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Abstract

Diverse environmental and biological systems interact to influence individual differences in response to environmental stress.

Understanding the nature of these complex relationships can enhance the development of methods to (1) identify risk,

(2) classify individuals as healthy or ill, (3) understand mechanisms of change, and (4) develop effective treatments.

The Research Domain Criteria initiative provides a theoretical framework to understand health and illness as the product

of multiple interrelated systems but does not provide a framework to characterize or statistically evaluate such complex

relationships. Characterizing and statistically evaluating models that integrate multiple levels (e.g. synapses, genes, and envir-

onmental factors) as they relate to outcomes that are free from prior diagnostic benchmarks represent a challenge requiring

new computational tools that are capable to capture complex relationships and identify clinically relevant populations. In the

current review, we will summarize machine learning methods that can achieve these goals.
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Introduction

The Research Domain Criteria (RDoC) conceptualizes
mental health and mental illness as the result of multiple
overlapping and interdependent dimensions.1,2 This
framework provides significant opportunity for advances
in research into stress psychopathology and stress resili-
ence as the etiology of such responses are, by definition,
due to interactions between diverse internal and external
factors. Empirically, biological systems that relate to
stress pathology such as HPA axis regulation,3,4

immune functioning,5,6 the renin–angiotensin system,7

the sympathetic–adrenal–medullary system,8 and circa-
dian rhythms9,10 are known to have multiple overlapping
components spanning from genes to neurocircuits.11

Further, these systems affect each other in complex,
often multidirectional, ways across the central and per-
ipheral nervous systems both in response to prior and
current stress, daily demands, and internal rhythms.11–19

Integrating information across these dimensions to make

clinical decisions about an individual patient represents a
significant challenge that may be necessary to overcome
to advance therapeutics.

The RDoC initiative not only encourages a reconcep-
tualization of the factors that impact health and psy-
chopathology but also encourages a rethinking of
the primary outcomes under study with explicit direction
to move away from diagnostic classification.1,2 Stress
can produce temporary or even permanent alterations
in cognition,20 memory,21 arousal,22 sleep,9,10 mood,23
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motor activity,24 and approach/avoidance behaviors.25

Examining such behaviors as the primary outcome
makes sense as psychiatric diagnoses aggregate diverse
presentations resulting in diagnoses that can encompass
vast clinical presentations making them too heteroge-
neous to be useful as research tools.26

Characterizing health and pathology and uncovering
mechanisms underlying these outcomes without the trad-
itional mile markers of psychiatric diagnosis presents
with a significant conceptual and computational chal-
lenge. The limited guidance that has been given as
part of the RDoC initiative regarding computational
methods is that ‘‘Most important, this framework needs
to integrate many different levels of data to develop a new
approach to classification based on pathophysiology and
linked more precisely to interventions for a given individ-
ual.’’2 Machine learning (ML) approaches are designed to
achieve these goals.

ML methods can be cast into three general categories:
(1) Unsupervised methods, which describe a class of algo-
rithms that find relationships between variables without
reference to a specific outcome. Unsupervised learning
models provide information about how variables cluster
together or relate to each other without an explicit
outcome of interest. (2) Supervised models are designed
to predict or classify an outcome of interest such as
the presence or absence of a mental disorder. (3)
Reinforcement learning (RL) examines how actions in
one’s environment (such as treatment) alter behavioral
states. These methods provide a powerful set of tools to
examine mechanisms, predict risk, and develop treatment
based on complex sources of information. In this review,
we will focus on computational methods and examples
from stress pathology research that attempt to achieve
these goals. The goal of this review is to provide a
broad overview of ML concepts and their relevance to
stress pathology research in the RDoC era.

What Is Machine Learning?

ML refers to a large class of algorithms that attempt to
learn patterns from data to improve performance and
make predictions.27 Such algorithms recursively search
for relationships in data by applying a set of logical
rules and mathematical tools. Because such algorithms
are powerful tools for identifying relationships between
variables, ML methods are prone to overfitting or fitting
a model that is specific to the data at hand but is not
generalizable. For this reason, ML algorithms also inte-
grate safeguards against overfitting.

There are many different algorithms that are designed
to achieve the same general goals (i.e. supervised,
unsupervised, and RL). No single algorithm works best
in all contexts. Often data scientists will compare results
from a number of different algorithms or select one based

on specific needs. For example, ML approaches vary in
their interpretability. In many nonscientific contexts, data
analysts may be less concerned with interpretation com-
pared to model building. A stockbroker attempting to
predict if the Dow Jones will increase in the next quarter
may fit a model to make a decision about the likely course
of the market without much interest in the nature of the
underlying relationships that lead the Dow to increase or
decrease. However, an economist investigating the same
question may be much more interested in underlying the
factors that lead to the outcome. Methods such as sup-
port vector machines (introduced below) are powerful
methods for predictive modeling but are known as a
‘‘black box’’ because the nature of the underlying rela-
tionships is not accessible. Conversely, methods such as
graph models (also introduced below) are highly inter-
pretable but their stability and accuracy for decision-
making can be limited. As such, when choosing a model-
ing approach, data scientists often weigh their goals in
terms of the need to interpret and the need to build a
stable model.

A general strength of ML methods is their ability to
integrate larger sets of variables and capture complex
dependencies between variables. ML methods can
model dependencies between variables using Boolean
logic (AND, OR, NOT), absolute conditionality (IF,
THEN, ELSE), and conditional probabilities (probability
of X given Y). Such an approach allows models to cap-
ture multiple dependent relationships and, as such, have
increased relevance to real-world scenarios where mul-
tiple factors are in play. In the context of stress pathology
such as posttraumatic stress disorder (PTSD), for exam-
ple, multiple risk factors have been identified but none
robustly predict risk alone.29 This may indicate that mul-
tiple factors work together and/or risk factors vary
between individuals.

Female gender is a case in point as it has consist-
ently been replicated as a risk factor for PTSD but only
accounts for a small percentage of variance and is
only relevant to some who develop the disorder.30

Recent findings in endocrinology, genetics, and epigen-
etics help to explain why female gender increases risk as
the role of estrogen signaling in HPA axis regulation has
come into focus,31–34 indicating that risk associated with
female gender may be nested in underlying biological
functions related to estrogen signaling. Indeed, women
have been shown to vary in their risk for PTSD depend-
ing on when in their cycle they experience a traumatic
event.35 Finally, the different causes of stress-related
pathology may not be reducible to biological explan-
ations alone. Early environment has been shown to
permanently alter HPA axis functioning.36 Like many
biological systems, these dependencies are fundamentally
nonlinear,37 creating a need to characterize complex non-
linear relationships. ML methods can be utilized to
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build models based on such complex environmental and
biological dependencies to make predictions about risk in
future cases.

Bayesian Estimation

The backbone of traditional statistical theory and asso-
ciated statistical tests is the goal of null hypothesis testing
which tests P(DjH0) meaning the probability of the data
given the assumption that the null hypothesis is true or
that the assumption is that there are no relationships
between the variables in the model.38 Null hypothesis
testing is embedded in statistical theory as a safeguard
against a priori assumptions about the nature of popula-
tions under study or their relationships to covariates.39

However, a consequence of this level of rigor is that
researchers cannot use prior research to make estimates.

While this may seem like an esoteric statistical issue, it
has real-life consequences for a researcher’s ability to
develop methods for mechanism identification, predic-
tion, and individualized treatment.40 In the context of a
treatment study, for example, the null hypothesis is that
the treatment has no effect greater than chance. This
rigorous assumption is useful when examining a novel
treatment. But when a treatment has demonstrated a con-
sistent but moderate effect, such as exposure therapy for
phobias and PTSD, researchers may turn their attention
from the question of if exposure therapy has an effect
to research aimed at determining for whom does the
treatment have an effect. The latter research question is
outside of the realm of null hypothesis testing because
such models make assumptions based on previous data
that the treatment is effective in some cases and that suc-
cess is dependent on some factors. To make a decision
about the probability of successful treatment given, some
individual characteristics require assumptions about
future events given past information. Such questions
can be mathematically formulated using Bayes theorem.

Bayes’ theorem states that PðA Bj Þ ¼ PðB Aj ÞPðAÞ
PðBÞ . This

simple formula provides a method to estimate the poster-
ior probability of one occurrence given another. For
example, prior research has demonstrated that the
BDNF val66/met polymorphism is associated with recov-
ery in exposure therapy.41 These findings can be trans-
lated using Bayes theorem to calculate the probability of
recovery given that the patient is a Val66/met carrier as

PðRecovery Val66=met
�
� Þ

¼
PðVal66=met Recovery

�
� ÞPðRecoveryÞ

PðVol66=metÞ

An additional benefit of Bayesian estimation is that it
greatly simplifies estimation, allowing for the integration
of more variables with fewer subjects.42 To illustrate this,

imagine that you sit down to watch TV when you realize
you have lost the remote. A null hypothesis test would
use frequentist methods such as maximum likelihood esti-
mation43 that make no assumptions about where the
remote control might be. Following this school of
thought, you would sample, or look any physical space,
that the remote could fit in. This rigorous approach
would assume an equal probability that the remote con-
trol is in the oven or under the bed as it is to be jammed in
the sofa cushion. Acting as a Bayesian, you would use
prior knowledge to estimate a distribution related to the
probability of the remote’s position. You may start in the
three places the remote is most often and then radiate out
to less probabilistic locations (e.g. the oven). This con-
ception translated to research allows for much less sam-
pling and computational effort to test the same
hypotheses. Further, it allows for increased model com-
plexity because researchers can state and test complex
dependencies. For example, the distribution of locations
of the remote control may change depending on who was
last watching TV, and as such, you may make a different
estimate that is informed by the probabilistic location
given a particular individual.

Returning to exposure therapy, it is unlikely that the
BDNF val66/met polymorphism alone will predict treat-
ment success with high enough accuracy to make a treat-
ment decision. However, researchers may improve
prediction by integrating other relevant predictors that
relate to the probability of treatment success. These pre-
dictors may be independent meaning that the probabilistic
information they provide is independent of the genetic
effect. Predictors can also be dependent in a manner
that together provides as more accurate picture of the
genetic risk. For example, the BDNF val66/met poly-
morphism is likely to affect the probability of recovery
in exposure therapy because of its effect on BDNF pro-
tein synthesis, a growth factor involved in neurogenesis
that affects learning and memory. The probabilistic esti-
mate of recovery therefore may be enhanced by estimat-
ing the probability given the presence of val66/met,
increases synthesis of BDNF, and increases in neurogen-
esis in relevant brain regions. Bayesian estimation pro-
vides a framework to build models based on prior
experience (e.g. data) to make predictions about future
cases.

Unsupervised Learning

Unsupervised learning refers to a class of algorithms that
attempt to draw inferences about the relationship
between variables in the absence of an outcome of inter-
est.28,44 For example, a researcher may want to determine
physiological channels that cluster together in response to
a stressor or regions of the brain that are coactivated to
characterize brain circuits. Researchers may also want
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to define populations based on such clusters45 rather than
relying on a priori definitions such as diagnostic status.
This is of particular relevance in the RDoC era which
does not rely on traditional psychiatric classification
methods to define health and illness.
Finally, unsupervised methods are also of value for
data reduction.46 Data reduction methods allow data sci-
entists to filter down from a very large set of variables.
Such an approach is useful when working, for example,
with genetic and epigenetic data where the variable count
can be in the millions.47

Feature Selection and Feature Extraction. One common use
of unsupervised learning method for data reduction
is to reduce the dimensionality of a set of variables (or
features) by removing redundant or irrelevant variables48

or by combining variables into composite values.49

Commonly in social and biological sciences, researchers
are confronted with situations where a large number of
variables may be of theoretical interest, but empirically,
they are largely overlapping in the information that
they provide. For example, cortisol and corticotropin-
releasing hormone (CRH) are causally related to each
other as CRH stimulates the production of cortisol.50

However, they may correlate to such a high degree that
the information they provide is largely overlapping, or
redundant. A researcher may want to down-select to
reduce the number of variables in the model to guard
against overfitting due to the curse of dimensionality
whereby models become increasingly accurate in differen-
tiating populations as the number of variables in the
model increases.51 Similarly, these two markers (CRH
and cortisol) may cluster together while an additional
marker, such as glucose, may not make glucose irrelevant
as it is unrelated to the larger cluster of variables.
Similarly, the researcher may want to down-select irrele-
vant variables to reduce dimensionality and ultimately
reduce the changes of overfitting the model.

Feature selection is distinguished from another com-
monly used unsupervised method, feature extraction.52

In this context, new, more stable, variables are created
by combining variables or extracting the shared variance
between variables. Returning to the example of physio-
logical data measured in response to stress, a researcher
may want to derive a single variable that represents the
relationship between physiological measures. This can
reduce the number of variables in a model and can also
add stability in measurement. In this instance, researchers
may use methods such as principle components analysis
(PCA),49 which captures the shared variance between
multiple variables which can ultimately be utilized as a
variable in future analyses.

We provide a simple, illustrative example whereby a
researcher wants to determine crime in his research sub-
ject’s neighborhood to use as a proxy measure for stress

and danger in the subject’s environment. To achieve this,
the researcher downloads crime statistics based on sub-
ject’s zip code, yielding multiple crime statistics including
petty larceny, murder, rape, misdemeanor sex crimes
among many others. This set is too large to analyze on
its own, and further, any particular variable may not be
very informative. As Figure 1 demonstrates, PCA can
reduce dimensionality significantly to extract high vari-
ance components. In this case, two components were
extracted that approximate violent crimes (i.e. assault,
robbery, shootings, rape, and murder) and nonviolent
crimes (i.e. misdemeanor sexual assault, loitering, and
grand larceny). By reducing dimensionality in this way,
researchers can then study a smaller set of variables that
relate to broader constructs.

Population Clustering. Increasingly, researchers are inter-
ested in identifying populations empirically rather than
relying on a priori definitions. To achieve this, researchers
often attempt to identify individuals who cluster together
into clinically relevant populations. By identifying such
populations, researchers can then test hypotheses about
them. This approach is particularly relevant in the RDoC
era where researchers are discouraged from using diag-
noses to define populations.

There are many methods to cluster populations.
One commonly utilized approach is to identify latent or
not directly observable populations by identifying

Figure 1. Principle components analysis (PCA) of census crime

statistics. The figure demonstrates a PCA of census data. Crime

statistics demonstrated to primary principle components or sets of

shared variance. Component 1, which primarily comprised variance

from violent crimes, accounted for approximately 66.9% of the total

variance while Component 2, which primarily comprised variance

from nonviolent crimes, accounted for 21.5% of the total variance.
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underlying mixture distributions (i.e. mixture model-
ing).53 For example, Figure 2 demonstrates a bimodal
observed distribution with two underlying latent normal
distributions. This is refered to as a mixture distribution.45

Returning to the example of measurements of physio-
logical arousal in response to a stressor, these distribu-
tions may capture low-arousal and high-arousal
individuals. These populations may be of clinical

relevence and can now be examined as an outcome in
lew of diagnoses.

The general prinicple of mixture modeling can be
extended to longidinal data to examine change over
time. This approach is relevent when researchers
hypothesize that populations are differentiated not only
by their level of severity but also change. Returing to
the example of physiological stress response data,
researchers may be interested to know if there are distinct
populations based on the ability to habituate to loud
tones or to aquire and extinguish associations between
conditioned and unconditioned stimuli as these both
are models that are hypothesized to underly diverse
stress pathologies.

Latent growth mixture modeling (LGMM) is one such
approach that is commonly used in stress pathology
research.54 This approach utilizes repeated measures to
estimate a set of latent variables that indicate general
levels on a particular variable (intercept parameter) and
change across measurement occations (e.g. slope and
quadratic parameters). From these variables, LGMM
attempts to identify a second-order latent variable
(class) which defines populations based on their similari-
ties in the intercept, slope, and quadratic parameters.
Figure 3 provides an example of trajectories derived
based on eyeblink startle in response to threat (fear)
acquisition and extinction training.55 In this example,
by first identifying distinct trajectories in acquisition
and extinction learning, researchers were able to deter-
mine the relationship between individual’s trajectory
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Figure 3. Three class latent growth mixture modeling (LGMM) of fear conditioning and extinction learning. Binned observations of

eyeblink startle response are examined in response to a blue square paired with an air blast to the larynx (acquisition) and in response to

the blue square without the air blast (extinction). LGMM was utilized to test for the number of classes and their parameters of change (e.g.

slope and quadratic parameters). Results demonstrate that individuals follow three distinct trajectories of acquisition and extinction

learning. By identifying trajectories, researchers can further examine hypotheses about the identified populations. These trajectories were

shown to be associated with genetic variance and hyperarousal PTSD symptomatology.

Figure 2. Example of a two-mixture distribution. In this example,

two latent (unobserved) distributions that are overlapping (mixture

distributions) and that are both Gaussian normal (red and green)

are identified underlying an observed nonnormal distribution

(grey).
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during extinction learning and risk genes as well as clin-
ical presentation.

Graphical Models. A limitation of models that include com-
plex dependencies across a large number of variables is
that they are hard to interpret. Graphical models provide
a framework to represent high-dimensional relationships
in two-dimensional space to aid in interpretation and, in
some instances, facilitate hypothesis testing.56 While the
mathematical basis of such models may vary (most com-
monly between Bayesian networks and Markov random
fields), effecting the number of variables that can be
examined together as well as computational time,57 the
underlying concepts are very similar. Researchers can
derive the structure of multiple interrelated variables by
algorithmically testing conditional dependencies between
all variables in the model. For example, the set of
variables (a, b, c, d) may all demonstrate a univariate
relationship with x. By testing the relationship between
a while conditioning on b, c, d and doing the same for b,
then c, then d, the algorithm can determine which
variable is directly connected to x (Figure 4(a)). By run-
ning over all variables, the algorithm can identify those
variables that relate to x through other variables. By
repeating this procedure, a large network of variables
representing complex dependencies can be derived.58

While this is one example of how graphical models are
derived algorthmically, it captures the general principles.
Such models are increasingly utilized in stress pathology
research to understand how multiple relevent dimensions

relate to each other. A number of recent publications,
for example, have examined how symptoms of pathology,
including complicated grief,59,60 comorbid depression
and obsessive compulsive symptoms,61 and PTSD62

relate causally.
After graphical models are identified, they can be uti-

lized for other purposes beyound simple description.
First, graphical models can be used for feature selection
as the set of variables that is directly connected to a
variable of interest theoretically contains most of the pro-
babalistic information about that variable.63 The set of
directly connected variables can then be selected, and all
other variables can be treated as redundant or irrelevent.
Further, by modeling the structure between variables in a
graph, researchers can conduct data experiments where
they set the value of a particular variable to determine the
downstream effects on other variables of interest.64

For example, a researcher who has derived a graphical
model of a gene expression network may want to know if
he altered the value of a particular target with a drug,
would it alter the downstream expression patterns.
The research could derive preliminary evidence by setting
the value of that target to determine how it changes vari-
ables that are downstream of the target to develop
hypotheses about the effect of the drug before collecting
experimental data.

As an example, McNally et al.65 utilized Bayesian net-
work models to determine how symptoms of PTSD inter-
relate among victims of childhood sexual abuse.
By deriving a network of relationships (see Figure 4(b);

A B

C D X

Figure 4. Example of a graphical model. (a) The figure demonstrates a toy example whereby x is only directly connected to D. This

indicates that x is independent of all other variables given D. Similarly, D is independent of A and B given C. However, A, B, and C may effect

X through D. While this is one example of how granical models are derived algorthmically, it captures the general principles. If the example

we provided was real data, the researcher may use the graph to derive hypotheses about how mechanisms relate or how best to treat a

disorder. (b) The figure demonstrates an example with real data of the interrelationship between PTSD symtpoms among adult survivors of

childhood sexual abuse. The thickness of lines represents the strength of the relationship while the color represents positive (green) and

negative (red) relationships.
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published with permission from the authors), the authors
demonstrate that symptoms of PTSD influence each
other rather than simply clustering together. The authors
demonstrate that specific symptoms play a more centra-
lized role in the development and maintenance of the
symptom constellation as a whole. This analysis provides
simple descriptive information about how a large set of
variables effect each other. Such analyses provide useful
information as a clinician may consider interventions that
address specific symptoms that are of central importance
to alter the network of symptoms overall.

Supervised Learning

Imagine a scenario where a mental health researcher
wants to determine what information (genetics and
epigenetics, peripheral neuroendocrinology, clinical self-
report, etc.) most accurately differentiates cases from con-
trol subjects. In many instances, the researcher may have
evidence from the literature that these elements are
related to the clinical outcome of interest but do not
have an a priori hypothesis regarding which variables
are important for such classification or how they interact
to effect risk. Such a task is increasing in relevance as
researchers attempt to build predictive or classification
models for mental disorders.

Supervised ML is a class of data modeling methods
that is concerned with the development of algorithms
that can learn a function from data that optimally pre-
dicts a specified outcome.27,28 Just like traditional statis-
tics, supervised models fall into two classes, classification
models that attempt to predict a categorical outcome and
regression models that attempt to predict a continuous
outcome.

The goal of supervised ML methods is to build an
accurate classification or regression model that can be
used to make decisions about patients in the future (i.e.
beyond the data at hand). Supervised models typically
attempt to learn a function using the available variables
that fits a set of cases where the label (traditionally what
is thought of as the dependent variable) is known,
referred to as the training set. The process of fitting
the model, or testing different parameters and sets of vari-
ables, is much more liberal compared to traditional stat-
istical approaches. Subsequently, this function is tested
on cases where the label is hidden from the researcher
to test the accuracy of the model, known as the testing
set. If the function works roughly equivalently in the
training and testing sets, then the model is thought to
be well fit and the derived function may be trustworthy
to make decisions about new cases. If the model fits sig-
nificantly better in the training set, the model is thought
to be overfit meaning that the function that was built was
so specifically fits the training set that it has no general-
izability and will not be likely to make accurate decisions

in future cases. The process of training in a random
subset of the data and then testing in another random
subset is known as cross-validation.

In this section, we will discuss key benefits and limita-
tions of supervised ML classification methods in the con-
text of mental health research. While there are many
algorithms that have been developed for such purposes,
we will discuss three methods, Random Forests,66 Support
Vector Machines (SVM),67 and Regularized Regression as
key examples because of their popularity and accessibility
in many software packages.

Generality of Supervised ML Algorithms

Although distinct algorithms utilize different approaches,
generally supervised ML algorithms have the same goal.
Given a set of training examples N[(x1,y1), . . . , (xN,yN)]
where xi is a vector of variables for the ith case and yi is
its class label (i.e. case or control), the learning algo-
rithm’s goal is to identify a function g: X->Y in which
X is the input space and Y is the output space. This func-
tion (g) is one element of a space of possible functions G,
commonly known as the hypothesis space.

Classification Algorithms

Random Forests. Random forests66 are known as an
ensemble learning classification method. In this
approach, a multitude of decision trees are constructed
during the training phase and then outputs the model
class across individual decision trees. To better under-
stand, we must define a decision tree. Decision trees are
a predictive modeling approach. The term ‘‘tree’’ comes
from the use of class labels (such as case and control)
as leaves where the branches represent conjunctions of
features that lead to the class labels. Classification trees
are those where the goal of the analysis is to predict a
discrete outcome such as depression caseness (present vs.
absent), while regression trees are those where the out-
come is a real number such as a depression score. This set
of methods is often referred to as Classification and
Regression Tree analysis. Decision trees operate by itera-
tively identifying variables that either account for the
most variance in the outcome (in the case of continuous
scores) or highest probability of differentiating categories
(in the case of categorical outcomes). Figure 5 demon-
strates a decision tree predicting PTSD symptoms based
on multiple clinical, demographic, and environmental
measures. As this example illustrates, decision trees pro-
vide useful information about cut scores for risk and risk
based on multiple characteristics.

A significant limitation is that such methods can lead
to overfitting, especially when the trees are ‘‘tall’’ where
there are multiple extending branches. One way to pre-
vent this is through the use of ensemble methods by
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repeatedly resampling from the data to build many trees
(a forest) and then ‘‘vote,’’ or identify model branches
across trees. A commonly utilized ensemble method is
bootstrap aggregation (Bagging)68 in which the algorithm
repeatedly selects random samples with replacement from
the training set to fit trees and then averages predictions
across all trees. This tends to reduce overfitting because
each individual tree may be highly sensitive to noise in
the training set while the model average across many
trees is not, but only under the condition that individual
trees are not highly correlated. Random forests extend
this method by selecting random subsets of features to
grow trees, often referred to as ‘‘feature bagging.’’ The
purpose of this addition is to reduce correlations between
trees.

Support Vector Machines. SVM classification algorithms
attempt to build a classifier in multidimensional space
(across many features or variables) that differentiates
classes of individuals (e.g. cases vs. controls).69 SVMs
achieve this by identifying a linear decision surface (e.g.
a line in two-dimensional space) that separates classes
with the largest distance (also called largest gap or
margin) between objects that are at the borderline.
While an infinite number of lines (or decision surfaces)
can separate two classes, only one decision surface (sup-
port vector) exists that separates classes with the largest
gap between borderline objects (see Figure 6). In this
example, the support vector consists of two objects, one
case and two controls (signified by yellow centers),

together defining the line with the largest gap separating
the two populations.

There are many instances where there is no way to
linearly separate objects belonging to two classes. When
no linear decision surface can be identified, SVMs ‘‘map’’
the data into higher dimensional space, termed feature
space, where a separating linear decision surface can be
identified. This act of mapping to higher dimensional
space to identify a linear surface is known as the kernel
trick.70 The kernel trick extends SVMs beyond linear clas-
sification to nonlinear classification. This framework
makes SVMs particularly useful in contexts where a
data set has hundreds or thousands of dimensions such
as genes or proteins (see Figure 7). SVMs thus construct a

Figure 5. Decision tree example. The figure demonstrates an example of a decision tree predicting PTSD scores one month following

emergency room (ER) admission as predicted by multiple rating scales in the ER (Subjective units of distress (SUDS) rating; Peritraumatic

Dissociative Experiences Questionnaire (PDEQ); Immediate Stress Reactions Checklist (ISRC)), violence and nonviolent crime-based PCA-

derived scores using census data, gender, and age. As the figure demonstrates, the average PTSD score (based on the PTSD Checklist 5

(PCL-5)) across the population is 27.16. Those with elevated PDEQ scores (�32) have elevated PTSD scores (38.2) compared to those

with PDEQ scores below 32 (24.03). Among those with low PDEQ scores, women are at reduced risk (20.75) compared to men (25.45).

However, women exposed to higher levels of community crime have elevated PTSD scores (24.5) compared to those who are exposed to

lower levels (18.5).

Non-Remission
Variable X

Variable Y

Figure 6. Linear decision surface with widest margin. SVMs

attempt to identify a line with the largest gap that separates out

predetermined populations.
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hyperplane (or set of hyperplanes) in high-dimensional
space that can be used for classification (or regression
in the case of Support Vector Regression71 where the
score is a real number).

Regularized Regression. Another commonly utilized set of
methods for both model fitting and feature selection
is regularized regression. In many situations, it is not
appropriate to assume that variables will relate to each
other in a linear fashion as linear regression does.
Regularized regression techniques, such as the least abso-
lute shrinkage and selection operator (LASSO), ridge,
and elastic net regression, are useful in such a context
because they allow the data analyst to select the preferred
level of model complexity from linear to highly nonlinear.
Increasing the complexity of the model can lead to over-
fitting as such models can find odd patterns that are
unique only to the data at hand. As such, regularized
regression models include a regularization term which
imposes a penalty as models increase in complexity,
making model fit harder to achieve as the complexity of
the model increases. The coefficients of variables that are
not relevant to the model are shrunk to decrease their
impact on the model (in the case of some models such
as LASSO and elastic nets, they are shrunk to 0).
This allows analysts to use these models for feature selec-
tion as the most relevant variables will be selected into the
model and irrelevant ones will be discarded. One of the
key benefits of regularized regression is that the models
are highly interpretable because it is evident what vari-
ables are predictive as well as the degree of predictive
accuracy.

Model Building and Validation. Often when building a model,
data scientists will integrate multiple techniques to find
and validate the best solution. Figure 8 provides a sche-
matic of an approach that integrates multiple techniques:

Figure 8(1): Individuals are clustered into one of the three
groups (chronic, recovery, and resilient), using LGMM.
Figure 8(2): A diverse set of variables of different types
such as physiology, labs, and self-report assessments are
prepared for modeling. Figure 8(3): The large set of vari-
ables is entered into an unsupervised feature selection
algorithm (in this case, network models are employed
for feature selection). Figure 8(4): A model is built that
classifies individuals based on the remaining variables
into the three groups (chronic, recovery, and resilient)
based on knowledge of who is a member of each group.
Next, a random subset of the original data that were not
used to build the model is used to test it. Data sources are
compiled (Figure 8(a)) and entered into the model
that was built during the training step (Figure 8(b)).
Figure 8(c): Based on the model, individuals are classified
into groups. Figure 8(d): The accuracy of the model in
correctly selecting individual’s membership in each group
is calculated. In an ideal scenario, this model is then
tested on a truly independent data set. This approach
has been utilized for the prediction of PTSD following
exposure to a potentially traumatic event72–75 and is a
common approach in other areas of medicine.76

Reinforcement Learning

Dopamine (DA) is a neurotransmitter in the brain that
initiates adrenalin during the activation of the stress
response. DA rules motivational forces and psychomotor
speed in the central nervous system. When a person is
experiencing stress, the response system will be turned
on, which will elevate stress hormones such as cortisol
and reduce the level of serotonin and DA. Chronic
stress or oversecretion of stress hormones may lead to
imbalance of DA levels, and dysfunction of DA system
(e.g. ventral tegmental area and nucleus accumbens) can
potentially trigger various mental disorders, such as

Figure 7. Features that are not linearly separable being pulled into high-dimensional feature space. SVMs and other ML methods employ a

technique known at the kernel trick whereby a linear decision surface is identifiable in situations where populations are not linearly

separable by pulling data into higher dimensional space.
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addiction, depression, distress, and anxiety. For instance,
while high levels of DA cause drug ‘‘highs’’ or impulsivity
(e.g. in addiction) and hyperactivity, low levels of DA
may cause sluggishness and hypoactivity.

RL is an area of ML inspired by animal learning,
behavioral psychology,77,78 and dynamic programming
methods.79 In ML, it is also formulated as a Markov
decision process. The RL method is developed to resolve
a temporal credit assignment problem, which provides a
framework for modeling reward/punishment-driven
adaptive behavior80,81 and emotions.82 Specifically, a sub-
ject or agent will learn to optimize a strategy to maximize
the payoff or future reward through trial and error.
The strategy is determined by its own value function
V(s). The temporal difference learning is the most
common model-free RL algorithm,83 which aims to
learn a value function V(s) for the state [s] (the state
can be a finite or infinite set) according to the one-step
ahead prediction error (PE).

V stð Þ  V stð Þþ� rtþ1þ�V stþ1ð Þ�V stð Þ½ �

where rt denotes the reward or reinforcement signal at
time t (which can be positive or negative or zero),
0� g� 1 is a discount factor for the reward, and 0< a< 1
is a learning rate parameter. A positive PE �

[rtþ1þ gV(stþ1) � V(st)] implies that the reward is greater
than expected and therefore increasing the value V(st),

whereas a negative PE leads to a decrease in V(st).
Imagine an approach/avoidance task, the subject may
need to learn a strategy (two actions: approach vs.
avoid) depending on the cued stimulus in order to maxi-
mize the reward or avoid the punishment. In the simplest
case, the value function can be represented as a look-up
table, and each state–action pair is associated a value.
Once the RL is accomplished, the agent will use the
learned value function to guide behavior (i.e. action) in
the environment (see Figure 9).

Chronic
Resilient

Recovery

Predic�ve 
Model

? ? ? Predic�ve 
Accuracy

Chronic= .78
Recovery=.82
Resilient =.85

Training (Model Building) 

1) 2) 3) 4)

A) B) C) D)

Tes�ng (Model Valida�on)

Figure 8. Machine learning classification workflow. The figure provides a schematic for a common approach to supervised ML prediction

or classification. In this example, (1) we have individuals who are known to be part of one of the three populations (chronic, recovery, and

resilient) along with (2) a set of variables of different types such as physiology, labs, and self-report assessments. (3) The large set of

variables is entered into an unsupervised feature selection algorithm (in this case, network models are used for feature selection). (4) A

model is built that classifies individuals based on the remaining variables into the three groups (chronic, recovery, and resilient) based on

knowledge of who is a member of each group. This step is known as the training step, or model building. Next, the model is tested during

the testing step. In this case, a random subset of the original data that was not used to build the model is used. (a) Data sources are

compiled and (b) entered into the model that was built during the training step. (c) Based on the model, individuals are classified into

groups. (d) The accuracy of the model in correctly selecting an individual’s membership in each group is calculated. In an ideal scenario, this

model is then tested on a truly independent data set.

Figure 9. Reinforcement learning schematic. Reinforcement

learning (RL) can be formulated as a Markov decision process of an

agent interacting with the environment in order to maximize the

future reward. At each time step t, given the current state st (and

current reward rt), the agent needs to learn a strategy (i.e. the

‘‘value function’’) that selects the optimal decision or action at. The

action will have an impact on the environment that induces the next

reward signal rtþ1 (which can be positive, negative, or zero) and

also produces the next state stþ1. The RL continues with a trial-

and-error process until it learns an optimal or suboptimal strategy.
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Stress has played an important role in DA-related
pathophysiology. For instance, the relationship between
stress and drug abuse can be modeled by dopaminergic/
corticosteroid interactions.84 In a pioneering RL applica-
tion to psychiatric disorders, addiction has been modeled
as RL gone awry.85 Specifically, the effect of addictive
drug is to produce a positive PE independent of the
change in value function, making it impossible for
the agent to learn a value function that will cancel out
the drug-induced increase in PE. Specifically, the PE is
replaced by

PE ¼ max r skð Þ þ �V skð Þ � V slð Þ þD skð Þ, D skð Þ½ �

where D(sk) indicates a DA surge occurring on entry into
state sk. This modified equation will always produce a
positive PE signal. Therefore, the values of states leading
to a DA surge (D> 0) will approach infinity. While the
DA neurons encode the PE, the addicted person’s brain
will represent a specific ‘‘addicted’’ state sk (e.g. drug, sex,
or casino gambling) with an unusually high value func-
tion V(sk).

More generally, different RL rules or rates can be
adjusted according to either positive/negative reinforce-
ment or positive/negative punishment to reflect the differ-
ence in rule sensitivity.

When confronting with aversive stimuli (stress fac-
tors), the agent can learn to inhibit a value function asso-
ciated with the stress state sk. The PE may be modified as

PE ¼ min r skð Þþ�V skð Þ�V slð ÞþD skð Þ, D skð Þ½ �

where D(sk) indicates a DA reduction occurring on entry
into state sk. In this case, D(sk) can be a small positive
value or even a negative value. In the long term, V(sk) will
converge to a negative value function independent of the
positive or negative reinforcement.

Deep Learning. Deep learning is the application of
multilayer (more than one hidden layer) artificial neural
networks to learn complex representations of high-
dimensional data patterns, such as images, videos,
speech, and language.86 Deep learning may employ vari-
ous network architectures, such as deep belief networks
or recurrent neural networks. Learning algorithm can
be supervised, semi-supervised, or unsupervised. Due to
the large and deep network architecture, state-of-the-art
optimization algorithms have been developed to tune the
unknown high-dimensional (�order of thousands or even
tens of thousands) parameters.87 Research in the past
decade has witnessed remarkable achievements in
Artificial Intelligence(AI) in the era of BIG DATA.Due
to powerful ability in representation and pattern discov-
ery, we will expect a potential research application in
computational psychiatry, where various heterogeneous

sources of data (such as genes, behavior, family and
medicine history, and neuroimaging) can be integrated
within the ML framework to discover markers of risk
and targets for treatment. The potential for deep learning
will only be realized in mental health research as appro-
priate data sources become available. However, as large
amounts of information on single individuals become
available, the potential for discovery and characterization
is enormous. Mental health researchers will soon be able
to tap into massive sources of continuously recorded data
that captures behavior in real time. Deep learning methods
may quickly redefine behavioral constructs such as stress,
ways of measuring them, and even the discovery of ways to
manipulate such behavior for therapeutic purposes.
A limitation of such models is that they are not straight-
forward to interpret and are very prone to overfitting.

Conclusion

ML-based methods provide a computational framework
to conduct research in the RDoC era. These methods,
with their ability to integrate multiple overlapping
sources of data and define clinically relevant populations,
have a great deal to offer stress pathology and stress
resilience research. The promise of this nascent field will
only be truly realized as sources of data become available
that are of the size and scope to truly build and validate
such complex models. Because of the power of these tools
to find solutions, there is a heightened need for caution,
rigor, and an understanding of the underlying principles
and limitations of such approaches. We hope that this
review has provided information about diverse methods
in a manner that encourage researchers interested in
stress pathology to begin to think about how they can
instantiate computational models that match the com-
plexity of their hypotheses.
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