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Abstract: The reliability and stability of MEMS electrostatic comb resonators have become bottlenecks
in practical applications. However, there are few studies that comprehensively consider the nonlinear
dynamic behavior characteristics of MEMS systems and devices in a coupled field so that the related
simulation accuracy is low and cannot meet the needs of design applications. In this paper, to avoid
the computational complexity and the uncertainty of the results of three-field direct coupling and
take into the damping nonlinearity caused by coupled fields, a novel electrostatic-fluid-structure
three-field indirect coupling method is proposed. Taking an actual microcomb resonant electric
field sensor as an example, an electrostatic-fluid-structure multiphysics coupling 3D finite element
simulation model is established. After considering the influence of nonlinear damping concerning the
large displacement of the structure and the microscale effect, multifield coupling dynamics research
is carried out using COMSOL software. The multiorder eigenmodes, resonant frequency, vibration
amplitude, and the distribution of fluid load of the microresonator are calculated and analyzed. The
simulated data of resonance frequency and displacement amplitude are compared with the measured
data. The results show that the fluid load distribution of the microelectrostatic comb resonator along
the thickness direction is high in the middle and low on both sides. The viscous damping of the
sensor under atmospheric pressure is mainly composed of the incompressible flow damping of the
comb teeth, which is an order of magnitude larger than those of other parts. Compared with the
measured data, it can be concluded that the amplitude and resonance frequency of the microresonator
considering the nonlinear damping force and residual thermal stress are close to the experimental
values (amplitude error: 15.47%, resonance frequency error: 12.48%). This article provides a reference
for studies on the dynamic characteristics of electrostatically driven MEMS devices.

Keywords: MEMS; microelectrostatic comb resonator; multifield coupling; dynamics research; air
damping; finite element analysis

1. Introduction

With the development of micro/nanoprocessing technology and Internet of Things
technology, microelectromechanical systems (MEMS) are being widely used in electronic
communications, smart homes, wearable electronic equipment, medical care, and trans-
parent power grids. MEMSs have the characteristics of miniaturization, high integration,
and suitability for low-cost mass manufacturing. Among them, MEMS resonators occupy
a large part of the market applications, including sensing [1–4], timing [5,6], and radio
frequency communication [7,8]. Electrostatic comb drive structures have become one of the
most important driving methods in MEMSs due to their advantages of low power consump-
tion and high speed. However, the reliability and stability of microcomb resonators have
become bottlenecks in practical applications, restricting the development and market access
of related MEMS products. In an actual working environment, a microresonator is subject
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to interactions with multiple physical fields, including electrostatic fields, fluid fields, and
temperature fields. There are few studies on the multifield coupling characteristics and the
nonlinear dynamic behavior characteristics of MEMS systems, including nonlinear effects
on the response of resonant MEMS devices [9], collective behaviors of mechanically and
electrically coupled M/NEMS resonators [10], and geometric and electrostatic nonlineari-
ties of double-ended tuning fork MEMS resonators [11]. Therefore, to accurately predict
the characteristic parameters of a MEMS resonator, including the resonance frequency,
amplitude, and resonant mode, it is of great significance to study the multifield coupling
nonlinear dynamics of microcomb resonators and to build a multifield coupling numerical
model. The main goal of this paper is to improve the simulation accuracy so that it can
meet the application requirements.

The dynamic research of MEMS comb resonators comprehensively applies theoretical
knowledge in the fields of electrostatic fields, structural mechanics, fluid mechanics, and
thermodynamics. The analysis method mainly covers the traditional analytical method,
equivalent circuit representation method, and grid discrete method represented by the
finite element method. The traditional analytical method generally uses the electrostatic
field analytical method to solve the electrostatic driving force, applies microfluid mechanics
to calculate the air damping, utilizes the Lagrange equation of the cantilever to obtain the
equivalent mechanical stiffness, and then employs the dynamic control equation of the
spring-mass-damping system to analyze the resonator [12], solve the natural frequency
and movement displacement [13] and study the influencing factors of resonant frequency
and spring stiffness [14] of the resonator. The equivalent circuit representation of lumped
parameter systems [15] and distributed parameter systems [16] refers to the use of the
analogy between electrical resonators and mechanical resonators to build an equivalent
circuit of micromechanical resonators for rapid system design and simulation [17,18]. Al-
though the physical concepts of the above methods are clear, they cannot comprehensively
consider the large displacement of the structure, distributed mass and stiffness, multiorder
vibration eigenmodes, microscale effects, residual prestress, nonlinear vibration charac-
teristics, stiffness softening and hardening effects, energy dissipation, complex external
environmental influences (temperature, humidity, pressure, etc.), multifield coupling effects
and other factors, which result in limitations in accurately calculating the key performance
parameters of the MEMS resonator under the multifield interaction of the electrostatic
fluid structure. Some studies have used experimental curve fitting to study the parametric
resonance [19], frequency response curve, stiffness hardening, and softening effects [20] of
microresonators, which can achieve accurate modeling, but there are certain difficulties in
wide application due to the limitations of experimental conditions.

To overcome the limitations of the analytical method, domestic and foreign studies
have mostly focused on the finite element analysis method. Zhang et al. used finite
element tools to extract the nonlinear stiffness of the spring [21]. Ahmed et al. studied the
influence of the design parameters of the transverse electrostatic comb driver (comb tooth
gap, comb tooth thickness, etc.) on the performance of the driver with the direct coupling
finite element method [22]. In addition, the finite element method was applied to static,
modal, and harmonic response simulation analyses of double-free beam resonators [23]
and laterally vibrating microresonators [24,25].

The above theoretical studies on microelectrostatic comb resonators have been mostly
carried out through electrostatic-structure bidirectional coupling simulations, without
considering air damping or taking air damping as a fixed constant, to simulate the resonance
frequency and amplitude of the microresonator. Due to the high-speed resonant motion
of the microresonator, the air flow field distribution is different at each moment, and the
air damping force on the surface of the microresonator can change at any time. Therefore,
simply using a fixed damping coefficient leads to low simulation accuracy, which cannot
meet the needs of design applications. However, the convergence of a three-field directly
coupling finite element time-domain model is extremely low, and the calculation time
is enormous. To date, there is no existing general simulation software that can realize
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electrostatic-fluid-structure three-field direct coupling Thence, there are few 3D electrostatic-
fluid-structure multiphysics coupling finite element simulation models of microelectrostatic
comb resonators that consider dynamic damping at present.

In this paper, a novel electrostatic-fluid-structure three-field indirect coupling method
is proposed to avoid computational complexity and uncertainty of the results of the three-
field direct coupling. This paper takes an actual microcomb resonant electric field sensor
as the prototype, establishes a 3D electrostatic-fluid-structure multiphysics coupling finite
element simulation model using COMSOL software, and obtains the multiorder resonance
mode, resonance frequency, vibration amplitude, fluid load distribution of the microres-
onator. In comparison with other models reported in the literature, the proposed simulation
model considers nonlinear damping concerning the large displacement of the structure and
the microscale effect. And it can perform more accurate quantitative calculation and analy-
sis of the key performance parameters of the nonlinear dynamic vibration of the MEMS
resonator in the electrostatic-fluid-structure coupling, better revealing the distribution and
change law of various fluid mechanics and solid mechanics quantities when the device
is working. In addition, design of microresonators under uncertainties [26,27] induced
by process and environmental factors will be also improved. The simulation accuracy is
higher, but more simulation time is required.

2. Electrostatic-Structure-Fluid Coupling Model of a Microcomb Resonant Electric
Field Sensor

Taking an actual microcomb resonant electric field sensor as the prototype, a 3D
dynamic simulation model is established, as shown in Figure 1. It is a typical structure of
laterally vibrating microresonators that have electrostatic control. The basic structure and
simulation modeling parameters that correspond to Figure 1 are shown in Table 1.
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Figure 1. Schematic diagram of the microelectrostatic resonance electric field sensor. The purple 
structure is the physical structure fabricated from the top silicon film. The pink structures are sput-
tered metal electrodes. The dimensional parameters shown in the figure are listed in Table 1. 

Table 1. Main parameters of Type 1 MEMS resonator. 

Parameter Type 1 
Thickness of top silicon film—h (μm) 30 

Suspension beam length—l (μm) 600 
Suspension beam width—w (μm) 12 

Figure 1. Schematic diagram of the microelectrostatic resonance electric field sensor. The purple
structure is the physical structure fabricated from the top silicon film. The pink structures are
sputtered metal electrodes. The dimensional parameters shown in the figure are listed in Table 1.

The microcomb electric field sensor introduced in this article uses silicon-on-insulator
technology. The main process flow includes sputter coating of metal electrodes, etching
of the front structure, etching of the back substrate, and gaseous release of the oxide layer
to form a suspended and hollowed-out structure. When the microresonator is operating,
the movable structure (including the folded-flexure suspension, shutters, and the movable
beam and combs) applies a DC bias voltage, and the fixed end of the comb applies an AC
driving voltage, which generates a periodic electrostatic force between the movable comb
teeth and the fixed comb teeth, resulting in the horizontal vibration of the movable structure
under the combined action of the electrostatic force and the elastic restoring force of the
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folded-flexure suspension. The electromechanical coupling between the movable comb
teeth and the fixed comb teeth is used as the electromechanical energy conversion module
of the entire resonator structure, which converts the input voltage signal into a mechanical
vibration signal. Thus, the resonance frequency modulates the signal to be measured to
achieve sensing. In dynamic research on microelectrostatic comb resonators, three main
aspects, electrostatic mechanics, aerodynamics, and structural dynamics, are considered.

Table 1. Main parameters of Type 1 MEMS resonator.

Parameter Type 1

Thickness of top silicon film—h (µm) 30
Suspension beam length—l (µm) 600
Suspension beam width—w (µm) 12

Number of drive combs (each side) 36
Drive comb gap—g (µm) 12

Drive comb distance—d (µm) 4
Material Monocrystalline silicon

2.1. Electrostatic-Fluid-Structure Three-Field Coupling Process

The air damping of the movable structure is dependent on movement displacement.
To increase the accuracy of the calculation, this model considers electrostatic-fluid-structure
multiphysics coupling. To date, there is no existing general simulation software that can
realize electrostatic-fluid-structure three-field direct coupling, which has problems such as a
long calculation period and nonconvergence of calculation results. Therefore, a calculation
of indirect coupling is carried out, which is decomposed into the fluid-structure coupling
and electromechanical coupling. In the fluid-structure coupling time-domain transient
analysis, the function of the damping coefficient with the movement displacement (x) is
extracted as c(x).

However, the overall electric field sensor needs to be analyzed in the frequency domain
of the electromechanical coupling model, where only the displacement amplitude and
phase are considered. Therefore, it is necessary to convert c(x) from the concept of the
time domain to the frequency domain, that is, ce(X), where X is the amplitude of vibration,
with the conversion basis that the energy lost by air damping in the unit resonance period
is equal: ∫ T

0
c(x)v2dt =

∫ T

0
ce(X)v2dt (1)

where v is the velocity of the comb teeth, T is the vibration period and the damping force is
fdamp = cv.

Suppose the movement displacement of the movable part is:

x(t) = X sin(ωt + θ) = X sin ϕ (2)

Its movement speed is:
v(t) =

.
x = Xω cos ϕ. (3)

Substituting Formula (3) into Formula (1), we can obtain:∫ T

0
c(x) · (Xω cos ωt)2dt =

∫ T

0
ce(X) · (Xω cos ωt)2dt. (4)

Since ce(X) is independent of time, it is easy to obtain:

ce(X) =
2
T

∫ T

0
c(x) · (cos ωt)2dt. (5)

The damping coefficient as a function of the resonance amplitude (X) is used as the
boundary condition of the electromechanical coupling frequency domain analysis, achiev-
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ing two-way indirect coupling by repeated iterations. The data transfer of multiphysics
coupling is shown in Figure 2.
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Figure 2. Schematic diagram of three-field coupling data transfer.

To understand the error caused by the simplification, we inversely derived the vibra-
tion equation and found that the essence of using the energy conservation of air damping
loss to perform damping time-frequency domain conversion is to perform equivalent
linearization of nonlinear vibration. The simplification error comes from omitting the
higher-order terms of a Fourier expansion. To facilitate understanding, the forward deriva-
tion is carried out as follows:

The nonlinear vibration equation can be expressed in the following form:

m
..
x + c(x)

.
x + kx = F sin ωt. (6)

where m is the effective mass, x is the movement displacement, k is the mechanical equiva-
lent stiffness, and F is the magnitude of the applied electrostatic force.

The equivalent linearized vibration equation corresponding to it is:

m
..
x + ce

.
x + kx = F sin ωt. (7)

where ce is the equivalent damping coefficient. The nonlinear damping force is expanded
according to the Fourier series:

c(x)
.
x = a0 +

∞

∑
n=1

(an cos nϕ + bn sin nϕ), n = 1, 2, 3 . . . (8)

Since only the first harmonic force of the Fourier series is kept, Equation (13) can be
approximated as:

c(x)
.
x = a0 + a1 cos ϕ + b1 sin ϕ. (9)

By substituting Formula (9) into Formula (6), we can obtain:

m
..
x +

[
1
π

∫ 2π

0
c(X sin ϕ) cos2 ϕdϕ

]
.
x + kx = F sin ωt (10)

The equivalent damping coefficient ce is

ce =
1
π

∫ 2π

0
c(X sin ϕ) cos2 ϕdϕ =

2
T

∫ T

0
c(x) · (cos ϕ)2dt (11)

Formula (11) is exactly equal to Formula (5).
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2.2. Fluid–Solid Coupling Calculation Model

Viscous damping is a significant force in MEMS devices operated at atmospheric
pressure, particularly at resonance. Therefore, support loss, thermoelastic damping, and
material damping are neglected. Due to the scale effect of the microstructure, air damping
is an important factor affecting its dynamic characteristics. It determines the quality factor
of the resonator, the displacement amplitude of the shutter, the accuracy and stability
of the system, and other key parameters. The viscous damping of the microcomb me-
chanical resonator mainly includes slide film damping between the movable part of the
resonator surface and the base and side air damping (including squeeze film damping and
incompressible flow damping), as shown in Figure 3.
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2.2.1. Slide Film Damping and Squeeze Film Damping

As shown in Figure 4a, when the plate capacitor structure moves in parallel, the air
between the two plates hinders the movement of the plate due to the action of the viscous
force, resulting in synovial damping. As shown in Figure 4b, the squeeze film damping is
caused by the relative movement of two parallel plates that squeeze the gas film between
the plates. When two parallel plates are close to each other, the viscous force generated by
the squeezing hinders the movement of the plates and causes them to lose energy. When
the two parallel plates move away from each other, the viscous pulling force generated by
the flowing gas is applied to the plates as a dissipation force. The calculation example in
this article mainly includes slide film damping between the movable part and the substrate,
squeeze film damping between the sidewalls of the back of the main arm of the driving
electrode (indicated by the red lines), and squeeze film damping between the shutters and
the sensing strips (indicated by the yellow lines), which is shown in detail in Figure 5.
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The mentioned viscous damping belongs to the flow in the gap (small normal direction
and large tangential direction), whose viscous force is dominant, ignoring the inertial force.
Therefore, the flow equation is established in the tangential direction, regardless of the
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normal pressure difference. Based on the above simplification, a simulation model is
established. A schematic diagram of the model is shown in Figure 6.
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The thin film fluid in the gap has two surfaces: the wall and the base, which correspond
to the lower surface of the movable structure and the upper surface of the substrate, the
sidewalls of shutters and the adjacent sidewall of the sensing electrodes, and the sidewalls
of the main arm of the movable driving electrode and the sidewalls of the adjacent fixed
driving electrode. The fluid domain is in the middle. The displacement and velocity data
of the walls of the movable structure are directly derived from the solid field, which means
that this part of the air damping is directly coupled with three fields.

This model uses the following modified Reynolds equation to solve:

ptot(vb · nr − vw · nr) + iωh0 pf +∇t · (h0 ptotvav) − ptot(vw · ∇thw + vb · ∇thb) = 0, (12)

vav =
1
2
(I− nrnr

T)(vw + vb)−
h2

0
12µ
∇t pf, (13)

where vw and vb are the velocity of the wall and base, vav is the average value of the film
velocity perpendicular to the surface at a point on the reference surface, nr is the normal
vector perpendicular to the reference surface, h0 is the average height of the membrane, hw
and hb are the distance from the wall and base to reference surface, µ is dynamic viscosity,
pf is the pressure generated by the flow, and ptot is the total pressure (ptot = pA + pf, where
pA is the ambient pressure).
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2.2.2. Incompressible Flow Damping

The air damping caused by the movement of the movable comb teeth relative to the
fixed comb teeth and back-and-forth movement motion of the folded-flexure suspension in
the microresonator, whose fluid characteristic structure and boundary conditions are more
general, cannot be modeled simply using the aforementioned squeeze film damping and
slide film damping. In terms of a MEMS system operating under atmospheric pressure,
fluid can be regarded as incompressible because the density of air changes very little. Based
on the above simplification, a numerical model based on Navier–Stokes equations is used:

∇ · u = 0, (14)

ρ
∂u
∂t

+ ρu · ∇(u)= −∇p +∇ · (µ(∇u + (∇u)T)) + F, (15)

where u is the fluid velocity, p is the fluid pressure, ρ is the fluid density, and F is the
external force acting on the fluid.

A simulation model is then established to calculate the viscous damping between the
interdigitated comb teeth and the air damping of the sidewalls of the folded beam. Because
incompressible flow damping has a linear relationship with the number of comb teeth, a
comb unit model is established for simplification, as shown in Figure 7a, and the complete
viscous damping of the comb teeth is obtained by multiplying by the number of comb
teeth. The movable comb teeth are set to specify the body displacement movement with
a sine function, and the fixed comb teeth remain stationary. In the air domain, except for
the upper and lower sides (shown by the blue line in Figure 7a, which are symmetrical
boundary conditions, others (upper and lower surfaces) are open boundaries. Similarly, a
partial fluid-structure coupling model of the folded-flexure suspension is established, as
shown in Figure 7b. The rightmost side of the folded-flexure suspension is set to specify the
displacement movement with a sine function, and a fixed constraint is set on the leftmost
side of the anchor. To ensure the convergence of the solution, a smooth step function that is
second order continuous is added to the sine function.
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2.3. Electromechanical Coupling Calculation Model

To facilitate the calculation, the above model is reasonably simplified as follows:
(1) Assume that the movement displacement-time curve of the micro-comb resonator is in
the form of a sine function; (2) The micro-resonator is a differential drive structure, so 1/2



Sensors 2022, 22, 1056 9 of 17

of the structure is taken as calculation domain; (3) The structural layer is processed from
single crystal silicon, assuming that it is a linear elastic material.

A three-dimensional model of the MEMS electric field sensor is established, as shown
in Figure 8. The model has three domains: an electrostatic domain, a structural mechanics
domain, and a mobile mesh domain. In the electrostatic solution domain, the static comb
teeth at both ends are applied with DC bias and reverse AC voltage, and the movable
structure is grounded; in the mobile mesh solution domain, all air gaps are selected as
the deformation domain, which automatically introduces gap shrinkage due to structural
deformation, and the air boundary on the 1/2 boundary line is a symmetric boundary
condition; in the structural mechanic’s solution domain, the anchors and static combs
at both ends are set as fixed constraints, and the 1/2 boundary line is the symmetric
boundary condition.
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Regarding the application of damping, as mentioned earlier, for slide film damping
and squeeze film damping of simple double-layer flat structures, the thin film flow interface
can be used for direct coupling. For incompressible flow damping of irregular structures
(comb elements and folded-flexure suspension), it is necessary to extract the damping
coefficient in the fluid-structure coupling time domain model. Since the damping of the
folded-flexure suspension is independent of the movement displacement, it can be directly
substituted as a constant. The damping coefficient of the comb teeth changes with the
distance (d) between the movable comb teeth and the fixed comb teeth in the time domain.
When the distance between the comb teeth decreases, the air film in the middle is squeezed,
which makes the damping coefficient larger. As described in Section 2.2, to avoid the
direct coupling of the three fields, the fitting function of the damping coefficient with the
movement displacement (x) is extracted and converted into a frequency domain expression
according to equal energy loss. Therefore, the correlation function between damping
and amplitude is used as the feedback adjustment of the electromechanical coupling
model so that the solution result can be adjusted automatically. The distracted curve
between damping and amplitude value is the indirect coupling relationship between the
displacement field and the flow field. The electrostatic-fluid-structure three-field indirect
coupling can be realized by repeated iterations.

3. The Numerical Calculation Results of the Coupled Field

Based on the above model, the coupled solution is performed in COMSOL Multi-
physics software, and the calculation results of the fluid load, vibration mode, and displace-
ment field of the microresonator are obtained. Technical data about the main physical and
mechanical properties of the material, the mesh type, analysis type, pressure, temperature
are shown in Table 2. In addition, to verify the accuracy of the simulation, a vibration
experiment was designed for comparison and verification.
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Table 2. Technical data of simulation model.

Components Category Technical Data

Material
Young’s modulus 190 GPa

Poisson’s ratio 0.28

Environmental parameters Temperature 293.15 K
Pressure 1.0133 × 105 Pa

Meshing Mesh type Free triangular mesh + swept mesh
Degrees of freedom 1,162,486

Fluid—solid coupling Analysis type Transient analysis
Electromechanical coupling Analysis type Frequency domain analysis

3.1. Fluid Load

Based on the above model, the fluid-structure coupling time domain solution was car-
ried out. The fluid load distribution of the comb-tooth unit, the folded-flexure suspension,
and the shutters are shown in Figure 9.
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distribution of the shutters.

It can be seen in the figure that the distribution of the fluid load distribution along
the thickness direction is high in the middle and low on both sides. The viscous damping
forces are obtained by surface integration of the fluid load of each part of the resonator.
The damping coefficient is obtained by dividing the viscous damping force by the vibration
speed. The simulation results of the damping coefficient at the equilibrium position at
resonance are shown in Table 3. In the table, the slide film damping of the sensor is
much smaller than the squeezing film damping of each part. The viscous damping of
the sensor operated at atmospheric pressure and an ambient temperature of 293.15 K is
mainly composed of the incompressible flow damping of the comb teeth (including both
the sliding film and the squeezing film damping), which is an order of magnitude larger
than those of other parts.
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Table 3. Calculation results of viscous damping at resonance.

Damping Type Model Damping Coefficient
c (N·s/m)

Relative movement between comb teeth Incompressible flow damping 2.268× 10−5

Sides of the folded-flexure suspension Incompressible flow damping 2.033× 10−6

Dorsal side of main comb arm Squeeze film damping 2.634× 10−7

Sides of the shutter Squeeze film damping 2.536× 10−6

Surface Slide film damping 4.576× 10−8

For the varying damping of the comb-tooth unit, the simulation values of the damping
coefficient under different movement displacements x and the fitting function of the two
are shown in Figure 10.
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3.2. Vibration Mode and Displacement Field of the Microresonator

Based on the above model, the resonant frequency and displacement amplitude are
obtained by the solution of coupling domains. Figure 11 shows a set of deformation
diagrams of the first four vibration eigenmodes of the MEMS microstructures. A vibration
system can be expressed as the linear superposition of infinite-order eigenmodes. The
first-order is the wanted vibration form. Table 4 shows the characteristic frequencies
corresponding to the first four modes of the MEMS sensor. It can be seen in the table
that the characteristic frequencies of the higher-order eigenmode are far from that of the
first-order eigenmode, which meets the design requirements. Figure 12 demonstrates the
displacement field distribution of the MEMS sensor at a DC bias voltage of 29.7 V and an
AC voltage of 2.7 V. Under this excitation voltage, the resonance amplitude of the movable
structure reaches 4.3 µm.

Table 4. The characteristic frequencies corresponding to the first four modes of the MEMS sensor.

Eigenmodes Characteristic Frequencies (Hz)

First-order 5739.7
Second-order 7930.7
Third-order 18,258.4

Fourth-order 30,015.3
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Figure 11. The first four-order eigenmodes deformation diagram of the MEMS microstructure:
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the flip vibration mode in the Z direction. The numerical value on the color legend represents the
relative value of the mode shape.
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4. Calculation Accuracy Verification
4.1. Experimental Comparison

To verify the accuracy of the calculation results, a comparative experiment was carried
out. A driving voltage was applied to the actual microelectrostatic resonator according to
the circuit diagram of Figure 1, namely:

VL = Vdc + Vac sin ωt (16)

VR = Vdc −Vac sin ωt (17)

Vibration tests were performed at atmospheric pressure and at an ambient temperature
of 298.15 K with a Lyncee Tec DHM R2104 digital holographic microscope. The PCB image
and SEM images of different movement displacements of the MEMS electrostatic comb
resonator are shown in Figure 13.

Due to the softening effect of DC voltage, the natural frequency of the resonant
system changes with DC bias voltage. In the experiment, the MEMS resonator was an-
alyzed by sweeping frequency with a step of 1 Hz under three different sets of DC bias
(Vdc = 15, 18, 21V). Then AC excitation of different amplitudes is applied at the measured
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resonance frequencies, respectively. The vibration displacement data were processed to ob-
tain the measured resonance amplitudes. In contrast, the simulation data of the resonance
frequency under the same voltage excitation and the displacement amplitudes under the
resonance frequencies are calculated.
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Figure 13. MEMS electrostatic comb resonator images: (a) PCB image; (b) SEM images of different
movement displacement.

Figure 14 shows the comparison curves of the measured vibration amplitudes and the
simulated value of the MEMS sensor under three different sets of DC bias. It can be seen in
the figure that the average errors of the resonance frequencies and vibration amplitudes
are 12.48% and 15.47%, respectively. To take into account the measurement accuracy and
avoid the relative error divided by a smaller number, the points with a vibration amplitude
less than 1 µm are not included. The simulated displacement amplitude is slightly higher
than the actual amplitude. The error of simulation and actual measurement comes from
neglected damping, process error (accuracy tolerance is 1 µm), measurement error, error
caused by equivalent linearization. Among them, the neglected damping includes internal
losses in the material, friction in joints, sound emission, anchor losses, and thermoelastic
damping. In addition, the warping of the cantilever beam is observed in the manufacturing
of the sensor, and the height difference is up to 0.5–2 µm, which is not considered in the
simulated model. The experimental results confirm that the calculated results in this paper
are consistent with the measured values within the allowable error range and have a higher
accuracy than that of the finite element dynamic simulation of the general micromechanical
system (50–80%).

4.2. Influence of Damping Nonlinear Processing on Simulation Accuracy

To compare the improvement of simulation accuracy by damping nonlinear process-
ing, three different types of microelectrostatic comb resonators (see Table 5 for specific
parameters) were selected for comparison. The nonlinearity of air damping is inversely
proportional to the gap between comb teeth and proportional to the thickness of the struc-
ture layer. Therefore, under the same vibration amplitude, Type 3 damping and its rate of
change are greater than those of Type 2 and Type 1.

Table 5. Simulation modeling parameter table of MEMS resonators.

Parameter Type 1 Type 2 Type 3

Film thickness (µm) 30 30 40
Drive comb gap (µm) 12 6 6

Figure 15 shows the frequency sweep simulation curves of the Type 3 resonator with
or without damping nonlinear processing and the error percentages. Among them, the
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damping linear processing group takes the damping as the constant damping. Figure 15
shows that for a vibration system with significant nonlinearity, the calculation error caused
by taking the air damping as a constant is relatively large, reaching 13.5%. In addition, the
amplitude error in the calculation of resonance is maximized.
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Figure 14. Comparison curves of the measured vibration amplitude of the MEMS sensor and the
simulated value: (a)Vdc = 15 V; (b)Vdc = 18 V; (c)Vdc = 21 V.

Figure 10 in Section 3.1, where the comb-tooth damping changes with the movement
displacement shows that the nonlinearity of the damping is related to the slope of the
function. Therefore, the damping nonlinear strength of the mechanical vibration system
(Snonlinear) is set as the damping difference between the resonator amplitude and the
equilibrium point divided by the vibration amplitude, namely:

Snonlinear =
c|x=Amplitude − c|x=0

Amplitude
(18)

Figure 16 shows the relationship between the nonlinear strength of the three types
at their respective vibration amplitudes and the improvement of simulation accuracy by
damping nonlinear processing. The greater the nonlinearity of the system is, the greater the
error caused by linearization. Therefore, in a system with significant damping nonlinearity,
especially when calculating the amplitude at resonance, the nonlinear characteristics of
damping must be considered.
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5. Conclusions

In this paper, we propose a finite element simulation model of the mechanical vibration
of a MEMS electrostatic comb resonator, which uses COMSOL software as a solution tool.
The key contribution of this paper is the novel electrostatic-fluid-structure three-field
indirect coupling method to avoid the computational complexity and uncertainty of the
results of three-field direct coupling. Compared with electromechanical coupling model
with a constant air damping coefficient, this approach can comprehensively consider the
influence of nonlinear damping concerning the large displacement of the structure, and the
microscale effect to significantly improve the accuracy of the simulation. Compared with
the measured data, it can be concluded that the amplitude and resonance frequency of the
microresonator considering the nonlinear damping force are very close to the experimental
values (amplitude average error: 15.47%, resonance frequency error: 12.48%). This article
provides a reference for the analysis and optimization design of a class of electrostatically
driven MEMS devices, such as microresonators, micromirrors, and micropumps.
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We also propose a block modeling method for the viscous damping of a microresonator.
To model the air damping of the plate structure, sliding film damping and squeezing film
damping are used to realize direct coupling. For movable parts with a general fluid
characteristic structure and boundary conditions, a fluid-structure coupling time-domain
analysis model is established to extract the fitting curve of the damping coefficient with the
displacement of the motion. The time-frequency domain conversion of viscous damping
is performed through a proposed method in which the energy loss in air damping per
unit period is equal. As the previous theoretical derivation can be obtained, its essence is
equivalent linearization, and its error term is the high-order term of the Fourier expansion.
In addition, by comparing the impact of nonlinear damping processing on the simulation
accuracy, it can be seen that in a system with significant damping nonlinearity, especially
when calculating the amplitude under resonance, the nonlinear characteristics of damping
must be considered.
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