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IRX3 plays an important role in
the pathogenesis of metabolic-
associated fatty liver disease by
regulating hepatic lipid
metabolism
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Metabolic-associated fatty liver disease (MAFLD) affects approximately a

quarter of the global population. Identification of the key genes and

pathways involved in hepatic lipid metabolism is of the utmost importance

for the diagnosis, treatment, and prevention of MAFLD. In this study,

differentially expressed genes were identified through whole-genome

transcriptional analysis of liver tissue from MAFLD patients and healthy

controls, and a series of lipid metabolism-related molecules and pathways

were obtained through pathway analysis. Subsequently, we focused on

Iroquois homeobox protein 3 (IRX3), one of 13 transcription factors that were

screened from the 331 differentially expressed genes. The transcription factor

IRX3was significantly decreased in the liver tissue of patients with MAFLD when

compared with healthy controls. Pearson’s correlation analysis showed that the

expression levels of IRX3 in liver tissue were negatively correlated with serum

total cholesterol, triglycerides, low-density lipoprotein cholesterol, and uric

acid levels. The overexpression and interference of IRX3 induced the increased

and decreased lipid droplet accumulation in vitro, respectively. Moreover,

interference of IRX3 expression increased mitochondrial fragmentation and

reduced the activity of the mitochondrial respiratory chain complex IV. In

summary, the study demonstrated that IRX3 regulated hepatic lipid metabolism

of MAFLD, and also revealed the effect of IRX3 on mitochondria might be an

important mechanism by which IRX3 regulated hepatic lipid metabolism

of MAFLD.
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Introduction

Metabolic-associated fatty liver disease (MAFLD),

previously known as non-alcoholic fatty liver disease. has

become a worldwide public health problem in recent decades

(1, 2). Owing to the large economic and social burden of

MAFLD and its complications, developing effective treatments

is urgently needed. Although the epidemiology and pathogenesis

of MAFLD are well understood, no specific drug treatment has

been approved for MAFLD to date (3). Lipid accumulation in

hepatocytes is the hallmark of MAFLD initiation, and

lipotoxicity in the liver is a key factor in the development of

MAFLD (4). Steatosis, a typical characteristic of MAFLD, is

expected to be caused by disordered hepatic lipid metabolism

(5, 6).

Hepatic lipid homeostasis is a complex regulatory

mechanism, resulting from the interaction of multiple genetic

and environmental factors (7). Previous studies have shown that

PNPLA3-I148M, MBOAT7, GCKR, TM6SF2-E167K and

HSD17B13 were closely correlated with liver histological

severity of MAFLD (8–12). In addition, many gene variations

have been shown to contribute to MAFLD progressions, such as

lipid metabolism regulation (PPARa/g, CD36, BHMT2,

LYPLAL1, APOB, MTP, LPIN1, UCP2), innate immunity

(IL28B, MERTK), insulin signaling pathway (ENPP1, IRS1),

oxidative stress (SOD2) and fibrogenesis (KLF6) (13). At the

same time, epigenetic changes were involved in the occurrence

and development of MAFLD, which was manifested in DNA

methylation, microRNA (miRNA), histone modification, etc

(14). MiRNA regulated the expression of multiple genes by

inhibiting or interfering with the stability of RNA. Studies

have shown that miR-122, miR-34, and miR-141 were

associated with the occurrence of MAFLD (15–17).

Consequently, identifying the genes and pathways of hepatic

lipid metabolism disorder might provide new targets for the

treatment of MAFLD.

In the present study, whole-genome transcriptional analysis

of liver tissues fromMAFLD patients and controls identified 331

differentially expressed genes, and pathway analysis of these

genes revealed a range of molecules and pathways involved in

MAFLD. Given the importance of transcription pathways in

lipid metabolism, we screened 13 transcription factors from

differentially expressed genes, among which Iroquois homeobox

protein 3 (IRX3) was one of the candidate genes. IRX3 is a

nuclear-distributed gene, studies have shown that the up-

regulation of IRX3 was significantly associated with obesity in

humans, and IRX3 knockout mice significantly enhanced basal

metabolism, reduced fat content and ultimately reduced body

weight, suggesting that IRX3 played an important role in

regulating body weight and energy metabolism (18, 19).

Studies have also showed that the expression level of IRX3 was

closely related to the expression of uncoupling protein 1 (UCP1)
Frontiers in Endocrinology 02
in brown adipose tissue, thus mediating heat production in

adipose tissue (20). All of these studies indicated that IRX3

played an important role in the lipid metabolism of adipocytes.

However, the role of IRX3 in the hepatic lipid metabolism of

MAFLD has not been reported. In the present study, we aimed to

clarify the regulatory roles and underlying mechanisms of IRX3

in the lipid metabolism of MAFLD.

Materials and methods

Liver samples

7 patients with histologically proven MAFLD and 9 healthy

control samples were included. Control samples were obtained

from hepatic hemangioma resection. Three pathologists

evaluated the samples, and patients with a non-alcoholic fatty

liver disease activity score (NAS) ≥5 were considered to have

steatohepatitis (21). All samples were investigated for other

possible interfering liver diseases (viral infections, toxic

exposure and autoimmune disorders, et al.) and the samples

with other concomitant liver diseases were excluded from the

study. All experimental participants provided informed consent.

The experiments received ethical approval from the ethics

committee of the Second Xiangya Hospital of Central South

University. The clinical characteristics of the MAFLD patients

and controls are shown in Table S1. To exclude the effect of

estrogen on liver lipid metabolism (22, 23), all 16 patients were

male. The mean age of MAFLD patients was 44.86 ± 5.84 years

and the mean body mass index (BMI) was 29.04 ± 5.40. The

mean age of the healthy controls was 44.56 ± 9.63 years and the

mean BMI was 22.68 ± 2.65.
Serum uric acid and lipids measurements

Blood samples were obtained from the patients and healthy

controls. The serum was separated by centrifugation at 3,000

rpm for 15 min to analyze biochemical and hematological

parameters. Total cholesterol (TC), triglycerides (TG), alanine

aminotransferase, gamma-glutamyl transferase, low-density

lipoprotein (LDL-C), and uric acid (UA) selected the first

blood drawing results after hospitalization as the target data.

The serum was processed in Vitros-250 automated analyzer

using readymade dry chemistry kits procured from Ortho-

Clinical Diagnostics, Johnson & Johnson, USA. Samples giving

readings above or below two SD were reprocessed or discarded.
Hepatic transcriptome

Total RNA was isolated from liver tissues using the Trizol

method following the reagent protocol (Invitrogen, USA). Total
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RNA was quantified and qualified as previously described (24).

Next-generation sequencing was performed using the Illumina

sequencing platform at Genergy Bio-Technology Inc. Quality

control of the raw fastq files was performed using the software

took FastQC v0.11.3. Sequencing reads were trimmed with

Trimmomatic v0.36 and aligned to the human genome

(GRCh37.p13) using the STAR aligner v2.5.3a (25). Read

quantification was performed with RSEM v 1.3.0 (26) and the

Gencode release 19 (27).

Differentially expressed genes from RNA-seq data were

statistically analyzed. Quantification of gene expression by

RNA-seq is to count the number of reads that have mapped to

each gene. Read quantification was performed with RSEM v

1.3.0 and the Gencode release 19. Adjusted p values for multiple

comparisons were calculated applying the Benjamini-Hochberg

correction. The events were defined as significant using a cutoff

of adjusted p value <0.05. Principal component analysis, Gene

Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analysis, correlation analysis, and

hierarchical clustering analysis were performed using R or the

Python environment.
Immunohistochemistry

Liver tissues were fixed with 4% paraformaldehyde,

embedded in paraffin. An IRX3 antibody (Abcam, USA) was

used to quantify IRX3 protein expression using paraffin-

embedded sections (5 µm) from each tissue. The sections were

incubated as previously described (28). Haematoxylin and eosin

(HE) staining and Oil Red O for lipid droplets staining were

conducted for histological examination. All stained sections were

scanned under a light microscope (Leica, USA). Quantitative

analysis was performed using ImageJ software (NIH, USA).
Transfection

HepG2 and L02 cells were obtained from ATCC and the

Chinese Academy of Science (Shanghai, China), respectively.

The cells were grown at 37°C with 5% CO2 in DMEM

(Invitrogen) supplemented with 10% fetal bovine serum,

2 mm l-glutamine, 100 units/ml penicillin and 100 mg/mL

streptomycin. The plasmid pcDNA3.1-IRX3-Flag was

introduced into L02 cells or HepG2 cells via transfection with

Lipofectamine 2000 reagent (Invitrogen) according to the

manufacturer’s protocol.
RNA interference

Cells were plated the day before transfection at 2*104 cells

per well in 12-well plates. Oligos complementary to IRX3 RNA
Frontiers in Endocrinology 03
and non-target oligos were synthesized by GenePharma (Sangon

Biotech, China). The target sequence of IRX3 siRNA is as follow:

5’-CACTGACGAGGAGGGAAACGCTTAT-3’. The oligos for

IRX3 interference were transfected into HepG2 cells using the

Lipofectamine 2000 reagent kit (Invitrogen) according to the

manufacturer’s protocol. The human primer sequences for IRX3

were as follows: 5′-CTCTCCCTGCTGGGCTCT-3′ (forward)

and 5′-CAAGGCACTACAGCGATCTG-3′ (reverse).
BODIPY and immunofluorescence
staining

Cells were grown on glass coverslips. After transfection for

48 h, the cells were treated with palmitic acid and oleic acid and

detected as previously described (24). Cells were fixed in 4%

formaldehyde for 15 min, permeabilized, and blocked with 0.1%

Triton X-100 in 4% appropriate normal serum in PBS for 1 h.

Immunofluorescence staining was performed using primary

antibodies against TOM20 for mitochondrial staining Flag for

exogenous expression of IRX3. The fluorescent dye BODIPY

493/503 (2.0 µm; D3922, Invitrogen) was used for lipid droplet

staining. Finally, the nuclei were stained with 4′,6-diamidino-2-

phenylindole (DAPI; Invitrogen). Cells were imaged using a

Zeiss LSM880 confocal microscope using an X63 Plan Apo

objective (Zeiss). The lipid content can be quantified as the

number of green spots per cell. Mitochondrial morphology was

quantified from auto-segmented images with an ImageJ macro

reporting several measures including form factor (FF =

(perimeter2)/(4 *p* area)), aspect ratio (AR = major axis/

minor axis), and length as previously described (29).
Isolation of mitochondria and
measurement of mitochondrial
complexes and citrate synthase activity

Cells were washed twice with phosphate-buffered saline and

incubated for 30 min on ice in lysis buffer (68 mM sucrose, 200

mM mannitol , 50 mM potassium chloride, 1 mM

ethylenediaminetetraacetic acid (EDTA), 1 mM EGTA, and 1

mM dithiothreitol with a protease inhibitor cocktail. The cells

were then lysed using 45 passages through a 25G 5/8 needle and

centrifuged at 1,500 g for 10 min. Cytosolic extracts were

recovered after centrifugation at 13,000 g for 20 min. The

pellet contained the mitochondria. The total protein

concentration was determined using the BCA kit (Pierce,

USA) according to the manufacturer’s instructions. The

mitochondrial activity of complex I (ab109903, Abcam),

complex II + III (b109905, Abcam), complex IV (ab109906,

Abcam), and complex V (ab109907, Abcam) was determined

using in vitro assays following the manufacturer’s procedures.

The citrate synthase activity of mitochondrial extracts was
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measured using a Citrate Synthase Activity Assay Kit (ab119692,

Abcam) according to the manufacturer’s instructions.
Data and statistical analysis

Metascape online software was used for pathway enrichment

analysis. Protein-protein interaction (PPI) enrichment was

performed using STRING and Metascape. The molecular

complex detection (MCODE) algorithm, pathway, and process

enrichment analysis were applied to identify the densely

connected components of the network using Metascape. The

three best-scoring terms defined by the p-value were selected as

the functional description of the corresponding components.

Data are presented as means ± standard error using Prism 8.3.0

software. Statistical analysis of the data of RNA-seq and in vitro

experiments was performed using an unpaired 2-tailed t-test

with 95% confidence interval in Prism.
Results

Transcriptome analysis revealed a series
of novel genes and pathways
involved in MAFLD

To identify differentially expressed genes between patients

with MAFLD and healthy controls, transcriptome analysis was

performed on liver tissue samples. A total of 331 differentially

expressed genes were identified (Table S2, p<0.05, log2 (fold
Frontiers in Endocrinology 04
change) ≥1.0 or ≤ −1.0). The Pearson’s correlation heat map

revealed significant differentially expressed genes between the

two groups (Figure 1A). To further study the function of

differentially expressed genes, GO and KEGG pathway

enrichment analysis was performed using Metascape (Table

S3). The top 20 significantly enriched biological processes were

listed in Figure 1B. Of note, these genes were significantly

enr iched in the nuc lear receptors meta-pathway ,

monocarboxylic acid metabolic process, pyruvate biosynthetic

process, PPAR signaling pathway and organic hydroxy

compound metabolic process pathways. Then, PPI network

analysis was used to further explore protein interactions

between the differentially expressed genes. Figure 1C showed

four important MCODE components from the PPI network by

Metascape. Finally, through the pathway analysis of each

MCODE component, the representative role of each MCODE

component was obtained, including biological oxidation, lipid

metabolism, PPAR signaling pathway, blood vessel

morphogenesis and retinol metabolism (Table S4). Through

the analysis of differentially expressed genes, we found that

many of these biological functions or processes are directly or

indirectly associated with lipid metabolism.
Expression of IRX3 was decreased in the
liver tissue of MAFLD patients

Among these differentially expressed genes, transcription

factors such as MYC (MYC proto-oncogene, BHLH

transcription factor), IRF4 (Interferon regulatory factor 4), and
A B

C

FIGURE 1

Comprehensive analysis of differentially expressed genes in liver tissue between MAFLD patients and controls. (A) Pearson’s correlation heat map of 331
differentially expressed genes. The darker blue color indicated a lower correlation and greater variability between the two individuals. (B) Bar graph of the
top 20 enriched biological processes and pathways related to MAFLD. (C) The four significant MCODE components from the PPI network. The dots
represented proteins, and the lines between the dots represented interactions between proteins.
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MAFF (MAF bZIP transcription factor F) were identified, which

have been demonstrated to regulate lipid metabolism (30–32). A

total of 13 transcription factors were screened from the 331

differentially expressed genes (Table S5) and differences in the

expression of these transcription factors were shown in the

cluster analysis heat map (Figure 2A).

IRX3, one of these 13 transcription factors, has been

demonstrated to play an important role in the occurrence and

development of obesity by participating in the fat mass and

obesity associated (FTO) obesity variant mechanism (33–35)

(Figure 2B). However, the role of IRX3 in hepatic lipid

metabolism has not been reported. Immunohistochemical

staining showed that the expression of IRX3 was decreased in

the liver tissue of MAFLD patients compared with controls

(Figures 3A, B). The RNA-seq results for the liver tissue samples

also confirmed the lower expression of IRX3 in MAFLD

(Figure 3C, p<0.01). These results suggested that IRX3 might

be involved in the pathogenesis of MAFLD.
IRX3 was highly correlated with the
clinical characteristics of lipid
metabolism of MAFLD

We also analyzed the correlation between the expression

level of IRX3 and the clinical characteristics of lipid metabolism.

Pearson’s correlation analysis showed that the expression level of

IRX3 in liver tissue was negatively correlated with serum

concentrations of TC (r=-0.648, p=0.009), TG (r=-0.628,

p=0.012), LDL-C (r=-0.803, p=0.000) and UA (r=-0.664,

p=0.007) (Figures 4A–D). These results suggested that hepatic

IRX3 might be closely related to the lipid metabolism of

MAFLD patients.
Frontiers in Endocrinology 05
IRX3 regulated hepatocyte LD
accumulation in vitro

We overexpressed IRX3 by plasmid transfection in the

HepG2 cell line. The oleic acid (OA) and palmitic acid (PA)-

induced lipid droplet accumulation was significantly decreased

in IRX3-Flag–positive HepG2 cells (Figures 5A, B). The same

phenomenon was found in the L02 hepatic cell line (Figures S1A,

B). Conversely, when it was downregulated, LD accumulation

was increased in the HepG2 cells (Figures 5C, D). These results

showed that IRX3 regulated hepatic lipid metabolism in vitro.
IRX3 was related to the expression of
mitochondrial thermogenic genes

Previous studies have shown that IRX3 affected lipid

metabolism by regulating mitochondrial function in adipocytes

(36). By screening the RNA-seq results, we found that

mitochondrial thermogenesis-related gene expression was

decreased in the liver tissue of MAFLD patients (Figure 6A).

Pearson’s correlation analysis showed that the expression of

IRX3 in liver tissues was positively correlated with that of IRF4

(Figure 6B, r=0.514, p=0.042), while there was no relationship

between the expression of IRX3 and ADRB2 (Adrenoceptor beta

2) (Figure 6C r=0.298, p=0.261).
Inhibition of IRX3 expression induced
mitochondrial dysfunction

We changed the expression of IRX3 in the HepG2 cell line

through RNAi or overexpression, TOM20 was used to stain the
A B

FIGURE 2

The transcription factors were screened from differentially expressed genes. (A) Heatmap of transcription factors from all samples, the darker of
orange color indicated the higher the gene expression. (B) Action view of genes related to the FTO obesity variant mechanism pathway. The
colors corresponded to interactions according to the legend (bottom right).
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mitochondria, and overexpression of IRX3 did not cause a

significant change in mitochondrial morphology (Figure S2A,

B). However, inhibition of IRX3 expression significantly

increased mitochondrial fragmentation (Figures 7A, B). Then,

we studied the activity of mitochondrial complexes and observed

that the activity of mitochondrial complex IV was decreased

after inhibition of IRX3 expression (Figure 7C, p<0.01). The

effect of IRX3 on mitochondria might be an important

mechanism by which IRX3 regulated hepatic lipid metabolism

of MAFLD.
Frontiers in Endocrinology 06
Discussion

Our study demonstrated that IRX3 played an important role

in regulating hepatic lipid metabolism in MAFLD. The

expression of IRX3 was decreased in liver tissues of patients

with MAFLD, and the overexpression of IRX3 reduced the LD

accumulation in L02 and HepG2 cells. Mechanistically,

inhibition of IRX3 led to the increased mitochondrial

fragmentation and decreased mitochondrial complex IV

activity in HepG2 cells.
A

B C

FIGURE 3

The expression of IRX3 was decreased in the liver tissue of MAFLD patients. (A) Hemotoxylin and eosin (H&E) staining and immunohistochemistry assay
for IRX3 expression in liver tissues of MAFLD patients and controls. (B) Statistical results of the relative expression of IRX3 in liver tissue samples by
immunohistochemical staining (n=7, 2–3 slides/patient, ***p<0.001). (C) The mRNA expression levels of IRX3 in liver tissue samples (**p<0.01).
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A B

DC

FIGURE 4

Pearson’s correlation analysis between IRX3 expression levels and clinical characteristics of lipid metabolism. (A–D) Correlation analysis between IRX3
expression and serum TG, TC, LDL-C and UA levels. TC, total cholesterol; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; UA, uric acid.
A B

DC

FIGURE 5

The effect of IRX3 on lipid droplet accumulation in vitro. (A) HepG2 cells were transfected with the IRX3-Flag (OE IRX3, Red) and vector plasmid (NC).
IRX3-Flag-positive cells were marked by white dashed boxes. (B) The number of lipid droplets per cell shown in A was quantified. (C) HepG2 cells were
transfected with IRX3 siRNA and control siRNA. (D) Quantification of the number of lipid droplets per cell in (C) BODIPY staining for lipid droplets
(Green). DAPI staining for cell nuclei (blue). Bar=10 µm (**p <0.01, ***p <0.001).
Frontiers in Endocrinology frontiersin.org07

https://doi.org/10.3389/fendo.2022.895593
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ma et al. 10.3389/fendo.2022.895593
Transcriptome- and genome-wide association analyses and

epigenetic studies are widely used to reveal the molecular

pathological mechanisms of MAFLD. A large number of

valuable genes of lipid metabolism have been shown to

regulate by several important transcription factors, such as

PPARs , FXR , C/EBPs , SREBPs and Zfp423 (37). The

transcription factors associated with the MAFLD, including

FXR agonists and PPAR-a/d agonists, have been studied in

late-stage clinical trials to treat NASH (38–40).

In the present study, transcriptome analysis was performed

on liver tissues from patients with MAFLD. We found the

abnormal expression gene enrichment in pathways related to

lipid metabolisms, such as fatty acid metabolic process,

monocarboxylic acid metabolic process and pyruvate

biosynthetic process. More importantly, it contained the key

PPAR-a signaling pathway of MAFLD (Figure 1B and Table S3).

These findings suggested that the RNA-Seq data were credible

and accurate despite small sample sizes. Previous studies have

shown that transcription factors were involved in lipid

metabolism, autophagy, endoplasmic reticulum stress,

inflammatory response, apoptosis and other biological

processes. Transcription factors have also been shown to paly

an important role in the occurrence and development of

metabolic diseases such as obesity, dyslipidemia, Type 2

diabetes and MAFLD (41, 42). Some of the transcription

factors (MYC, IRF4, and MAFF), which were found in

differentially expressed gene profiles of the study, were shown

to regulate lipid metabolism (30–32). However, little is known

about the role of IRX3 in hepatic lipid metabolism. The present
Frontiers in Endocrinology 08
study focused on how IRX3 played an important role in the

pathogenesis of MAFLD by regulating hepatic lipid metabolism.

The IRX3 gene is a member of the Iroquois homeobox gene

family (43). IRX3 was shown to play an important roles in

pancreatic islets regulating the ratio of a and b cells and the

expression of ghrelin associated with calorie intake and body

composition (33, 44). The association of IRX3 variants with

obesity has been demonstrated. Genetic analysis results

indicated that IRX3 polymorphisms of rs1126960 and

rs3751723 were related to obesity (45). It was also observed

that there was a relationship between IRX3, newborn birth

weight and BMI. Genotypes rs8053360 CC and rs1126960 GG

were related to body weight and BMI, particularly among female

individuals (46), and the polymorphism rs3751723 in IRX3 has

been associated with obesity (47). In the present study,

immunohistochemical staining and RNA-seq results from liver

tissue showed that the expression of IRX3 was decreased in

MAFLD patients. Consistent with the latest clinical practice

guidelines of the Asian Pacific Association for the Study of the

Liver (APASL) on MAFLD, which have stated that MAFLD was

closely associated with BMI, TC, TG, and LDL-C (48). The

expression level of IRX3 in liver tissue was negatively correlated

with serum levels of TC, TG, LDL-C and UA in the study.

However, further studies with larger sample sizes are needed to

elucidate the correlation between the expression level of IRX3

and clinical predictors of histopathological severity of MAFLD.

Previous studies have shown that IRX3 gene expression was

controlled by long-range enhancers from the intronic regions of

the FTO gene (19). FTO overexpression damaged hepatocellular
A B

C

FIGURE 6

The relationship between IRX3 and genes related to mitochondrial thermogenesis. (A) The mRNA expression levels of thermogenesis-related
genes in liver tissues of MAFLD patients and controls (**p <0.01, ***p <0.001). (B) Correlation analysis between the expression levels of IRX3 and
IRF4. (C) Correlation analysis between the expression levels of IRX3 and ADRB2.
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mitochondria and inhibited the decomposition of lipids,

resulting in lipid accumulation in the liver (49). Chromatin

immunoprecipitation sequencing results demonstrated that

IRX3 and IRX5, a homologous gene of IRX3, regulated

mitochondrial gene clusters in early differentiating mouse

primary pre-adipocytes from both visceral and subcutaneous

white adipocyte depots (50, 51). Mitochondria are known to play

a crucial role in lipid metabolism in cells (52–54). In the present

study, we found that mitochondrial thermogenesis-related gene

expression was decreased in the liver tissue of MAFLD patients,

and the expression of IRX3 in liver tissues was positively

correlated with that of IRF4. The decreased expression of IRF4

has been shown to inhibit mitochondrial function and reduce

thermogenesis (55, 56). We inhibited the expression of IRX3 by

RNAi led to the increased mitochondrial fragmentation and

decreased mitochondrial complex IV activity in HepG2 cells.

Mitochondrial complex IV, as an important part of the

mitochondrial oxidative respiratory chain, is the regulatory

center of mitochondrial oxidative phosphorylation (57). The
Frontiers in Endocrinology 09
increased activity of mitochondrial complex IV promoted

mitochondrial oxygen consumption rate and accelerated cell

energy metabolism (58). Studies have shown that a specific

decrease in mitochondrial complex IV activity led to a

decrease in cellular fatty acid oxidation and lipid accumulation

in adipocytes (59). These results suggested that the regulation of

lipid metabolism by IRX3 might be associated with the

transcriptional regulation of mitochondrial-related gene

expression. Studies on the effects of other target genes

regulated by IRX3 on fatty acid metabolism will contribute to

the understanding of the role of IRX3 in MAFLD.
Conclusions

This study explored the regulatory factors associated with

MAFLD at the genome level by RNA-seq. More importantly,

this study demonstrated that IRX3 regulated hepatic lipid

metabolism, and also revealed the effect of IRX3 on
A

B

C

FIGURE 7

The effects of IRX3 on mitochondrial function. (A) HepG2 cells were transfected with IRX3 siRNA and control siRNA, mitochondria were stained
red by TOM20. Bar=5µm. (B) Quantification of the number of cells with fragmented mitochondria. (C) The activity of the mitochondrial
complexes was detected in cells transfected with IRX3 siRNA or control. Citrate synthase was used as a mitochondrial control. **p< 0.01.
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mitochondria might be an important mechanism by which IRX3

regulated hepatic lipid metabolism of MAFLD. IRX3 might be a

new therapeutic target for MAFLD.
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SUPPLEMENTARY FIGURE 1

The effect of IRX3 on lipid droplet accumulation in the L02 cell line. (A)
L02 cells were transfected with the IRX3-Flag (OE IRX3, Red) and vector

plasmid (NC). (B) Quantification of the number of lipid droplets per cell

(***p <0.001).

SUPPLEMENTARY FIGURE 2

The effects of IRX3 on mitochondrial morphology. (A) HepG2 cells were

transfected with the IRX3-Flag (OE IRX3, white) and vector plasmid (NC),
and mitochondria were stained red by TOM20. IRX3-Flag-positive cells

were marked by white dashed boxes. Bar=10µm. (B)Quantification of the

number of cells with fragmented mitochondria (p>0.05).
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