitsiklis, 2008).
If the split of the data is non-random (TRIPOD levels 2b and
3), the cross-uncertainty indicates the difference between the
distributions of the data of each group. In the case of cross-testing
between NHIS and PLCO, the cross-uncertainty indicates the
difference between the underlying distributions of each dataset.

For splitting of the data into nf-folds the cross-uncertainty τ 2 is
estimated as the sample variance resulting from the concordance
AUCi from testing or validating upon the ith-fold of data
summed over all nf-folds, which is done as:

τ 2 =
1

nf − 1

nf
∑

i= 1

(

AUCi − AUC
)2; AUC =

1

nf

nf
∑

i= 1

AUCi; (2)

A true positive rate or sensitivity (TPR) and a true negative
rate or specificity (SPC) determine a concordance or area
under the (receiver-operator characteristic) curve AUC. Taking
TPR and SPC to be random variables that take on differing

values over differing folds of cross-testing, we used the law

of total variance (Hosmer and Lemeshow, 2000) to form the

uncertainty σ
2. Both the population-uncertainty 52 and the

cross-uncertainty τ 2 between folds of data were incorporated

as the following sum of variances conditioned upon a specific
TPR and SPC:

σ 2 = E[var AUC|TPR, SPC]+ var E[AUC|TPR, SPC]

=
1

nf

nf
∑

i= 1

52
i + τ 2 = 52

i + τ 2 (3)

Throughout this paper, we reported the square root of the total

uncertainty
√

σ 2 = σ > 0 from Equation (3), formed from

summing the mean population-uncertainty 52
i from Equation

(1) and the cross-uncertainty τ 2 from Equation (2). Through the

cross-uncertainty τ 2 the disparity between the distributions of
the folds of cross-testing or cross-validation appear explicitly in
the total uncertainty σ

2.
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