
Descriptor
A hierarchically annotated
 dataset drives tangled
filament recognition in digital neuron reconstruction
Graphical abstract
Highlights
d From a data-driven perspective, focusing particularly on

challenging tangled neurons

d Enhanced the neuron image quality to facilitate tangled

neuron reconstruction

d HiNeuron integrates into network training, enhancing tangled

filament recognition

d HiNeuron enables the evaluation of neuron automatic tracing

methods’ performance
Chen et al., 2024, Patterns 5, 101007
August 9, 2024 ª 2024 The Authors. Published by Elsevier Inc.
https://doi.org/10.1016/j.patter.2024.101007
Authors

Wu Chen, Mingwei Liao,

Shengda Bao, ..., Qingming Luo,

Chi Xiao, Anan Li

Correspondence
xiaochi@hainanu.edu.cn (C.X.),
aali@hust.edu.cn (A.L.)

In brief

This study presents a data-driven

perspective, focusing particularly on

neurons that have been identified as

challenging in previous labeling efforts.

The authors extracted thousands of

tangled neuron blocks and created

HiNeuron, a dataset that categorizes

neural blocks into three density levels.

The HiNeuron dataset enables

incorporation into the existing specialized

training network, enhancing tangled

filament recognition and evaluation of the

performance of the automatic tracing

method. Ultimately, the HiNeuron dataset

is a valuable resource for tangled neuron

reconstruction.
ll

mailto:xiaochi@hainanu.edu.�cn
mailto:aali@hust.edu.�cn
https://doi.org/10.1016/j.patter.2024.101007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2024.101007&domain=pdf


OPEN ACCESS

ll
Descriptor

A hierarchically annotated dataset
drives tangled filament recognition
in digital neuron reconstruction
Wu Chen,1 Mingwei Liao,1 Shengda Bao,1 Sile An,1 Wenwei Li,1 Xin Liu,1 Ganghua Huang,3 Hui Gong,1,2 Qingming Luo,3

Chi Xiao,3,* and Anan Li1,2,3,4,*
1Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical

Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
2HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
3Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
4Lead contact

*Correspondence: xiaochi@hainanu.edu.cn (C.X.), aali@hust.edu.cn (A.L.)

https://doi.org/10.1016/j.patter.2024.101007
THEBIGGERPICTURE Neurons possess intricatemorphological structures that receive information through
dendrites and transmit integrated signals to downstream neurons via axons. In mammals, billions of neurons
interconnect to form a complex brain network. For research, it is important to label and identify neurons and
their connections. However, sometimes labeled neurons can appear entangled, and this creates difficulties
for both humans and computers in identifying and studying neuronal connections. Unlike previous technol-
ogy-driven approaches, this study presents a data-driven strategy to enhance the automatic identification
and reconstruction of tangled neural regions.
SUMMARY
Reconstructing neuronal morphology is vital for classifying neurons and mapping brain connectivity. How-
ever, it remains a significant challenge due to its complex structure, dense distribution, and low image
contrast. In particular, AI-assisted methods often yield numerous errors that require extensive manual
intervention. Therefore, reconstructing hundreds of neurons is already a daunting task for general research
projects. A key issue is the lack of specialized training for challenging regions due to inadequate data and
training methods. This study extracted 2,800 challenging neuronal blocks and categorized them into mul-
tiple density levels. Furthermore, we enhanced images using an axial continuity-based network that
improved three-dimensional voxel resolution while reducing the difficulty of neuron recognition. Comparing
the pre- and post-enhancement results in automatic algorithms using fluorescence micro-optical
sectioning tomography (fMOST) data, we observed a significant increase in the recall rate. Our study
not only enhances the throughput of reconstruction but also provides a fundamental dataset for tangled
neuron reconstruction.
INTRODUCTION

Neurons serve as the fundamental units of brain circuits, playing

a crucial role in the study of brain structure and function. The

reconstruction of neuronal morphology holds significant value

for cell typing, unveiling projection patterns between distinct

brain regions, and investigating brain connectivity patterns.1,2

Recent advancements in techniques such as neuronal labeling

and three-dimensional high-resolution optical microscopy have

enabled scientists to achieve mesoscale-level imaging of neu-

rons.3–6 These innovative approaches facilitate the acquisition
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of comprehensive, high-throughput, and three-dimensional im-

ages of the entire mammalian brain,6,7 thereby enabling the iden-

tification of neuronal morphology from these images. The

complexity of neuronal morphology is characterized by the pres-

ence of dendrites and long axons extending from the soma.

Notably, axons, especially those distant from the soma, exhibit

intricate branching patterns.7 It is difficult to recognize specific

regions of densely tangled filaments within whole-brain neurons,

such as dense fibers and neighboring or crossover fibers.7,8

Reconstruction involves tracing molecular labeling signals and

accurately extracting structural information from the images.
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This intricate process entails gradually traversing all the

branches until the terminals are reached, capturing the soma

and branching structures precisely.

Currently, the gold standard for neuron reconstruction is

manual tracing, a time-consuming and labor-intensive scientific

endeavor.6,7 Nonetheless, the development of automatic tracing

methods has become imperative but requires high accuracy and

efficiency in neuron reconstruction. To achieve a faster andmore

accurate reconstruction of complete neurons, some researchers

have directed their efforts toward developing sparse labeling

techniques to reduce or eliminate mutual interference.9,10 How-

ever, even with sparse labeling, the presence of tangled filament

neurons still poses a challenge.11,12 Some studies have made

strides in enhancing reconstruction accuracy by optimizing im-

aging quality.6 Nevertheless, this approach can introduce imple-

mentation difficulties, such as a significant reduction in imaging

throughput. In addition, various methods have been proposed in

information processing for automatic neuron reconstruc-

tion.13–16 For instance, the MouseLight project from the Howard

Hughes Medical Institute has reconstructed thousands of neu-

rons through a combination of manual and automatic recon-

struction. They established reconstruction criteria that selec-

tively target neurons exhibiting continuous and clear signals

while excluding those that fail to meet the criteria.17 Although

these studies have advanced the field of neuron reconstruction,

they still encounter numerous limitations when dealing with data

that is difficult to discern. These challenges encompass various

difficulties, including but not limited to the following: when fibers

are in close proximity, the narrow gap between fiber boundaries

can result in perplexing connections. In the case of fiber cross-

over, dozens of connection patterns may exist,18 making it diffi-

cult to distinguish the connectivity relationships accurately.

Moreover, the branching structure of fibers, particularly in the

presence of dense fibers or interference from other fibers, can

introduce confusion during reconstruction.18 Furthermore, the

poor axial image resolution19 adds complexity to distinguishing

false connections between fibers, making it challenging to deter-

mine the correct connectivity. These challenging data further

compound the difficulties in automatic tracing, ultimately leading

to diminished reconstruction accuracy and efficiency.

To tackle the challenges associated with the reconstruction of

difficult-to-recognize neurons, a common approach is to employ

multiple manual reconstructions to enhance identification and

reconstruction accuracy.17 However, manual reconstruction is

known to be time consuming and labor intensive,17,20 underscor-

ing the pressing need to develop automatic reconstruction algo-

rithms. In recent years, deep learning, awidely applied technique

in academia and industry,21–28 has also been explored for neuron

reconstruction.12,29–33 For instance, Li and Shen12 devised a

deep network for semantic segmentation of dense nerve fibers

followed by tracing. Nonetheless, the development of such auto-

matic neuron reconstruction algorithms typically necessitates a

substantial amount of neuron image data coupled with corre-

sponding annotations.12,29 Existing public neuron image data-

bases provide partially annotated data, contributing to the

advancement of neuron reconstruction methods.34,35 However,

the available neuron annotation data from microscopic imaging

are limited and often encompass single or sparsely distributed

neurons, lacking tangled filaments or an adequate representa-
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tion of other neurons.12 If the development of reconstruction al-

gorithms solely relies on these data, the limited features learned

by the network may result in insufficient robustness and general-

ization of the model.12,13 Some studies have attempted to

generate dense data through simulations,12 but these artificially

generated data differ from real optical microscopy data, leading

to variations in learned features and lower accuracy when

applied to real fights. Furthermore, existing tracing methods

typically demonstrate favorable reconstruction outcomes on

specific data types, yet they often lack evaluation and analysis

of algorithm performance on challenging tangled filaments

data.13,16 In summary, there is currently a dearth of challenging

neuron image data featuring difficult-to-recognize characteris-

tics coupled with the corresponding high-quality annotations.

Therefore, enhancing the reconstruction accuracy for such

data is imperative.

To address these challenges, the key is a data-driven

approach that involves extracting the challenging locations

within tangled neurons, mining their characteristics of small fi-

ber-boundary distances from the data, and utilizing image

enhancement to increase fiber continuity, thereby reducing the

identification difficulty and improving the reconstruction accu-

racy of existing automatic tracing methods.

In this study, we extracted hundreds to thousands of chal-

lenging image blocks from the data of dozens of reconstructed

neurons, each validated by multiple experts. These data mainly

included tangled filament features such as neighboring fibers,

branching and crossover structures, and dense fibers. By algo-

rithmically analyzing the data, we categorized it into different

density levels and created a dataset of approximately 2,800

blocks of tangled filament with three density levels, called hierar-

chical ImageNet for neuron reconstruction (HiNeuron). These

data compensated for the limited number of difficult-to-recog-

nize tangled filament samples in the existing database and

enabled the evaluation of the reconstruction performance of ex-

isting tracing methods. We publicly released this dataset as a

valuable resource for developing new neuron reconstruction

methods.

We also improved the spatial resolution of neuron images to

achieve three-dimensional isotropy through image enhance-

ment techniques. This enhancement process improved the

reconstruction accuracy of existing automatic tracing methods

on difficult-to-recognize tangled filament data. We extracted

the challenging data of tangled filaments from fluorescence mi-

cro-optical sectioning tomography (fMOST)4–6 and compared

the results of existing automatic tracing algorithms (e.g., neu-

Tube36) on these data before and after image enhancement.

The most significant recall rate of neuron reconstruction

increased from 0.58 ± 0.12 to 0.89 ± 0.10, reducing the difficulty

of neuron recognition and minimizing the need for manual cor-

rections. For certain test data where current automatic tracing

methods struggled to achieve accurate reconstruction (preci-

sion <0.2), we achieved a reconstruction precision improve-

ment exceeding 0.7 by utilizing image enhancement. This

improvement effectively increased the throughput of neuron

reconstruction. Moreover, incorporating HiNeuron data into

the existing neural network enhanced their performance,

increasing the average F1 score by 10.74% in high-density

neuron images.



Figure 1. Construction of a tangled neuronal dataset of images at the whole-brain level

(A) The pipeline of constructing a neural image dataset includes data extraction, image density grading, and image isotropy.

(B) The extraction of neuron images is an inconsistency in multiple manual reconstructions. B1–B5 represent difficult-to-recognize images of neurons in different

positions, using B1 as an example for explanation. Scale bar, 50 mm.

(C) The density grading of neural images is divided into different density levels through algorithms. Scale bar, 20 mm.
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RESULTS

Construction of a tangled neuronal image dataset at the
whole-brain scale
Neuronal automatic reconstruction achieves high accuracy on

sparsely or clearly structured data.17 However, it results in

numerous false connections and reconstruction errors when

dealing with tangled filament data such as neighboring fibers,

branching and crossover fibers, and dense fibers, requiring sub-

stantial manual correction.8 Thus, there is a need to focus on

difficult-to-recognize neuronal data. We constructed a neuronal

image dataset with different levels of densities called HiNeuron,

which consisted of neuron images and their corresponding

manual tracing results as the gold standard (Figure 1A). First,

we extracted hundreds to thousands of image blocks with diffi-

cult-to-recognize data of several dozen reconstructed neurons.

Each reconstructed neuron result was verified by multiple ex-

perts. When identifying inconsistent locations among the multi-

ple manual reconstructions completed during the reconstruction

process (Figure 1B), these difficult-to-recognize data in different

positions were prone to confusion. We extracted the challenging
neuron images, typically those of neighboring, branching, cross-

over, and dense fibers. Subsequently, we calculated signal den-

sity and cluster analysis to divide the dataset into different den-

sity levels (Figure 1C).

Due to the physical limitations of optical imaging systems, the

axial-voxel resolution is generally lower compared to the lateral-

voxel resolution.3–6 This anisotropic voxel resolution leads to

insufficient spatial continuity in the images.8 Particularly,

neuronal images with tangled filaments7,12 are challenging due

to the small fiber-to-fiber distances, which often result in false

connections and worsen accurate reconstruction. Moreover, ex-

isting neuronal image databases34,35 typically provide data with

a specific resolution, while actual imaging data exhibit diversity.

To further enhance the versatility and compatibility of the data,

the deep learning network was employed for image enhance-

ment, aiming to improve the axial-voxel resolution and quality

of the images. This approach produced three-dimensional

isotropic high-resolution data, increased the continuity of

neuronal fiber, reduced the recognition difficulty, and contrib-

uted to improving the reconstruction accuracy of existing auto-

matic reconstruction algorithms for difficult-to-recognize data.
Patterns 5, 101007, August 9, 2024 3



Figure 2. The results of neuron image isot-

ropy

(A) The flowchart for training and predicting high-

axial-voxel resolution of neuronal images.

(B) The lateral section (x-y) images. The coronal

plane of the original images, bicubic up-sampling,

and AINet prediction images is shown. Scale bar,

20 mm.

(C) The axial section (z-y) images are a comparison

of axial-voxel-resolution raw images, bicubic up-

sampling, and AINet predicted images. The drawn

grayscale curve is the distribution along the orange

line. Scale bar, 20 mm.
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Axial image enhancement of neurons
Neuronal images acquired through optical imaging techniques

are typically anisotropic.3–7 Due to the lower axial-voxel reso-

lution, there is a lack of continuity in neuronal fiber connec-

tions, which presents limitations in the subsequent applica-

tions of neuron tracing.37 To enhance the versatility and

compatibility of the data, we employed image enhancement

techniques using a deep learning neural network to predict

high-axial-voxel-resolution images from optically acquired im-

ages with low axial-voxel resolution (Figure 2A). This gener-

ated three-dimensional isotropic data, enhancing neuronal fi-

ber continuity and improving the accuracy of automatic

reconstruction for challenging data. However, obtaining

high-resolution axial data for deep learning network training

was difficult, creating a bottleneck. Due to the high-resolution

optical images in the lateral direction and the low-resolution

images in the axial direction, there were similar structural fea-

tures in different slices.37,38 Thereby, the network can be

trained through high-resolution lateral images and then

applied to low-resolution axial images to improve axial resolu-

tion. To address this problem, we utilized higher-lateral-reso-

lution images in the coronal plane as the ground truth.37,38 By

down-sampling the coronal plane images, we constructed im-

ages similar to the axial low-resolution images, thereby

creating image pairs with high resolution in the coronal plane

and low resolution in the axial plane whose features matched

each other. Subsequently, the constructed dataset was used

to train the AINet (axial interpolation network) model, which

was based on the U-Net model.39 We used parameter optimi-
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zation and ablation experiments,

including variations in the number of

up-sampling and down-sampling layers

in the network (Figure S2), activation

function, and loss function, to better

adapt the model to the characteristics

of the neuron images. After multiple

parameter adjustments, we obtained an

optimal network that was better suited

to training and predicting neuronal im-

ages. The trained network was then

applied to predict high-axial-voxel-reso-

lution isotropic data from low-axial-

voxel-resolution images. The steps of

axial image enhancement included the

construction of the training dataset, AI-
Net training, and image prediction (Figure S1). We provide a

more detailed description in the experimental procedures.

Following training on the lateral slices (x-y) of the neuronal da-

taset (Figure S3), the trained model was applied to predict the

low-axial-voxel-resolution plane (z-y) images, where the axial

plane (z-y) images were obtained through data reslicing.40 The

results included raw images, images obtained through bicubic

interpolation, and images predicted using the AINet (Figure 2C).

We plotted the grayscale profiles for comparison, revealing that

the raw images exhibit noticeable aliasing artifacts and are

blurry, making it difficult to distinguish the direction of neuronal

fibers. Bicubic up-sampling offered some improvement and

enhancement, but the AINet, utilizing fully convolutional

methods, significantly enhanced the quality of the predicted im-

ages and provided clearer visualization of the neuronal fiber

(Figures S4 and S5). After predicting the high-axial-voxel-resolu-

tion (z-y) images, further validation of the axial-voxel-resolution

images was performed. The predicted high-axial-voxel-resolu-

tion (z-y) images were then resliced to their original coronal (x-

y) plane images for comparison (Figure 2B). It was observed

that the predicted high-axial-voxel-resolution images were re-

sliced to the coronal plane to maintain consistency with the orig-

inal coronal plane (x-y) images. The predicted images effectively

suppressed background fluorescence effects and, when com-

bined with image deconvolution techniques,41 reduced image

blurring. Experimental validation on simulated neuronal images

was performed to verify the training and prediction of the

network (Figure S6). Our approach was compared with other

superresolution models,23,24,37,42 obtaining better-quality axial



Figure 3. Automatic reconstruction recall rate results of neural image density grading

(A) The reconstruction results of neuron images under different densities in the original image and at high-axial-voxel resolution, with manual tracing results as the

gold standard. Scale bar, 50 mm.

(B) The reconstruction results at some key positions, and the last is the manual reconstruction as the gold standard. Scale bar, 20 mm.

(C–H) Quantitative results of recall rate for automatic neuron reconstruction in APP2, NeuronStudio, neuTube, SparseTracer, ST-LFV, and NeuroGPS-Tree at

different densities. LR represents the original low-resolution images and HR represents the high-resolution neuron images after image enhancement.
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neuron images and improved quantitative evaluation metrics

(Figure S10). The results demonstrated that our method pro-

duces higher image quality and closer resemblance to the refer-

ence images in the simulated neuronal dataset.

Neuron reconstruction based on density grading
In neuron reconstruction, the varying density levels of neuronal

images correspond to different degrees of difficulty in recogni-

tion. By employing image enhancement to achieve isotropy, we

explored whether this approach can improve the accuracy of

the automatic reconstruction and compared the reconstruction
performance of different algorithms on images with different

density levels. Through cluster analysis, we classified the im-

age data into three density grades (Figure 1C), which helped

to assess the reconstruction results for different density levels

during neuronal reconstruction evaluation. We combined six

different reconstruction algorithms for testing, i.e., APP2,16

NeuronStudio,43 neuTube,36 SparseTracer,14 ST-LFV,15 and

NeuroGPS-Tree,13 on images with varying density levels to

measure the reconstruction recall rate before and after image

enhancement (Figures 3C–3H). Due to our neuron reconstruc-

tion being based on single-neuron reconstruction, some of
Patterns 5, 101007, August 9, 2024 5
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the different reconstruction algorithms we tested traced all fi-

bers in the image block, resulting in lower reconstruction preci-

sion and F1 score. Therefore, we compared the neural recon-

struction results with the reconstruction recall rate. The

quantitative results of automatic neuron reconstruction indi-

cated that as the density of the neuron images increased, the

overall reconstruction recall rate tended to decrease, which

also indicated greater difficulty in reconstruction (Table S1). In

addition, we performed the same reconstruction tests on

isotropic images with enhanced voxel resolution at different

density levels. Compared to the original neuron images, the

reconstruction results of image-enhanced neuron images using

existing automatic tracing algorithms showed improved recall

rates, with the most significant increase from 0.58 ± 0.12 to

0.89 ± 0.10 for neuTube (Table S1). This reduction in recogni-

tion difficulty facilitated the correct reconstruction of chal-

lenging locations such as branches, neighbors, and crossover

in neuronal fibers (Figure 3B), thereby reducing manual correc-

tion time. Moreover, in some test data where current automatic

tracing methods were almost unable to achieve correct recon-

struction (precision <0.2), the reconstruction accuracy

increased from 0.2 to above 0.7 after the image enhancement

(Table S2), effectively improving the throughput of neuron

reconstruction. We further manually corrected the tracing re-

sults before and after image enhancement. Taking the

NeuroGPS-Tree algorithm as an example, we examined the

trace results of 26 data blockswith different density levels. After

obtaining the initial tracing results, the original data before the

image enhancement requiredmanual corrections 52 times, tak-

ing approximately 19 min, while the data after the image

enhancement required manual corrections only 14 times, tak-

ing approximately 4 min (Table S3). This demonstrated that

isotropic image enhancement can effectively improve the

throughput of reconstruction and reduce the time required for

manual correction.

In the simulation of neuron images with different densities, we

utilized NeuroGPS-Tree for automatic reconstruction (Figure S7;

Table S4). We demonstrated the reconstruction results of chal-

lenging locations within tangled filaments and showed that

improving the axial image quality contributed to the accurate

reconstruction of critical points in neurons (Figure S7C). Further-

more, we conducted complete reconstruction experiments on

24 image blocks with different densities (Figure S8). The results

indicated that isotropic blocks can improve the accuracy of

neuron reconstruction by 10%–30% in terms of the F1 score

(Figure S8C; Table S5). Particularly, in dense neuronal datasets

where distinguishing neighboring neurons and crossover neu-

rons was difficult, isotropic blocks can reduce the difficulty of

recognition (Figures S8B, S8E, and S8F). We conducted exper-

iments using simulated neuron data (Figure S12), generating

training data with both low and high voxel resolution in the axial

direction and employing the same structured network model for

training. The experimental results (Figure S12C) show that the

network trained on high-axial-resolution images yields better

reconstruction results in neuron reconstruction. We also con-

ducted reconstruction tests on images with different axial-voxel

resolutions (Figure S14). According to the automatic reconstruc-

tion results (Figure S14B), the axial-voxel resolution decreased

under the different image densities, indicating lower continuity
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between adjacent images, and the F1 score exhibited a

decreasing trend (Tables S6 and S7).

The influence of a graded dataset on automatic
reconstruction accuracy for network training
Existing neural network models for neuron reconstruction often

utilize training data that mainly consist of single neurons or

sparse signals, with minimal interference from other fiber sig-

nals.12,29 Moreover, these training data contain a mixture of dif-

ficulty levels, which leads to limited learning of different types of

features in the network. As a result, the robustness and general-

ization capability of the model are insufficient, and it fails to

adequately and specially train on challenging neuron data. The

predictive performance of the network model is poor when

applied to real optical microscopy images containing chal-

lenging neuronal data, leading to low accuracy in neuron recon-

struction. In contrast, the HiNeuron includes data that are manu-

ally recognized as difficult during neuron reconstruction, such as

tangled filament features with neighboring, branching, and

crossover fibers and dense fibers. Incorporating these chal-

lenging data into the existing network and specializing in the

training enhanced themodel’s ability to recognize tangled fibers,

improving prediction accuracy and reducing false fiber connec-

tions in neuron reconstruction.

Currently, training-based models generally segment neuronal

images first, followed by neuron reconstruction.8,12,29 For

instance, Huang et al.29 mainly focused on enhancing weak signal

fibers in micro-optical neuronal images and then performing

neuron tracing. In this study, we aimed to explore the impact of

the challenging dataset we constructed on the automatic recon-

struction accuracy during network model training. Due to the

limited existing research on neuron images from optical micro-

scopy, we opted to utilize networkmodels trained on similar types

of images. Based on Huang et al.,29 we employed the VoxResNet

network44 (Figure 4A) to segment the graded neuron data of Hi-

Neuron and followed that with neuron tracing. The results of

neuron segmentation are shown in Figure 4B. Using the network

and initial weight, we predicted and obtained neuron segmenta-

tion results. However, this also identified some background noise

as signals, resulting inmore false-positive signals and interference

in the reconstruction. We then incorporated the HiNeuron dataset

into the VoxResNet, imported the initial weight, and retrained the

model to enhance its ability to recognize the challenging neuron

data. We added more than 20 difficult-to-recognize samples for

training and then iterated multiple times to predict neuron images

and compared the results with the predictions of the original

model. As shown in Figure 4B, training with the HiNeuron dataset

mitigates the impact of background noise on neuron reconstruc-

tion. Quantitative analysis compared neuron segmentation results

at different densities before and after training VoxResNet, fol-

lowed by neuron reconstruction (Figure 4C). After retraining with

VoxResNet, the predicted neuron images at the original resolution

and isotropy images achieved higher reconstruction accuracy

compared to those obtained using the original model. In the

high-density data, compared to the original images in the initial

network reconstruction, retrained isotropic images improved the

average F1 score by 10.74% (Table S8). This indicated that Hi-

Neuron contributes to the improvement of the existing network

model performance.



Figure 4. Neuron reconstruction results

before and after training with VoxResNet

(A) VoxResNet network architecture.

(B) Predicted results using the VoxResNet network

and the predictions after incorporating the Hi-

Neuron dataset.

(C) Reconstruction F1 score results of predicted

neuron images before and after training with the

VoxResNet. LR represents the original low-resolu-

tion images and HR represents the high-resolution

neuron images after image enhancement. Scale

bar, 50 mm.
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Testing and analysis of automatic neuron
reconstruction algorithms in a graded dataset
Existing automatic neuronal reconstruction algorithms are

often developed based on specific datasets or specific prob-

lems, and their performance may vary across different types

of datasets.29 To explore the reconstruction performance of

these automatic algorithms on challenging data, we conducted

testing and analysis using our density-based dataset. We

selected a completely reconstructed neuron and divided it

into different image blocks, including some challenging

neuronal images from our benchmark dataset. We then per-

formed cluster analysis on all the image data to obtain neuron

images with different densities (Figure S9). Each neuron image

had the target fiber that needed to be reconstructed, not all fi-

bers. We tested the accuracy of different neuronal reconstruc-

tion algorithms, such as SparseTracer,14 ST-LFV,15 and
NeuroGPS-Tree,13 and compared the

quantitative results. The result of manual

annotation and verification was the gold

standard. These three methods can trace

target neurons from given seed points. In

previous studies, without density classifi-

cation of the images, it was not possible

to compare the reconstruction results of

different types of images such as sparse

or dense images.

However, classifying the neuron im-

ages by density allows for a comprehen-

sive analysis of the performance of

different algorithms on different types of

data. In the quantitative results (Fig-

ure 5B), the black dashed line represents

the average F1 score of each method. At

lower densities, the three tested algo-

rithms exhibited relatively higher accu-

racy, but as the density increased, the

reconstruction accuracy decreased. This

indicated that the reconstruction algo-

rithms generated more false connections

with higher density, indicating greater

reconstruction difficulty (Table S9).

By classifying the density of neuronal

images, we can evaluate the performance

of neuronal reconstruction algorithms

more comprehensively, enabling the se-
lection of more suitable algorithms or improvements to the algo-

rithms based on specific research needs.

HiNeuron data availability of tangled neuron imageswith
density grading
We constructed the HiNeuron dataset, which comprises

neuronal images, corresponding manual reconstruction as the

gold standard, and isotropic high-resolution voxel images for

each neuronal image block. In this dataset, all the images

were divided into three different density levels, ranging from

low to high density. The dataset comprised approximately

2,800 image blocks, including neighboring fibers, branching,

and crossover fibers (Figure 6), all in three-dimensional 16-bit

format. The pixel size of each block is not the same, and it is

cropped according to the actual extension direction of the

target neuron fiber. For each folder, we provided a document
Patterns 5, 101007, August 9, 2024 7



Figure 5. Results of all graded data blocks for a single neuron reconstruction using different automatic algorithms

(A) Automatic reconstruction results of different reconstruction algorithms and manual reconstruction results as the gold standard. Scale bar, 50 mm.

(B) Quantitative comparison of F1 score results obtained from the different reconstruction algorithms.
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containing the identification number for each piece of data,

along with the starting point and direction of the corresponding

data block tracing.

The primary purpose of building the dataset is 2-fold. First, it

allows for the analysis of the reconstruction performance of ex-

isting algorithms. Using our benchmark dataset, different

neuronal algorithms can be tested, and quantitative results can

be obtained to evaluate the reconstruction effectiveness for neu-

rons of different densities. Second, based on our constructed Hi-

Neuron dataset, it can be combined with existing or developed

new neural network models to improve the ability of the chal-

lenging neurons and enhance the generalization capability of

the network. It also facilitates the development of new neuron

reconstruction algorithms. We make the dataset publicly avail-

able and provide the data download links, thereby offering a

foundational data resource for future research on neuron recon-

struction methods.

DISCUSSION

In this study, we focused on the recognition of challenging data

in neuron images. We constructed a difficult-to-recognize

tangled neuronal dataset with varying levels of density. Em-

ploying neural networks, we enhanced the images to improve

fiber continuity and reduce the difficulty of neuron identifica-

tion, consequently enhancing the reconstruction accuracy of

existing automatic tracing methods. While existing automatic

neuron reconstruction methods achieved satisfactory tracing

results on sparse or clear signal images,17,29 they often

encountered challenges in tangled filaments with closely

packed fibers, branching, or crossovers or dense fiber re-

gions.8 These fibers’ common feature was the mutual interfer-

ence between fibers that were in close proximity to one another

and caused confusion during the reconstruction process. It was

easy to trace to adjacent fibers, resulting in a large number of

false reconstructed connections. These false connections

linked different neuronal fibers, leading to numerous recon-

struction errors and significantly diminished reconstruction ac-

curacy. To address this problem, we extracted challenging

data, utilized image enhancement to increase fiber continuity,

and obtained isotropic images that reduced the recognition dif-
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ficulty. Our approach improved reconstruction accuracy, which

could reduce the manual correction time and increase the

throughput of neuron reconstruction.

The current neuron reconstruction is still manual annotation as

the gold standard, a time-consuming and labor-intensive task.

Therefore, there is an urgent need to develop automatic recon-

struction methods. While existing automatic reconstruction

methods have somewhat improved efficiency,7,8,13 deep

learning methods have also been applied in neuron reconstruc-

tion research.8,12,29 However, these algorithms require a large

number of training images and often exhibit poor performance

with tangled filaments.12 Moreover, some methods are tailored

to specific datasets or problems, leading to poor performance

when applied to diverse datasets.29 And a comprehensive anal-

ysis of reconstruction performance is lacking. In our dataset, we

include tangled neuron images with different levels of density

and their corresponding manual reconstruction. This

dataset allows for performance analysis of different algorithms

and more details testing and evaluation of the automatic recon-

struction capabilities. It enables the targeted selection of more

suitable neuron reconstruction methods and improvement tech-

niques. In addition, it serves as a valuable resource for devel-

oping existing or new reconstruction algorithms, particularly for

challenging neuron data, and improving accuracy for difficult-

to-recognize data.

Reconstructing difficult-to-recognize neurons poses a chal-

lenging task as tangled filaments and small fiber distances often

result in numerous false connections and lower reconstruction

accuracy. Optical imaging has inherent physical limitations,

leading to low-axial-voxel resolution and axial blurring. Although

some deep learning networks21–26 can enhance image resolu-

tion, obtaining high-axial-voxel-resolution training data remains

difficult,8 limiting the application of deep learning networks in

neuron reconstruction. To address the problem, we leveraged

the structural similarities of different sectional slices in three-

dimensional images37,38 and simulated low-voxel-resolution

axial images using high-lateral-voxel-resolution images. This al-

lowed us to construct a training dataset for the network model.

By employing deep networks for image enhancement, we

achieved isotropic three-dimensional images with improved

axial image quality and reduced difficulty in neuron recognition.



Figure 6. Neuron images of HiNeuron data

(A) Neuron images at different densities. Scale bar, 50 mm.

(B) Numbers of neuron images with different densities.

(C–E) Local neuron images of branching fibers, neighboring fibers, and crossover fibers. Scale bar, 20 mm.
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Our approachwas comparedwith other superresolutionmodels,

obtaining better-quality axial neuron images and improved

quantitative evaluation metrics. The predicted isotropic high-

voxel-resolution three-dimensional images demonstrated

improved reconstruction accuracy compared to the original

images when used for automatic neuron reconstruction. The

isotropic high-voxel-resolution data we obtained can be

sampled according to voxel requirements in other relevant

studies to obtain different-voxel-resolution data. We carried

out experiments using simulated neuron data, generating

training data with both low- and high-voxel resolution in the

axial direction and training them with the same structured

network model. The results showed that the network trained

on high-axial-voxel-resolution images outperformed in neuron

reconstruction.

In summary, we have constructed a dataset of tangled neu-

rons with varying levels of difficulty in recognition across the

entire brain. This challenging dataset was extracted from neu-

rons obtained from fMOST. Using neural networks, we per-

formed image enhancement to improve the continuity of fibers.

By comparing the results before and after image enhancement

using existing automatic tracing algorithms, we achieved

improved reconstruction accuracy and throughput. In addition,

we have made the constructed dataset publicly available, and

it can be utilized for scientific research in the development of

neuron reconstruction methods.
Limitations of the study
This study still has some limitations. First, optical systems capture

diverse types of images,19 due to factors like signal intensity and

background noise,3,6 leading to distinct features across different

images. A single model used for these types might not effectively

learn all image characteristics, impacting prediction accuracy.

When enhancing neuronal images, models are trained on different

types of images to adapt to their characteristics and ensure pre-

diction accuracy. Accommodating multiple datasets with a single

network model is challenging, especially with diverse optical

neuronal images. Themodelmust handle varying signal intensities

and adapt to different imaging conditions. The importance of us-

ing a single model lies in its advantages, including improved effi-

ciency and enhanced generalization,45 ensuring effectiveness in

complex environments. Moreover, such a model offers broader

application potential.46 Second, when the voxel resolution ratio

between the axial and the lateral directions is significantly larger,

like differences of 5 or even 10 times, the difficulty of generating

high-quality images using the network increases. Third, we classi-

fied the neuron images into different density levels based on signal

density. In future research, we would use additional criteria, such

as branching points and crossover points, to further refine the dif-

ficulty levels of reconstruction. Last, although our research im-

proves the reconstruction accuracy in tangled neurons to some

extent, further exploration is still needed for the reconstruction

of challenging locations.
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for further information and resources should be directed to and will

be fulfilled by the lead contact, Anan Li (aali@hust.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d The HiNeuron dataset and its corresponding original codes have been

deposited and are publicly available. They can be accessed through

our project website at http://atlas.brainsmatics.org/HiNeuron, as well

as on the Zenodo47 repository at https://zenodo.org/records/10992710.

d The original code for the HiNeuron project has also been deposited on

GitHub at https://github.com/Brainsmatics/HiNeuron.

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
Data acquisition

The mouse brain neuron images in this study were obtained using the fMOST

technique.5,6 The acquisition of neuronal tracing data for the seven specimens

followed the fMOST workflow, which included sample preparation, whole-

brain optical imaging, and neuron reconstruction (Figure S11).

All histological procedures have been previously described.6 Briefly, the

mice were anesthetized using a 1% solution of sodium pentobarbital and

subsequently intracardially perfused with 0.01 M phosphate-buffered saline

(PBS) followed by 4% paraformaldehyde (PFA) in 0.01 M PBS. Thereafter,

each brain was dissected, fixed in 4% PFA for 24 h at 4�C, and rinsed in

PBS for 12 h at 4�C. Acquisition of the fine-detailed whole morphology of in-

dividual neurons required resin embedding due to its advantages in terms of

ensuring signal integrity and reducing losses from tissue scattering. Briefly,

each brain was dehydrated in a graded ethanol series (50%, 70%, and 95%

ethanol, changing from one concentration to the next every 1 h at 4�C). After
dehydration, the brains were immersed in a graded glycol methacrylate

(GMA) series, including 0.2% Sudan black B (SBB) (70%, 85%, and 100%

GMA for 2 h each and 100% GMA overnight at 4�C). Finally, the samples

were impregnated in a pre-polymerization GMA solution for 3 days at 4�C
and embedded in a vacuum oven at 35�C for 24 h.

Next, the mouse brain samples were immersed in a water bath. Whole-brain

imaging was performed in the water bath. Imaging was conducted using the

fMOST system. Sectioning was achieved through a relative motion between

the fixed diamond knife and the three-dimensional translation stage. The

fMOST system automatically performed the sectioning and imaging to com-

plete the brain-wide data acquisition. The original images were stitched to

form complete coronal sections, and the image quality was improved by light

correction, which was convenient for subsequent image processing and anal-

ysis. The voxel resolution was 0.353 0.353 1 mm or 0.323 0.323 1 mm, and

the data were saved in 16-bit-depth LZW-compressed TIFF format.

Due to the entire brain images reaching terabyte size,6 it was difficult to pro-

cess such a huge amount of data.We transformed the data format from TIFF to

the native TDat format.48 Then we performed the neuron reconstruction using

the GTree software.49 During the reconstruction, each data block was inde-

pendently reconstructed by at least two annotators for accuracy. Ultimately,

experienced annotators were tasked with overseeing and validating all results

before the results were accepted, obtaining the gold standard for neuron

reconstruction. In general, based on the obtained neuronal imaging data, we

conducted neuron reconstruction and then used it to extract challenging

neuronal data, which were prone to reconstruction confusion at these tangled

filaments, thereby establishing the HiNeuron dataset. The dataset comprised

approximately 2,800 neuron image blocks.

Extraction of tangled neuron image data

Based on neuron images and the obtained reconstruction results, we ex-

tracted the difficult-to-recognize tangled filament data. For locations where

the reconstructions were inconsistent, a distance threshold was set by iter-

ating through the distances between each point. Then we selected challenging

data blocks during the neuron reconstruction.
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To mitigate the biases from manual reconstructions, there may be data-

block selections affected by the point deviations. The neuron image blocks

were further subjected to manual inspection to remove erroneous reconstruc-

tions caused by inconsistent points and selected sparse data blocks. The final

extracted neuron images were tangled filaments that were difficult-to-recog-

nize data, including dense fibers, branching and crossover fibers, and neigh-

boring fibers. Due to data cropping being performed along the reconstruction

direction of the fibers, the three-dimensional size of the imageswas not entirely

uniform. The constructed dataset currently comprises thousands of image

blocks. Furthermore, the constructed neuronal image dataset has been

made publicly available, providing a fundamental data resource for subse-

quent research on neuronal-related studies.

Density grading of tangled neuronal image dataset

The extracted difficult-to-recognize neuron images contain varying degrees of

density. If all the data were tested and evaluated together, it could pose chal-

lenges in analyzing the results of automatic reconstructions. It may not provide

a comprehensive assessment of the reconstruction performance of neuronal

tracing algorithms. By classifying the neuron images based on density levels,

we can perform targeted testing on images with different densities and focus

on the reconstruction results of neuronal images with different density

distributions.

When performing density grading on neuronal image blocks, we first ex-

tracted the signal density by applying neural network29 and threshold segmen-

tation to the image blocks. The signal density was then normalized using the

formula D = NumðsÞ=MaxðsÞ, where D represents the density of the neuronal

image,NumðsÞ denotes the number of signals in each neuron image block, and

MaxðsÞ represents the maximum number of signals among all neuronal image

blocks. The high quality of the neuron images, with minimal background noise

interference, enabled accurate signal extraction. Subsequently, hierarchical

clustering was employed to group the neuronal images into different density

levels. Hierarchical clustering was an automated process that ensured the ob-

jectivity of classification. When testing different neuron reconstruction

methods, we compared them based on neuron image density grading results.

The axial image enhancement for tangled neuronal images

To increase the applicability and compatibility of neuronal data, especially for

tangled filament images, the axial voxel resolution is lower than the lateral

voxel resolution. This anisotropy leads to insufficient spatial continuity in

neuronal images, making them prone to false connections during reconstruc-

tion. To address this problem, we employed axial image enhancement, which

converted the low-resolution axial data into high-resolution data, thereby

enhancing the continuity between neuron fibers and improving the accuracy

of automatic neuron reconstruction. We utilized a deep learning network for

training and prediction. First, we constructed a training dataset specifically de-

signed for axial image up-sampling. Next, we trained the network to learn the

features of neuron images. Finally, the trained network predicted high-resolu-

tion axial images (Figure S1).

Generation of training datasets

The three-dimensional image data obtained by optical microscopy have the

characteristics of axial voxel resolution lower than lateral voxel resolution.

The voxel resolution of the three-dimensional image is expressed as

V = Vx 3 Vy 3 Vz, the high lateral-voxel resolution is Vx = Vy , and the low

axial-voxel resolution is Vz, and the different ratio of lateral and axial voxel res-

olution is a, and the calculation formula is as follows: a = Vx=Vz = Vy=Vz. The

image obtained by optical microscopy usually has three types of slices. The

slices along the z axis represent coronal plane sequences in the xy plane,

the slices along the x axis represent sagittal plane sequences in the yz plane,

and slices along the y axis represent horizontal plane sequences in the xz

plane, where xyz represents the orientation of the three-dimensional image.

This is expressed by the following formulas: the slice along the z axis is coronal,

Iðx;yÞ3 z = Iðx;y;zÞ;z˛N�; the slice along the x axis is sagittal, Iðy;zÞ3 x = Iðx;
y; zÞ; x˛N�; and the slice along the y axis is horizontal, Iðx; zÞ3 y = Iðx; y;
zÞ;y˛N�.

In this study, we mainly consider the interpolation along the axial direction,

where ILR (LR, low resolution) represents the low-resolution axial image, IHR

(HR, high resolution) represents the high-resolution axial image, and the

mailto:aali@hust.edu.cn
http://atlas.brainsmatics.org/HiNeuron
https://zenodo.org/records/10992710
https://github.com/Brainsmatics/HiNeuron
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transformation process is represented by T : ILR/IHR to achieve the transition

from the low-resolution axial to the high-resolution images. The axial-voxel-

resolution ratio of all the three-dimensional image data is increased a to isot-

ropy as described in Equation 1:

ILRðx; y; zÞ 3 a = IHRðx; y;a 3 zÞ: (Equation 1)

Through the operation of data reslicing,40 the axial data along the x and y

axes can be obtained: Ixðx; y; zÞ = Rx ½Iðy; zÞ3x� and Iyðx; y; zÞ = Ry ½Iðx; zÞ 3
y�, where Rx ½Iðy; zÞ3x� is the image of the axial section along the x-axis sagittal

plane and Ry ½Iðx; zÞ3y� is the image of the axial section along the y-axis hori-

zontal plane.

To improve the axial voxel resolution of images, the high-resolution axial

data cannot be directly obtained for the network training, resulting in a bottle-

neck due to a lack of training data. Because of the similarity of different sec-

tions of three-dimensional images, high-resolution lateral images can be

used as the ground truth. The transformation relationship S of image process-

ing is used to construct data similar to axial features for training. The relation-

ship between the sagittal and the horizontal planes is as follows in Equations 2

and 3:

Sa½Ixðx; yÞ 3 z� = ILRx ðx; yÞ3 z � Rx½Iðy; zÞ 3 x�; (Equation 2)

Sa

�
Iyðx; yÞ 3 z

�
= ILRy ðx; yÞ3 z � Ry ½Iðx; zÞ 3 y�: (Equation 3)

Specifically, we started by selecting the image region of 1283 128 pixels for

cropping on consecutive coronal slices, and it constructed the high-resolution

image training dataset. Next, down-sampling was performed on the cropped

data, that is, low-resolution image data were obtained by transforming the

relationship S to simulate the low-resolution axial slice data. Thus, the match-

ing high- and low-resolution image pairs from the coronal image were con-

structed as the training data. The amount of data was more than 10 thousand

matching image pairs.

Training of deep network models

Thematched pairs of high-resolution and low-resolution images obtained from

the coronal slices were used to train a deep learning network for feature extrac-

tion. In this study, based on the U-Net model,39 we conducted ablation exper-

iments to compare the network structure of the model, and we built a fully con-

volutional axial interpolation network called AINet (Figure S13). AINet was

designed to learn the prediction from low-resolution images to high-resolution

neuron images. The entire network architecture was constructed throughmul-

tiple down-sampling and up-sampling operations, with the input and output

images having the same sizes. We conducted the network’s ablation experi-

ments and compared the numbers of up-sampling and down-sampling layers

(Figure S2).

AINet mainly includes the encoder and decoder. The model consists of the

two-dimensional convolution, max-pooling, activation, and up-sampling

layers. In the encoder, the down-sampling module, which includes two

consecutive convolution layers with the kernel of 3 3 3, followed by a

PReLU (parametric rectified linear unit) activation layer and a down-sampling

2 3 2 max-pooling layer, reduces the image resolution by one time and dou-

bles the number of feature channels. The same down-sampling module is

repeated three times, and the image resolution is reduced by three times after

the last operation. The network encoder is represented byECLR, and the calcu-

lation formula is expressed as ECLR = fðILR;P1Þ+DðILRÞ, where ILR represents

the low-resolution image, ILR ˛ fILRx ðx;yÞ 3 z;ILRy ðx;yÞ 3 zg, f represents feature
extraction, P1 represents parameters of the encoder, andDðILRÞ represents the
image down-sampling process.

The decoder gradually recovers the resolution of the image, which in-

cludes three repeated up-sampling modules. Each up-sampling module

consists of two convolution layers with a kernel of 3 3 3, followed by a

PReLU activation layer and an up-sampling layer to increase the resolution

of the image. After each up-sampling module, the resolution of the image

is doubled, and the number of feature channels is halved. The operation is

repeated three times to gradually restore the image to the size of the input

image. At the same time, a jump connection is added between the encoder

and the decoder. In the process of down-sampling and up-sampling, layers

with the same number of channels are connected, so that the features of
different layers are fused to recover the image details. Finally, a layer

of 1 3 1 convolution is added to transform the feature map into the result

of specific depth. The whole network structure has 33 layers. The network

decoder is represented by DCLR, and the calculation formula is expressed

as DCLR = FFðELR;P2Þ+UðDðILRÞÞ, where FFðELR;P2Þ represents the layer

of the same feature channel in the connection network for feature fusion,

and the parameter P2 of the decoder UðDðILRÞÞ stands for up-sampling the

down-sampled image to restore the size of the input image. The whole

network architecture can well integrate the larger receptive field features

of the deep network and the texture information of the shallow network

and make better image predictions. The loss function of the network model

is L2 loss,13 which measures the difference between the predicted image

and the ground truth image as defined in Equation 4:

LossAINet =
1

N

XN
i = 1

�
IGT
i ðx; yÞ3 z � IHRi ðx; yÞ3 z

�2
; (Equation 4)

where IGT
i ðx; yÞ3z is the ground truth of the coronal image, and IHRi ðx; yÞ3z is

the predicted image of ILR for each input. The AINet final output high-resolution

image is IHR, and the calculation formula is IHR = ECLR+DCLR.

In the training process, each read image batch is 10, the cycle epoch is 100,

the learning rate is 1e�5, and the optimizer is Adam.50 In network training, 90%

of the training data are randomly selected as the training data and 10% as the

verification data. GPU is used to accelerate the training of the network model.

The full convolution network AINet is implemented based on TensorFlow.51We

tested our method on a computer with an NVIDIA Quadro RTX5000 GPU card,

32 CPU cores (Intel Xeon gold 6246R 3 2), and 256 GB of RAM.

Image prediction with the high-axial-voxel resolution of neurons

After training through the AINet, we applied the model trained on the coronal

plane to predict images in the sagittal and horizontal planes. The predicted

high-axial-voxel-resolution image is expressed as in Equations 5 and 6:

RHR
x ½Iðy; zÞ 3 x� = TaðRLR

x ½Iðy; zÞ 3 x��; (Equation 5)

RHR
y ½Iðx; zÞ 3 y� = TaðRLR

y ½Iðx; zÞ 3 y�
�
; (Equation 6)

where RLR
x ½Iðy; zÞ3x� andRLR

y ½Iðx; zÞ3y� represent the low-resolution images of

the axial slice sagittal plane and horizontal plane, RHR
x ½Iðy; zÞ3x� and

RHR
y ½Iðx; zÞ3y� represent the predicted high-resolution images of the axial slice

sagittal plane and horizontal plane, Ta represents the image interpolation

transformation relationship, and the magnification is a.

Due to the large number of pixels in the sagittal slices of the acquired three-

dimensional images, it is not feasible to directly input a single large image into

the network for prediction. Therefore, it is necessary to divide the image into a

series of small blocks. Each block is individually predicted, and then the pre-

dictions are stitched back together to form the complete large image (Fig-

ure S1C). To account for the redundancy at the block boundaries, a certain

number of pixels are left as overlap regions on both sides of the patches.

This overlapping region helps to eliminate artifacts at the stitching boundaries.

Evaluation methods

The evaluation is divided into image quality evaluation and neuron reconstruc-

tion evaluation. The image quality evaluation is divided into subjective and

objective evaluations.23,52,53 Subjective evaluation is mainly the observation

by human eyes of the predicted image and the selection of the predicted image

with better quality. For objective evaluation, the image evaluation indexes are

peak signal-to-noise ratio (PSNR)52 and structural similarity (SSIM).23 To

further validate the accuracy of the predicted high-resolution axial images,

the predicted axial slice images are resliced along the sagittal or horizontal

plane and then reconstructed back into coronal plane images using data re-

slicing (Figures 2B and S4A). The reslice validation formula is defined in Equa-

tions 7 and 8:

Rz

�
IHRðy; zÞ 3 x

�
= IHRðx; yÞ3 z; (Equation 7)

Rz

�
IHRðx; zÞ 3 y

�
= IHRðx; yÞ3 z; (Equation 8)
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where RZ represents the reslice along the z axis, IHRðy; zÞ3x and IHRðx; zÞ3 y

represent the high-resolution prediction results of the sagittal and horizontal

planex, and IHRðx; yÞ3z represents the predicted high-axial-voxel-resolution

image to the coronal plane. Compared with the signal in the coronal plane,

by selecting slices of the same thickness for max-projection, we examined

whether the predicted high-axial-voxel-resolution image is the same as the im-

age information of the coronal plane.

The evaluation of neuron reconstruction employed precision, recall, and F1

score.13,15,53 Themanually reconstructed neurons were used as the gold stan-

dard. The quantitative evaluation of neuron reconstruction mainly focused on

the accuracy and integrity of the skeleton. Precision was defined as the ratio of

the total number of true-positive points to the total number of points in the al-

gorithm’s reconstruction results. The recall was defined as the ratio of the total

number of true-positive points to the total number of points in the manually re-

constructed results. The F1 score was a weighted average of precision and

recall.
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