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ABSTRACT
Background: Greater adherence to plant-based diets is associated
with a lower risk of incident chronic kidney disease (CKD).
Metabolomics can help identify blood biomarkers of plant-based
diets and enhance understanding of underlying mechanisms.
Objectives: Using untargeted metabolomics, we aimed to identify
metabolites associated with 4 plant-based diet indices (PDIs) (overall
PDI, provegetarian diet, healthful PDI, and unhealthful PDI) and
incident CKD in 2 subgroups within the Atherosclerosis Risk in
Communities study.
Methods: We calculated 4 PDIs based on participants’ responses
on an FFQ. We used multivariable linear regression to examine the
association between 4 PDIs and 374 individual metabolites, adjusting
for confounders. We used Cox proportional hazards regression to
evaluate associations between PDI-related metabolites and incident
CKD. Estimates were meta-analyzed across 2 subgroups (n1 = 1762;
n2 = 1960). We calculated C-statistics to assess whether metabolites
improved the prediction of those in the highest quintile compared to
the lower 4 quintiles of PDIs, and whether PDI- and CKD-related
metabolites predicted incident CKD beyond the CKD prediction
model.
Results: We identified 82 significant PDI–metabolite associations
(overall PDI = 27; provegetarian = 17; healthful PDI = 20;
unhealthful PDI = 18); 11 metabolites overlapped across the
overall PDI, provegetarian diet, and healthful PDI. The addi-
tion of metabolites improved prediction of those in the highest
quintile as opposed to the lower 4 quintiles of PDIs com-
pared with participant characteristics alone (range of differ-
ences in C-statistics = 0.026–0.104; P value ≤ 0.001 for all
tests). Six PDI-related metabolites (glycerate, 1,5-anhydroglucitol,
γ -glutamylalanine, γ -glutamylglutamate, γ -glutamylleucine, γ -
glutamylvaline), involved in glycolysis, gluconeogenesis, pyruvate
metabolism, and γ -glutamyl peptide metabolism, were significantly
associated with incident CKD and improved prediction of incident
CKD beyond the CKD prediction model (difference in C-statistics
for 6 metabolites = 0.005; P value = 0.006).

Conclusions: In a community-based study of US adults, we
identified metabolites that were related to plant-based diets and
predicted incident CKD. These metabolites highlight pathways
through which plant-based diets are associated with incident CKD.
Am J Clin Nutr 2022;116:151–164.
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Introduction
Chronic kidney disease (CKD) is an important health problem.

In the United States, nearly 15% of adults have CKD, including
>780,000 adults with kidney failure receiving replacement ther-
apy (KFRT) (1, 2). Dietary modification is an effective approach
for preventing the onset of CKD and delaying progression to
KFRT (3–5).

Evidence has suggested that plant-based diets, which are
comprised predominantly of plant foods and are low in an-
imal products, may be beneficial for kidney health. In the
Atherosclerosis Risk in Communities (ARIC) study, those in the
highest compared with the lowest quintile of vegetarian diets and
healthful plant-based diets had 10%–14% lower risk of incident
CKD, whereas those in the highest compared with the lowest
quintiles of unhealthful plant-based diets had 11% higher risk
of incident CKD (6). In addition, overall plant-based diets and
healthful plant-based diets were associated with slower decline
in kidney function (6). Despite the evidence, there is a lack of
objective biomarkers of plant-based diets and our understanding
of the mechanisms through which plant-based diets are associated
with a lower risk of CKD is limited.

Metabolomic techniques measure hundreds of low-molecular-
weight metabolites (usually <1500 daltons) in biofluids si-
multaneously (7–9). Dietary intake alters the metabolome (9).
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Metabolites involved in the pathophysiology of CKD and the
physiological changes that occur in response to food intake can
be evaluated through metabolomics. This approach can help
identify objective biomarkers of dietary patterns and, as such,
improve upon existing methods for assessing dietary intake.
In addition, metabolomic profiling is useful for elucidating
metabolic pathways that are relevant for diet–kidney disease
associations.

Using untargeted metabolomics, we aimed to extend the
previous findings on plant-based diets and incident CKD by
identifying metabolites associated with 4 plant-based diet indices
(PDIs) (overall PDI, provegetarian diet, healthful PDI, and
unhealthful PDI) and evaluating whether candidate biomarkers
of plant-based diets are associated with incident CKD in
2 subgroups within a large prospective study.

Methods

Study design

The ARIC study, a community-based cohort of predominantly
black and white middle-aged men and women, was designed
to investigate the etiology of atherosclerosis and cardiovascular
disease (10). At baseline (visit 1, 1987–1989), participants aged
45–64 y in 4 US communities (Washington County, MD; Forsyth
County, NC; Minneapolis, MN; and Jackson, MS) were recruited
into the study. Follow-up study visits occurred in 1990–1992
(visit 2), 1993–1995 (visit 3), 1996–1998 (visit 4), 2011–2013
(visit 5), and 2016–2017 (visit 6). Participants provided informed
consent, and procedures were followed in accordance with the
ethical standards of Institutional Review Boards at all study sites.
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In 2010 and 2014, metabolomic profiling was conducted in
2 subgroups using stored, fasting (≥8 h, stored at −80◦C) serum
specimens collected at baseline (visit 1, 1987–1989). The first
subgroup was a random sample of black participants from the
Jackson, MS study site. The second subgroup was a random
sample of black and white participants from all 4 study sites with
genetic sequencing data. No participant overlapped between the
2 subgroups.

From 1880 and 2152 participants in subgroups 1 and 2,
respectively, we excluded participants with implausible dietary
intake (defined as men with total energy intake <700 or
>4500 kcal/d and women with total energy intake <500 or
>3500 kcal/d) (n1 = 16; n2 = 61), missing covariates (n1 = 75;
n2 = 84), having prevalent CKD at baseline (n1 = 24; n2 = 43),
missing CKD outcome at follow-up (none missing), or missing
plant-based diet scores (n1 = 3; n2 = 4) (Supplemental Figure
1). After these exclusions, our analytic sample was 1762 and 1960
participants in subgroups 1 and 2, respectively.

Plant-based diet indices

At baseline (visit 1, 1987–1989), trained interviewers collected
information on participants’ usual consumption of foods and
beverages using a modified 66-item semiquantitative Willett
FFQ. Participants reported the frequency with which they had
consumed foods and beverages of a specific serving size over the
past year. Participants had 9 frequency options to choose from,
ranging from “almost never” to “>6 per day.” Visual guides were
provided to help participants estimate serving sizes. Nutrient
intakes were derived by multiplying frequency of consumption by
the nutrient composition of each food item. Reproducibility of the
FFQ was high in a random subsample of participants (n = 419)
who were selected from all 4 study sites (11).

We used responses on the FFQ to calculate adherence to
4 different types of previously published PDIs (12, 13). These
indices were developed to characterize diets that are higher in
plant foods and lower in animal products and to distinguish
healthful and unhealthful plant-based diets (12, 13). Detailed
description of the calculation of the scores in the ARIC study
is provided in a previous publication (6). Briefly, we classified
foods and beverages in the FFQ into 17 food groups for the overall
PDI, healthful PDI, and unhealthful PDI, and 11 food groups for
the provegetarian diet index. For the overall PDI, healthful PDI,
and unhealthful PDI, the 17 food groups were broadly classified
into healthful plant foods (whole grains, fruits, vegetables, nuts,
legumes, tea and coffee), unhealthful plant foods (refined grains,
potatoes, fruit juices, sugar-sweetened and artificially sweetened
beverages, sweets and desserts), and animal products (animal
fat, dairy, eggs, fish or seafood, meat, miscellaneous animal
foods). For the provegetarian diet index, the 11 food groups
were classified into plant foods (grains, fruits, vegetables, nuts,
legumes, potatoes) and animal products (animal fat, dairy, eggs,
fish or seafood, meat).

Then, we used the residual method to calculate energy-
adjusted consumption of each of the food groups. Using
the residuals, we ranked participants by quintiles. For the
overall PDI, consumption of all plant foods (regardless of
the healthfulness of the plant foods) received higher scores
(positively scored). For instance, those in the highest quintile of
vegetable consumption received a score of 5, whereas those in
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the lowest quintile received a score of 1. For the provegetarian
diet index, similar to the overall PDI, consumption of plant foods
received higher scores, but some plant foods were not scored
(e.g., coffee and tea; sugar-sweetened and artificially sweetened
beverages; sweets and desserts). For the healthful PDI, only
healthful plant foods were positively scored. For the unhealthful
PDI, only unhealthful plant foods were positively scored. For
all diet indices, consumption of animal products received lower
scores (negatively scored). For instance, those in the highest
quintile of meat consumption received a score of 1, whereas those
in the lowest quintile received a score of 5. Scores for all of the
food groups in each index were summed.

These diet indices do not assess dietary patterns that exclude
animal products, rather they rank individuals in a study pop-
ulation by relative intake of plant foods and animal products.
As a result, those with higher scores for the overall PDI and
provegetarian diet index had relatively higher intake of plant
foods and relatively lower intake of animal products. Those
with higher scores for the healthful PDI had relatively higher
intake of healthful plant foods and relatively lower intake
of unhealthful plant foods and animal products. Those with
higher scores for the unhealthful PDI had relatively higher
intake of unhealthful plant foods and relatively lower intake
of healthful plant foods and animal products. The theoretical
range for the overall PDI, healthful PDI, and unhealthful
PDI was 17–85 and for the provegetarian diet index was
11–55.

Definition of CKD

CKD is defined as structural or functional abnormalities of
the kidney for >3 mo, with implications for health (14, 15). The
functional criterion for CKD is glomerular filtration rate (GFR)
<60 mL · min−1 · 1.73 m−2. In the ARIC study, a composite
definition was used to define incident CKD: 1) estimated GFR
(eGFR) <60 mL · min−1 · 1.73 m−2 with eGFR decline ≥25%
at any study visit compared with baseline (visit 1, 1987–1989),
2) hospitalizations or death related to CKD using the relevant
International Classification of Diseases (ICD-9/10) codes, or 3)
KFRT (also known as “end-stage renal disease”), defined as the
initiation of renal replacement therapy (dialysis or transplant) and
identified through linkage to the US Renal Data System (USRDS)
(16).

In the primary analyses, serum or plasma creatinine was used
to calculate estimated glomerular filtration rate (eGFRCr) using
the 2009 CKD Epidemiology Collaboration (CKD-EPI) equation
at every visit (17). Creatinine in serum was assessed at visits 1
and 2, and creatinine in plasma was assessed at visit 4 using the
modified kinetic Jaffe method. Creatinine in serum was assessed
at visits 3, 5, and 6 using the Roche enzymatic method. To account
for variability between measurements, creatinine values were
calibrated to the National Institute of Standards and Technology
standard (18, 19).

As a sensitivity analysis, we used eGFR decline based on
creatinine (eGFRCr) and cystatin C (eGFRCys) as the outcome.
Serum cystatin C was used to calculate eGFR at every visit except
for baseline (visit 1, 1987–1989) (20). eGFRCys is less sensitive
to confounding by diet and muscle mass than eGFRCr (21, 22).
At visits 2, 5, and 6, cystatin was assessed using the Gentian
immunoassay. At visit 3, cystatin was assessed using the Roche

Cobas 6000 chemistry analyzer. At visit 4, cystatin was assessed
using a BNII nephelometer.

Metabolomic profiling

Untargeted metabolomic profiling was conducted by
Metabolon using GC-MS and ultra-high-performance liquid
chromatography–tandem MS (UPLC-MS/MS) on a Thermo
Scientific Orbitrap MS analyzer. Details on metabolomic
profiling have been reported previously (23, 24). Briefly,
samples were extracted using an automated liquid handling
robot (Hamilton Labstar, Hamilton Robotics). For GC-MS,
the supernatants were injected onto a Thermo Scientific 5%
diphenyl/95% dimethyl polysiloxane fused silica column
(20 m × 0.18-mm ID; 0.18-μm film thickness) using helium
as the carrier gas (temperature ramp from 60◦C to 340◦C) for a
17.5-min period. For UPLC, the supernatants were injected onto
a 2.1 × 100-mm Waters BEH C18 1.7-μm column. Raw data
were processed and peaks were identified using Metabolon’s in-
house software by matching to an extensive chemical library with
>5000 commercially available standard compounds. To account
for variation due to instrument interday tuning differences, each
compound was adjusted in run-day blocks by normalizing data
points proportionately to the median.

All known metabolites in the data set were confirmed using
reference standards, and were classified as either tier 1 or tier
2 identification. In order to be tier 1 identification, metabolites
had to meet ≥2 orthogonal measurements (e.g., accurate mass,
retention index, fragmentation pattern) when compared to a
reference standard (25, 26). Metabolites were considered a tier
2 identification if a reference standard was not available but
there was evidence on physiochemical properties or spectral
similarities (25, 26). Tier 2 metabolites are denoted in the tables
with an asterisk.

Our analyses were restricted to named metabolites (n = 385)
available in both subgroup 1 and subgroup 2. We excluded
metabolites if >80% of values were missing across specimen
(n = 6). For the rest of the metabolites, we imputed the lowest
detectable value for each metabolite, scaled metabolites to a
median of 1 by dividing by the subgroup-specific median,
and used log transformation (loge) to improve normality. We
excluded metabolites with very low variance (<0.01 on a log
scale) or no variance (n = 5), then capped outliers at 5 SDs
above or below the mean. These preprocessing steps yielded
374 metabolites in subgroups 1 and 2. In subgroup 2, a greater
number of named metabolites were available than in subgroup
1 owing to improvement in the metabolomics platform over
time (2010 compared with 2014). Twenty-seven metabolites that
were unknown at the time of metabolomic profiling in subgroup
1 were retroactively named and were included in the present
analyses.

Covariates

At baseline, participants’ sociodemographic characteristics
(age, sex, race/ethnicity, education), smoking, physical activity,
alcohol intake, medication use, and diagnosed diseases were
collected using a structured questionnaire. We adjusted for
margarine consumption and total energy intake to be consistent
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with prior studies of plant-based diets and chronic diseases (6,
27, 28), and because the composition of margarine may have
been high in trans fats at the time diet was assessed in the
ARIC study (12). Trained staff measured participants’ height
(cm) and weight (kg), which were used to calculate BMI (in
kg/m2). A certified technician measured systolic and diastolic
blood pressure 3 times using a random-0 sphygmomanometer.
The mean of the second and the third measurements was used.
The modified hexokinase/glucose-6-phosphate dehydrogenase
method was used to assess blood glucose concentration. Diabetes
was defined as self-report of doctor’s diagnosis of diabetes,
diabetes medication use in the past 2 wk, fasting glucose
≥126 mg/dL, or nonfasting glucose ≥200 mg/dL. Hypertension
was defined as self-report of antihypertensive medication use in
the past 2 wk, systolic blood pressure ≥140 mm Hg, or diastolic
blood pressure ≥90 mm Hg.

Statistical analyses

We examined baseline characteristics of the participants and
nutritional characteristics (energy-adjusted macro- and micronu-
trients, fiber, cholesterol) of the diet according to quintiles of
4 different plant-based diet scores using means ± SDs for
continuous variables and proportions for categorical variables.

For the cross-sectional analyses, we examined the associations
between a 1-unit higher score in the 4 PDIs and 374 individual
metabolites using multivariable linear regression models. In
the cross-sectional analyses, we adjusted for age, sex, race-
center (only in subgroup 2 because subgroup 1 consisted
exclusively of African-American participants from the Jackson,
MS site), education, physical activity, smoking, alcohol intake,
margarine intake, BMI, eGFR, and total energy intake. A variable
that combined race and study center was used in subgroup
2 to account for the nonuniform distribution of participants
by race/ethnicity across the 4 ARIC study sites. Then, we
meta-analyzed β coefficients of the 374 metabolites across the
2 subgroups using fixed-effects models (29), and adjusted the
statistical significance level using the Bonferroni method to
account for multiple comparisons (α = 3.34 × 10−5; 0.05/4
dietary patterns/374 metabolites).

For the prospective analyses, we used multivariable Cox
proportional hazards regression models to assess the associations
between 1 SD higher in 51 diet-related metabolites and incident
CKD from subgroups 1 and 2. We adjusted for the same co-
variates as the cross-sectional analyses, and in addition adjusted
for diabetes, hypertension, and prevalent coronary artery disease
at baseline. Similar to our approaches in the cross-sectional
analyses, we meta-analyzed β coefficients of 51 diet-related
metabolites across subgroup 1 and subgroup 2 using fixed-effects
models (29) and used a Bonferroni-adjusted P value threshold of
9.80 × 10−4 (0.05/51 diet-related metabolites). For 6 diet-related
metabolites that were significantly associated with incident CKD,
we calculated Spearman rank correlation coefficients to describe
the interrelation between these metabolites.

In subgroup 1 and subgroup 2 separately, and together, we
used C-statistics to assess whether addition of plant-based diet–
related metabolites improved the prediction of those in the
highest quintile as opposed to the lower 4 quintiles of each
of the PDIs beyond participant characteristics (the covariates
used for the cross-sectional analyses). We used Harrell’s

C-statistics to examine whether plant-based diet– and CKD-
related metabolites improved the prediction of incident CKD
beyond the CKD risk prediction equation (30). The CKD
risk prediction equation was developed using data from
34 multinational cohorts (30). The 5-y CKD risk prediction
model for those without diabetes includes age, sex, race/ethnicity,
baseline eGFR, smoking status, hypertension, BMI, history of
cardiovascular disease, and albuminuria (30). We did not have
albuminuria at baseline, thus we did not include this variable
for our calculation of Harrell’s C-statistics. Owing to lower
sample sizes after excluding participants with diabetes (n1 = 280,
n2 = 221), we pooled data from subgroup 1 and subgroup 2
(n = 3221) to increase statistical power.

We conducted 2 sensitivity analyses by 1) stratifying the
association between 1,5-anhydroglucitol (1,5-AG) and unhealth-
ful PDI and incident CKD by diabetes status, given that this
metabolite is more strongly associated with kidney disease
among individuals with diabetes (31); and 2) repeating the
analyses on plant-based diet–related metabolites associated with
CKD using eGFR decline as the outcome. We separately
assessed the association between metabolites and eGFRCr and
eGFRCys. We used linear regression models with general-
ized estimating equations (exchangeable correlation structures
and robust variance) and conducted meta-analysis across the
2 subgroups using fixed-effects models (29).

All analyses were conducted in Stata software version 15.0
(StataCorp) and R software version 4.1.0 (R Foundation for
Statistical Computing).

Results

Baseline characteristics of the study population and
nutritional characteristics of the dietary patterns

In subgroup 1, the overall PDI ranged from 34 to 72,
provegetarian diet ranged from 19 to 49, the healthful PDI ranged
from 34 to 74, and the unhealthful PDI ranged from 28 to
75 (Table 1). These ranges were similar in subgroup 2. Those
in the highest quintiles of overall PDI, provegetarian diet, and
healthful PDI were more likely to be slightly older, women, high
school graduates, more physically active, have lower eGFR, and
have coronary artery disease at baseline, and were less likely
to be current smokers and to have diabetes than those in the
lowest quintiles of these indices. Most of these trends (age, sex,
education, physical activity, smoking status) were the opposite for
the unhealthful PDI. Characteristics of the study population were
similar for subgroup 2, except that those in the highest quintiles
of all PDIs were less likely to be black.

Those in the highest quintile of overall PDI, provegetarian
diet, and healthful PDI had higher intake of carbohydrate, plant
protein, fiber, and micronutrients (potassium; magnesium; iron;
β-carotene; vitamins C, B-6, and E; and folate) and lower intake
of total fat than those in the lowest quintile (Supplemental Table
1). Those in the highest compared with the lowest quintile of
unhealthful PDI had lower intake of fiber and micronutrients
(sodium; phosphorus; calcium; potassium; magnesium; iron; β-
carotene; vitamins B-1, B-2, B-6, B-12, C, and E; folate; zinc) and
higher carbohydrate and added sugar intake. Those in the highest
quintiles of all PDIs had lower intake of animal products than
those in the lowest quintiles.



Metabolomics of plant-based diets and CKD 155

T
A

B
L

E
1

C
ha

ra
ct

er
is

tic
s

of
st

ud
y

pa
rt

ic
ip

an
ts

in
su

bg
ro

up
1

an
d

su
bg

ro
up

2
by

qu
in

til
es

of
PD

Is
1

O
ve

ra
ll

PD
I

Pr
ov

eg
et

ar
ia

n
H

ea
lth

fu
lP

D
I

U
nh

ea
lth

fu
lP

D
I

Q
ui

nt
ile

1
Q

ui
nt

ile
5

Q
ui

nt
ile

1
Q

ui
nt

ile
5

Q
ui

nt
ile

1
Q

ui
nt

ile
5

Q
ui

nt
ile

1
Q

ui
nt

ile
5

Su
bg

ro
up

1
(n

=
17

62
)

Sa
m

pl
e

si
ze

,n
37

8
29

1
38

1
26

9
41

3
30

3
40

2
31

4
M

ed
ia

n
sc

or
e

[r
an

ge
]

44
[3

4–
46

]
59

[5
7–

72
]

28
[1

9–
29

]
40

[3
8–

49
]

44
[3

4–
46

]
59

[5
7–

74
]

42
[2

8–
45

]
61

[5
8–

75
]

A
ge

,y
52

.4
±

5.
7

52
.8

±
5.

7
52

.2
±

5.
9

52
.8

±
5.

8
52

.2
±

5.
7

53
.5

±
5.

7
53

.3
±

5.
6

52
.1

±
5.

7
W

om
en

20
4

(5
4.

0)
21

2
(7

2.
9)

22
5

(5
9.

1)
18

0
(6

6.
9)

24
1

(5
8.

4)
21

5
(7

1.
0)

29
3

(7
2.

9)
16

6
(5

2.
9)

B
la

ck
37

8
(1

00
)

29
1

(1
00

)
38

1
(1

00
)

26
9

(1
00

)
41

3
(1

00
)

30
3

(1
00

)
40

2
(1

00
)

31
4

(1
00

)
H

ig
h

sc
ho

ol
gr

ad
ua

te
20

1
(5

3.
2)

19
0

(6
5.

3)
22

3
(5

8.
5)

17
2

(6
3.

9)
23

5
(5

6.
9)

18
8

(6
2.

0)
24

8
(6

1.
7)

16
7

(5
3.

2)
Sm

ok
in

g
st

at
us

N
ev

er
sm

ok
er

s
16

5
(4

3.
7)

15
6

(5
3.

6)
17

1
(4

4.
9)

13
8

(5
1.

3)
20

3
(4

9.
2)

15
0

(4
9.

5)
20

7
(5

1.
5)

15
1

(4
8.

1)
Fo

rm
er

sm
ok

er
s

76
(2

0.
1)

62
(2

1.
3)

89
(2

3.
4)

59
(2

1.
9)

94
(2

2.
8)

71
(2

3.
4)

98
(2

4.
4)

63
(2

0.
1)

C
ur

re
nt

sm
ok

er
s

13
7

(3
6.

2)
73

(2
5.

1)
12

1
(3

1.
8)

72
(2

6.
8)

11
6

(2
8.

1)
82

(2
7.

1)
97

(2
4.

1)
10

0
(3

1.
8)

Ph
ys

ic
al

ac
tiv

ity
in

de
x

2.
1

±
0.

6
2.

2
±

0.
7

2.
1

±
0.

6
2.

2
±

0.
7

2.
1

±
0.

7
2.

3
±

0.
7

2.
2

±
0.

7
2.

0
±

0.
6

To
ta

le
ne

rg
y

in
ta

ke
,k

ca
l

17
30

±
65

1
16

52
±

58
2

16
62

±
66

0
17

46
±

58
3

15
28

±
64

0
18

10
±

58
5

15
05

±
60

4
18

99
±

59
8

eG
FR

C
r,

m
L

·m
in

−1
·1

.7
3

m
−2

11
4.

5
±

16
.9

11
3.

2
±

16
.4

11
4.

7
±

17
.2

11
2.

3
±

17
.0

11
4.

0
±

17
.2

11
2.

0
±

16
.9

11
4.

5
±

16
.9

11
4.

0
±

15
.8

B
M

I,
kg

/m
2

29
.5

±
6.

0
29

.8
±

6.
3

30
.0

±
6.

3
29

.5
±

6.
6

29
.8

±
6.

1
29

.6
±

5.
9

30
.4

±
6.

0
28

.5
±

5.
5

D
ia

be
te

s
64

(1
6.

9)
43

(1
4.

8)
67

(1
7.

6)
37

(1
3.

8)
74

(1
7.

9)
46

(1
5.

2)
84

(2
0.

9)
33

(1
0.

5)
H

yp
er

te
ns

io
n

19
9

(5
2.

6)
14

5
(4

9.
8)

19
9

(5
2.

2)
13

8
(5

1.
3)

20
6

(4
9.

9)
15

0
(4

9.
5)

19
9

(4
9.

5)
15

7
(5

0.
0)

Pr
ev

al
en

tC
A

D
9

(2
.4

)
16

(5
.5

)
10

(2
.6

)
10

(3
.7

)
12

(2
.9

)
20

(6
.6

)
15

(3
.7

)
9

(2
.9

)
Su

bg
ro

up
2

(n
=

19
60

)
Sa

m
pl

e
si

ze
,n

45
5

37
2

48
5

36
1

40
0

39
1

47
5

38
7

M
ed

ia
n

sc
or

e
[r

an
ge

]
44

[3
2–

46
]

59
[5

7–
70

]
27

[1
8–

29
]

40
[3

8–
51

]
43

[3
3–

45
]

59
[5

7–
74

]
43

[3
0–

46
]

59
[5

7–
76

]
A

ge
,y

53
.7

±
5.

7
54

.5
±

5.
9

53
.9

±
5.

7
54

.8
±

5.
9

53
.1

±
5.

6
54

.8
±

5.
8

54
.4

±
5.

6
53

.7
±

5.
7

W
om

en
20

9
(4

5.
9)

22
5

(6
0.

5)
24

9
(5

1.
3)

20
1

(5
5.

7)
19

7
(4

9.
2)

22
6

(5
7.

8)
30

8
(6

4.
8)

18
6

(4
8.

1)
B

la
ck

18
7

(4
1.

1)
49

(1
3.

2)
17

1
(3

5.
3)

67
(1

8.
6)

13
9

(3
4.

8)
85

(2
1.

7)
13

7
(2

8.
8)

92
(2

3.
8)

H
ig

h
sc

ho
ol

gr
ad

ua
te

31
6

(6
9.

5)
31

2
(8

3.
9)

34
6

(7
1.

3)
28

5
(7

8.
9)

28
3

(7
0.

8)
31

7
(8

1.
1)

36
0

(7
5.

8)
29

2
(7

5.
5)

Sm
ok

in
g

st
at

us
N

ev
er

sm
ok

er
s

16
2

(3
5.

6)
16

1
(4

3.
3)

17
8

(3
6.

7)
15

2
(4

2.
1)

16
5

(4
1.

2)
16

1
(4

1.
2)

21
0

(4
4.

2)
15

3
(3

9.
5)

Fo
rm

er
sm

ok
er

s
14

0
(3

0.
8)

13
0

(3
4.

9)
14

0
(2

8.
9)

13
6

(3
7.

7)
11

8
(2

9.
5)

13
7

(3
5.

0)
15

1
(3

1.
8)

12
3

(3
1.

8)
C

ur
re

nt
sm

ok
er

s
15

3
(3

3.
6)

81
(2

1.
8)

16
7

(3
4.

4)
73

(2
0.

2)
11

7
(2

9.
2)

93
(2

3.
8)

11
4

(2
4.

0)
11

1
(2

8.
7)

Ph
ys

ic
al

ac
tiv

ity
in

de
x

2.
3

±
0.

8
2.

5
±

0.
8

2.
3

±
0.

7
2.

6
±

0.
8

2.
3

±
0.

8
2.

6
±

0.
8

2.
5

±
0.

8
2.

3
±

0.
8

To
ta

le
ne

rg
y

in
ta

ke
,k

ca
l

17
34

±
64

2
17

33
±

54
7

16
14

±
63

7
17

85
±

53
6

16
02

±
64

1
18

67
±

56
0

15
87

±
57

2
18

68
±

58
5

eG
FR

C
r,

m
L

·m
in

−1
·1

.7
3

m
−2

10
4.

8
±

15
.3

10
0.

3
±

14
.8

10
3.

7
±

15
.0

10
0.

9
±

13
.6

10
3.

5
±

16
.0

10
2.

1
±

13
.2

10
3.

6
±

14
.5

10
0.

4
±

15
.9

B
M

I,
kg

/m
2

28
.3

±
5.

5
27

.1
±

5.
6

28
.3

±
5.

4
27

.3
±

5.
8

28
.7

±
5.

5
27

.2
±

5.
4

28
.5

±
5.

8
27

.8
±

5.
3

D
ia

be
te

s
54

(1
1.

9)
33

(8
.9

)
52

(1
0.

7)
36

(1
0.

0)
46

(1
1.

5)
39

(1
0.

0)
69

(1
4.

6)
32

(8
.3

)
H

yp
er

te
ns

io
n

16
9

(3
7.

1)
13

5
(3

6.
3)

17
5

(3
6.

1)
14

6
(4

0.
4)

14
1

(3
5.

2)
13

5
(3

4.
5)

17
2

(3
6.

2)
14

7
(3

8.
0)

Pr
ev

al
en

tC
A

D
23

(5
.1

)
33

(8
.9

)
22

(4
.5

)
38

(1
0.

5)
17

(4
.2

)
34

(8
.7

)
27

(5
.7

)
30

(7
.8

)

1
V

al
ue

s
ar

e
m

ea
ns

±
SD

s
fo

r
co

nt
in

uo
us

va
ri

ab
le

s
an

d
n

(%
)

fo
r

ca
te

go
ri

ca
lv

ar
ia

bl
es

.C
A

D
,c

or
on

ar
y

ar
te

ry
di

se
as

e;
eG

FR
C

r,
es

tim
at

ed
gl

om
er

ul
ar

fil
tr

at
io

n
ra

te
ba

se
d

on
cr

ea
tin

in
e;

PD
I,

pl
an

t-
ba

se
d

di
et

in
de

x.



156 Kim et al.

FIGURE 1 Metabolites significantly associated with PDIs in the Atherosclerosis Risk in Communities study. We used multivariable linear regression
models to study the associations between 1 unit higher in PDIs and individual metabolites, adjusting for important confounders. Metabolites were meta-
analyzed across 2 subgroups (n1 = 1762; n2 = 1960) using fixed-effects models. At the Bonferroni threshold of 3.34 × 10−5 (0.05/4 dietary patterns/374
metabolites), there were 82 significant associations (overall PDI = 27; provegetarian = 17; healthful PDI = 20; unhealthful PDI = 18). For reference, of the
374 individual metabolites in the data set, 23% (n = 87) were amino acids, 3% (n = 13) were carbohydrates, 3% (n = 11) were cofactors and vitamins, 1%
(n = 5) were energy metabolites, 37% (n = 138) were lipids, 4% (n = 15) were nucleotides, 13% (n = 49) were peptides, and 15% (n = 56) were xenobiotics.
PDI, plant-based diet index.

Metabolites associated with plant-based dietary patterns

We identified 82 significant associations between PDIs and
metabolites (overall PDI = 27; provegetarian = 17; healthful
PDI = 20; unhealthful PDI = 18) at the Bonferroni threshold of
3.34 × 10−5. Of these, 51 metabolites were unique metabolites,
indicating that some metabolites were associated with multiple
dietary patterns (e.g., tryptophan betaine was associated with
overall PDI, provegetarian diet, and healthful PDI). Across the
4 dietary patterns, xenobiotics (range of number of metabo-
lites = 3–7), lipids (range = 3–7), and amino acids (range = 3–
5) were the most common categories of metabolites that were
significantly associated with PDIs (Figure 1). For overall
PDI, peptides were another metabolite category with a large
number of significant associations (n = 5). Eleven metabolites
{4 xenobiotics (4-vinylphenol sulfate, O-methylcatechol sulfate,
catechol sulfate, hippurate), 3 amino acid derivatives (N-
acetylornithine, tryptophan betaine, indolepropionate), 2 lipids
[10-nonadecenoate (19:1n–9) and 10-heptadecenoate (17:1n–
7)], a carbohydrate (glycerate), and a cofactor and vitamin
(threonate)} overlapped across overall PDI, provegetarian diet,
and healthful PDI (Supplemental Figure 2). The overall
PDI (n = 12) and unhealthful PDI (n = 13) had a sim-
ilar number of metabolites that did not overlap with the
other PDIs.

The majority of lipids were negatively associated with all
4 PDIs (Table 2; Figure 2). N-methylproline and stachydrive

were positively associated with the overall PDI (Figure 2A).
Xenobiotics (e.g., 4-vinylphenol sulfate, hippurate, catechol
sulfate), amino acid derivatives (e.g., tryptophan betaine, N-
acetylornithine), a carbohydrate (glycerate), and cofactors and
vitamins were positively associated with the overall PDI,
provegetarian diet, and healthful PDI (Figure 2A–C). Four
γ -glutamyl peptides (γ -glutamylvaline, γ -glutamylleucine, γ -
glutamylglutamate, γ -glutamylalanine) were positively associ-
ated with the overall PDI (Figure 2A). All 3 significant xeno-
biotics (catechol sulfate, homostachydrine, 3-hydroxypyridine
sulfate) were negatively associated with the unhealthful PDI
(Figure 2D), whereas 1,5-AG was positively associated with the
unhealthful PDI (Table 2).

PDI-related metabolites associated with incident CKD

Over a median follow-up of 23 y, there were 606 and 807
incident CKD cases in subgroups 1 and 2, respectively. Six PDI-
related metabolites (glycerate, 1,5-AG, γ -glutamylalanine, γ -
glutamylglutamate, γ -glutamylleucine, γ -glutamylvaline) were
significantly associated with incident CKD (Table 3; Supple-
mental Table 2). Four out of these 6 metabolites were involved
in γ -glutamyl peptide metabolism. Per SD higher levels of all
6 metabolites were associated with 10%–13% lower risk of
incident CKD. Metabolites in the γ -glutamyl peptide pathway
were strongly associated with each other (range of ρ = 0.72–
0.96) (Supplemental Figure 3).
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FIGURE 2 β coefficients and P values for the associations between 4 PDIs and individual metabolites. (A) Overall PDI, (B) provegetarian diet, (C) healthful
PDI, (D) unhealthful PDI. β coefficients and P values were calculated from multivariable linear regression models which assessed the associations between
PDIs and individual metabolites, adjusting for age, sex, race-center (only in subgroup 2), education, physical activity, smoking, alcohol consumption, margarine
consumption, BMI, baseline estimated glomerular filtration rate, and total energy intake. Metabolites were meta-analyzed across 2 subgroups (n1 = 1762;
n2 = 1960) using fixed-effects models. The horizontal line is set at the Bonferroni threshold of 3.34 × 10−5 (0.05/4 dietary patterns/374 metabolites), and the
vertical line is set at a β coefficient of 0. PDI, plant-based diet index.

Prediction of plant-based dietary patterns with metabolites

The ability of plant-based diet–related metabolites to predict
those in the highest quintile as opposed to the lower 4 quintiles
of each of the PDIs improved significantly, compared with the
model with only participant characteristics (range of differences
in C-statistics = 0.026–0.104; P value for difference in C-
statistics ≤ 0.001) (Table 4). In subgroup 1, the magnitude

of increase was the highest for overall PDI (difference in
C-statistics = 0.104), followed by healthful PDI (difference
in C-statistics = 0.089). In subgroup 2, the magnitude of
increase was the highest for provegetarian diet (difference in C-
statistics = 0.076), followed by overall PDI (difference in C-
statistics = 0.061). When we pooled subgroups 1 and 2, the
magnitude of increase was the highest for overall PDI (difference
in C-statistics = 0.074).
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Prediction of incident CKD with metabolites

The addition of 6 plant-based diet–related metabolites mod-
estly improved the prediction of incident CKD among those
without diabetes relative to the CKD prediction equation [C-
statistic for CKD prediction model = 0.702; C-statistic for CKD
prediction model and 6 metabolites = 0.707; difference in C-
statistics = 0.005 (95% CI: 0.002, 0.009); P value for difference
in C-statistics = 0.006].

Sensitivity analyses

When we stratified 1,5-AG by diabetes status, 1,5-AG was
positively associated with unhealthful PDI among those with
and without diabetes (Supplemental Table 3). 1,5-AG was not
significantly associated with incident CKD among those without
diabetes, and was inversely associated with incident CKD
among those with diabetes. The direction of the association was
consistent between eGFRCr and eGFRCys for the 6 metabolites,
with a slightly stronger magnitude for decline in eGFRCys than
for decline in eGFRCr (Supplemental Table 4).

Discussion
In a large prospective study of individuals without CKD, we

found 82 significant associations between PDIs and metabolites
(overall PDI = 27; provegetarian = 17; healthful PDI = 20; un-
healthful PDI = 18). Addition of these metabolites improved the
prediction of individuals with high adherence to PDIs beyond so-
ciodemographic characteristics, health behaviors, clinical factors,
and total energy intake. We also identified 6 plant-based diet–
related metabolites (glycerate, 1,5-AG, γ -glutamylalanine, γ -
glutamylglutamate, γ -glutamylleucine, γ -glutamylvaline) which
predicted the risk of incident CKD beyond traditional risk
factors, highlighting potentially modifiable mechanisms leading
to incident CKD.

To our knowledge, this is the first study to report metabolites
associated with predefined PDIs. Of the metabolites associated
with the overall PDI, provegetarian diet, and healthful PDI,
several were previously reported as candidate biomarkers of other
healthy dietary patterns, foods, and beverages. N-methylproline
and stachydrine (also known as proline betaine), which were
positively associated with the overall PDI in the present study,
were also positively associated with the Healthy Eating Index
(HEI) and Dietary Approaches to Stop Hypertension (DASH) diet
in the ARIC study (32, 33), among postmenopausal women (34),
and in a CKD population (35). N-methylproline and stachydrine
are proline derivatives which are considered biomarkers of citrus
fruit intake (36, 37). Importantly, they are osmoprotectants
which accumulate in osmotically stressed conditions in human
cells and provide protection against oxidative stress (38, 39).
Tryptophan betaine (also known as hypaphorine), which was
positively associated with overall PDI, provegetarian diet, and
healthful PDI in our analysis, was reported as a biomarker of
plant protein intake (chickpeas, lentils, total nuts) (36, 37, 40–43).
Hypaphorine is found in extracts of legumes (44). This metabolite
has been shown to reduce expression of inflammatory cytokines
in human endothelial cells, and lower glucose in diabetic rats
compared with rats that were administered metformin (45,
46). Hippurate, catechol sulfate, and quinate, which were also
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TABLE 4 C-statistics and difference in C-statistics for prediction of individuals in the highest quintile as opposed to
the lower 4 quintiles of PDIs in the Atherosclerosis Risk in Communities study1

C-statistics for participant
characteristics

Difference in C-statistics
(95% CI) P value2

Subgroup 1 (N = 1762)
Overall PDI (n = 27) 0.623 0.104 (0.055, 0.152) <0.001
Provegetarian (n = 17) 0.626 0.065 (0.028, 0.102) 0.001
Healthful PDI (n = 20) 0.679 0.089 (0.042, 0.136) <0.001
Unhealthful PDI (n = 18) 0.725 0.051 (0.024, 0.078) <0.001

Subgroup 2 (N = 1960)
Overall PDI (n = 27) 0.639 0.061 (0.037, 0.085) <0.001
Provegetarian (n = 17) 0.633 0.076 (0.049, 0.103) <0.001
Healthful PDI (n = 20) 0.677 0.033 (0.013, 0.053) 0.001
Unhealthful PDI (n = 18) 0.665 0.037 (0.016, 0.058) <0.001

Subgroups 1 and 2 (N = 3722)
Overall PDI (n = 27) 0.626 0.074 (0.050, 0.097) <0.001
Provegetarian (n = 17) 0.630 0.064 (0.043, 0.084) <0.001
Healthful PDI (n = 20) 0.674 0.041 (0.023, 0.059) <0.001
Unhealthful PDI (n = 18) 0.688 0.026 (0.011, 0.041) <0.001

1We built logistic regression models with PDI (highest quintile compared with lower 4 quintiles) as the outcome
and participant characteristics as exposures. Participant characteristics included age, sex, race-center (not included in
subgroup 1), education, physical activity, smoking, alcohol consumption, margarine consumption, BMI, baseline
estimated glomerular filtration rate, and total energy intake. Table 2 presents the list of metabolites significantly
associated with plant-based diets. n, number of significant metabolites associated with the specific plant-based diet
index; PDI, plant-based diet index.

2P value comparing C-statistics with participant characteristics and metabolites to C-statistics with only
participant characteristics.

positively associated with the overall PDI, provegetarian diet, and
healthful PDI, are metabolites that are derived from chlorogenic
acid, which is found in fruits and coffee (44, 47). Such consistent
associations with healthy dietary patterns could justify their
prioritization as biomarkers of plant-based diets in the future, and
suggest key pathways that are relevant for diet and CKD.

We found that the metabolites significantly associated with
the unhealthful PDI were different from those associated with
the overall PDI, provegetarian diet, and healthful PDI. Out of
18 metabolites associated with the unhealthful PDI, 13 were
unique to this dietary pattern, and the direction of association
was the opposite (e.g., catechol sulfate) for the metabolites also
associated with the other PDIs. Pyridoxate and pantothenate,
metabolites involved in vitamin B metabolism, were negatively
associated with the unhealthful PDI in our study, which reflects
nutritional characteristics of this dietary pattern (lower in
B vitamins in general). In addition, we found that N2,N2-
dimethylguanosine was positively associated with the unhealthful
PDI. This metabolite is a purine nucleoside which results from
degradation of transfer RNA, and a uremic solute which has been
known to increase in plasma with lower urinary excretion. Greater
plasma concentrations of uremic solutes have been associated
with polycystic kidney disease (48) and progression to KFRT
(49), because they can damage the proximal tubule through tissue
hypoxia or endothelial cell injury. To date, no other studies have
reported an association between N2,N2-dimethylguanosine and
dietary patterns or foods. Because we did not find a statistically
significant association between N2,N2-dimethylguanosine and
incident CKD, future studies are warranted to assess whether
N2,N2-dimethylguanosine represents a pathway through which
unhealthful dietary patterns are associated with other adverse
health outcomes.

Our observation that several γ -glutamyl peptides were pos-
itively associated with overall PDI, and inversely associated
with incident CKD, is novel. These metabolites are involved
in glutathione homeostasis, which is important for reducing
oxidative stress (50). γ -glutamyl peptides are produced when
γ -glutamyl transferase transfers the γ -glutamyl moiety of
glutathione to amino acids (50). These metabolites are found
in foods such as legumes (dry beans, soybeans), garlic, onion,
and fermented foods, and are considered anti-inflammatory
peptides (51). In vitro, γ -glutamyl valine has shown anti-
inflammatory effects on human aortic endothelial cells by
reducing production of IL-6 and IL-8 (52). In animal models,
it has been reported that administration of γ -glutamyl valine
inhibited TNF-α signaling in intestinal epithelial cells, and
reduced expression of proinflammatory cytokines (TNF-α, IL-6,
IL-1β) in the colon and adipocytes (53, 54). Another study found
that when mice were fed high-fat diets for 6 wk, mice with the
antiobesogenic phenotype gained less weight and had elevated
levels of γ -glutamyl leucine compared with wild-type mice (55).
These studies suggest that γ -glutamyl peptides may represent
pathways that suppress inflammation and regulate adiposity.
Inflammation and obesity are involved in the pathogenesis of
several vascular conditions and CKD (56, 57). Taken together,
the γ -glutamyl peptides highlight that plant-based diets may have
anti-inflammatory and antiobesogenic properties.

Glycerate is another metabolite that was positively associated
with the overall PDI, provegetarian diet, and healthful PDI,
and negatively associated with incident CKD. Glycerate is
a monosaccharide found in plant foods (tomatoes, plantains,
grapes, peanuts), and a glycolytic intermediate which increases
in the portal vein after consumption of dietary fructose (44,
58, 59). However, studies on the functional role of glycerate in
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humans are limited. In our previous ARIC study and in a separate
study of healthy male smokers, glycerate was positively asso-
ciated with healthy dietary patterns (e.g., HEI-2015, Alterative
Healthy Eating Index-2010, DASH, and Mediterranean-style
diet), specifically fruits (32, 60). In a weight loss intervention,
serum glycerate level increased from baseline to 1 y of follow-up
in obese adults with ≥10% weight loss (61). In a cross-sectional
study, plasma glycerate was negatively associated with insulin
resistance (62). High blood sugar is another prominent factor of
CKD (1). These results suggest that an increase in glycerate due
to higher intake of fruit may play a role in glycemic control and
weight loss, which may be beneficial for kidney health.

We found an unexpected association between 1,5-AG, un-
healthful PDI, and incident CKD. 1,5-AG was positively
associated with unhealthful PDI, but was inversely associated
with incident CKD. 1,5-AG, a monosaccharide found in many
foods, such as soybeans, is known as a marker of short-
term (1–2 wk) hyperglycemia (63). In normoglycemia, the
renal tubule reabsorbs nearly 100% of 1,5-AG (64). In the
setting of hyperglycemia, 1,5-AG cannot be reabsorbed by the
renal tubules owing to glucose and is excreted in the urine,
which results in lower circulating concentrations of 1,5-AG
(63). Using data from the ARIC study, low concentrations
of 1,5-AG were associated with incident CKD, particularly
among those with diabetes (31). In line with prior findings
in the ARIC study, 1,5-AG was not significantly associated
with incident CKD among those without diabetes when we
stratified by diabetes status, but the positive association between
1,5-AG and unhealthful PDI remained significant. A recent
review concluded that blood concentrations of 1,5-AG are
unresponsive to dietary intake in the general population, because,
in healthy individuals, blood glucose concentrations are not high
enough to inhibit reabsorption of 1,5-AG (65). However, the
review added that there is limited evidence on the extent to
which food intake influences blood concentrations of 1,5-AG
in individuals with normoglycemia. These results highlight the
need for more research and suggests that our findings on 1,5-AG,
unhealthful PDI, and incident CKD should be interpreted with
caution.

The following limitations deserve consideration in interpreting
our results. Metabolites were measured using serum specimens
which had been in storage for >20 y. Metabolites may have
degraded, but we would expect that to be nondifferential with
respect to adherence to plant-based dietary patterns. In subgroup
1, fewer metabolites were available relative to subgroup 2 owing
to differences in the timing of metabolomic profiling. The FFQ
was modified from a validated questionnaire to assess dietary
habits in the ARIC study population, but it is possible that the
FFQ may not have covered all foods. We did not have data on
albuminuria as a marker of kidney damage to include in our
outcome definition of CKD and to include in the CKD prediction
equation. Lastly, we did not require participants to have reduced
eGFR for >3 mo when ascertaining incident CKD. However,
omission of this chronicity criterion does not differentially bias
the results by adherence to plant-based dietary patterns.

Our study has several strengths, including a large sample size,
racially diverse sample, and the use of 2 different subgroups
within a prospective study. We used established PDIs to evaluate
participants’ dietary habits, which will facilitate replication of
our study design in other study populations. Despite the absence

of albuminuria, ascertainment of CKD in the ARIC study was
rigorous, which incorporated eGFR measured at follow-up visits
and surveillance of CKD hospitalization, death, and KFRT over
an extensive follow-up period. Such careful data collection
allowed us to capture CKD events comprehensively, considering
that CKD may have occurred in individuals who did not attend a
follow-up visit. Further, we conducted a sensitivity analysis using
eGFR decline as the outcome, and found that the direction of the
association was the same with stronger associations when using
eGFRCys than using eGFRCr.

In conclusion, we identified 82 metabolites significantly
associated with plant-based dietary patterns (overall PDI = 27;
provegetarian = 17; healthful PDI = 20; unhealthful PDI = 18).
Of these, 6 metabolites (glycerate, 1,5-AG, γ -glutamylalanine,
γ -glutamylglutamate, γ -glutamylleucine, γ -glutamylvaline)
were associated with incident CKD, and predicted incident CKD
beyond traditional risk factors. These metabolites suggest that
plant-based diets may be associated with a lower risk of incident
CKD through reduced inflammation, prevention of adiposity,
and glycemic control.
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