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Abstract
In the last twenty years, research using zebrafish as a model organism has increased immensely. With the many advantages 
that zebrafish offer such as high fecundity, optical transparency, ex vivo development, and genetic tractability, they are well 
suited to studying developmental processes and the effect of genetic mutations. More recently, zebrafish models have been 
used to study autophagy. This important protein degradation pathway is needed for cell and tissue homeostasis in a variety 
of contexts. Correspondingly, its dysregulation has been implicated in multiple diseases including skeletal disorders. In this 
review, we explore how zebrafish are being used to study autophagy in the context of skeletal development and disease, and 
the ways these areas are intersecting to help identify potential therapeutic targets for skeletal disorders.
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Introduction

Autophagy

Autophagy is a catabolic process which enables the break-
down of cytosolic components into their basic biomolecular 
constituents by lysosomal degradation, so that they may be 
recycled for further use. It is an essential process required 
during cell differentiation and it contributes to the mainte-
nance of cellular homeostasis where its primary function is 
to mobilise nutrients to sustain vital cellular functions dur-
ing stress (Dikic and Elazar 2018). Since the first mechanis-
tic descriptions of the autophagy process in 1967 by Chris-
tian de Duve (Deter and De Duve 1967), extensive research 
has been carried out to understand the autophagy pathways 
and their molecular control. Whilst these studies have estab-
lished the importance of autophagy in cell differentiation 

and survival, they have also highlighted the vast number of 
housekeeping roles it plays, and the how its dysregulation 
contributes to the pathology of multiple diseases, including 
common skeletal disorders such as forms of arthritis and 
osteoporosis (Bouderlique et al. 2016; Cadwell and Deb-
nath 2018; Jiang and Mizushima 2014; Levine and Kroemer 
2019; Ochotny et al. 2013).

Autophagy can be divided into three main forms; chaper-
one-mediated autophagy (CMA), microautophagy and mac-
roautophagy; each being delineated by the method of cargo 
delivery to the lysosome. This review will focus on macroau-
tophagy (hereafter termed autophagy), as this considered to 
be the major form of autophagy and remains the most widely 
studied (Mizushima 2007). It involves the de novo formation 
of an intermediate organelle, the autophagosome, to deliver 
cargo to the lysosome for degradation. The autophagosome 
is a unique double-membrane structure which captures 
proteins, organelles, and other cellular debris before fus-
ing with the lysosome to form a degradative autolysosome. 
This sequestration of cytosolic components can operate as a 
non-selective or selective process, with the former consid-
ered as a bulk, non-specific degradative process, whilst the 
latter requires specific receptor proteins to recognise and 
sequester target proteins, molecules, organelles, or invading 
pathogens.
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Mechanism of autophagy

The autophagy pathway is largely mediated by a family 
of highly conserved autophagy-related (ATG) proteins 
(Klionsky 2012; Wang et al. 2016), which were first dis-
covered and characterised in budding yeast by Yoshinori 
Ohsumi and colleagues (Takeshige et al. 1992). To date, 
over 40 ATGs have been identified in yeast, most of which 
are conserved across higher eukaryotes (Kuma et al. 2017; 
Wei et al. 2018). Since their initial discovery, there has 
been an explosion of research focussed on delineating the 
fundamental mechanisms guiding the autophagic pathway. 
Broadly, this pathway can be split into three major steps: 
initiation and formation of the phagosome; phagosome 
elongation; and finally, lysosomal fusion. At each of these 
steps, dedicated ATG proteins and complexes are recruited 
and activated at distinct sites of phagophore assembly 
known as autophagosome initiation sites. As the nascent 
autophagosome is expanded, sealed, and trafficked to the 
lysosome, essential contributions are made by proteins co-
opted from other cellular membrane trafficking pathways 
such as ESCRT complex proteins, tethers and SNAREs 
(Lamb et al. 2013).

A comprehensive study of the full molecular machinery 
involved in the autophagy pathway is beyond the scope 
of this review (other in-depth reviews can be found here 
Boya et al. 2013; Dikic and Elazar 2018)). Instead, we 

will focus on the mammalian biology of core proteins 
thus far relevant to zebrafish autophagy models (Fig. 1). 
These include, the ULK1 complex, consisting of ULK1, 
ATG13, FIP200 and ATG101, and the phosphatidyl ino-
sitol 3-kinase complex I (PI3KC3), comprising VPS34, 
Beclin1 (BECN1), ATG14, AMBRA1 and p115, which are 
involved in autophagy initiation and phagophore forma-
tion. Next, the two conjugation systems: ATG5–ATG12-
ATG16L and MAP1LC3–ATG3 help cooperatively recruit 
and conjugate MAP1LC3 to the lipid phosphatidyletha-
nolamine (PE) present on the phagophore membrane to 
form lipidated MAP1LC3-II. Prior to this step, ATG4 
and ATG7 are responsible for processing MAP1LC3 into 
MAP1LC3-I ready for its lipid conjugation. These steps 
are central for autophagy detection and analysis, as fluo-
rescently labelled MAP1LC3 – which appears as discrete 
0.5–1.0 µm puncta during autophagy— is the most com-
monly used marker for monitoring autophagy activity in 
cells and whole organisms. Finally, in the case of selec-
tive autophagy, receptor proteins such as p62/SQSTM-1, 
optineurin and NDP52 can specifically recognise and tar-
get polyubiquitinated cargo to the autophagosome.

Alongside these proteins, there are many other signal-
ling pathways involved in initiating the autophagy response. 
Central to these are the mechanistic target of rapamycin 
complex 1 (mTORC1) pathway and the cAMP-dependent 
protein kinase A (PKA) pathway (Blommaart et al. 1995). 
It has become evident from a variety of studies in different 

Fig. 1   Overview of the core proteins involved in the autophagy pathway and its regulation in zebrafish, knockout (KO) zebrafish lines high-
lighted in red, and boxes show commonly used drugs which can activate (green) or inhibit (red) autophagy activity.
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organisms that the proper regulation of autophagy initiation 
is essential for maintaining cellular homeostasis. Indeed, 
many studies have implicated autophagy dysregulation in the 
development of multiple neurological, cardiovascular, meta-
bolic, and more recently, skeletal diseases (Choi et al. 2013; 
Wang et al. 2016; Wirawan et al. 2012). Meanwhile, other 
studies have uncovered a diversity of other cellular func-
tions, beyond protein degradation, which are mediated by the 
autophagy machinery (Cadwell and Debnath 2018; Levine 
and Kroemer 2019). These include processes such as cellular 
differentiation and proliferation, cell metabolism, ER stress 
mitigation, and non-cell autonomous nutrient mobilisation, 
all of which are essential to bone and cartilage cell develop-
ment and survival (Carames et al. 2010; Lee et al. 2015).

By understanding the distinct functions performed by 
autophagy in specialised cells and the key factors involved in 
its regulation, we can better grasp the influence of autophagy 
during the development of skeletal diseases, and how the 
autophagic pathway can be manipulated for therapeutic ben-
efit. This review will focus on how zebrafish can be used to 
study autophagy in the context of skeletal development and 
the tools and techniques currently available within this area 
of research.

Autophagy and skeletal development

Multiple studies have implicated autophagy in the develop-
ment and maintenance of the skeletal system. From the very 
early stages of development, autophagy plays essential roles 

in the differentiation, transformation and functional activ-
ity of key skeletal cells, such as osteoblasts (bone secreting 
cells), osteoclasts (bone absorbing cells), osteocytes (bone 
maintenance cells) and chondrocytes (cartilage secreting 
cells) (Fig. 2) (Aghajanian and Mohan 2018). Post-devel-
opment, emerging evidence shows that once terminally dif-
ferentiated, these cells require a constitutive level of basal 
autophagy to ensure proper functioning and survival in the 
hypoxic, nutrition-deficient and hypertonic environments 
they reside in (Mizushima and Levine 2010).

During embryonic development, the vertebrate skeleton, 
and its associated bone, cartilage, and connective tissues, are 
formed from mesenchymal stem cells (MSCs). These cells 
are originally derived from three distinct embryonic cell lin-
eages which go on to establish different regions of the skele-
ton (Hall and Miyake 1992). To form the skeleton, cells from 
these lineages first migrate to the appropriate region within 
the embryo for skeletal formation, where they aggregate and 
proliferate to form mesenchymal condensations that subse-
quently differentiate into either osteoblasts or chondrocytes. 
Studies have highlighted vital roles for autophagy within this 
differentiation process and within the differentiation capabil-
ities of MSCs. For example, MSCs have been shown to have 
high levels of basal autophagy (Oliver et al. 2012), whilst 
treatment of MSCs isolated from young mice with the class 
III PI3Kinase inhibitor 3-methyladenine (3-MA), which 
blocks autophagy induction, was shown to cause a reduc-
tion in the capacity of MSCs to differentiate into osteoblasts 
(Ma et al. 2018). Further to this, a study in primary human 
MSCs showed that during osteoblast differentiation from 

Fig. 2  Overview of the roles 
autophagy plays in bone and 
cartilage cells, autophagy helps 
maintain the homeostasis, 
survival and function of osteo-
blasts, osteoclasts, osteocytes 
and chondrocytes
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MSCs, these cells accumulate large numbers of autophagic 
vacuoles which are later broken down to provide energy 
(Nollet et al. 2014). The authors concluded that autophagy 
is required to help balance energy supply during the differ-
entiation process and that it is therefore vital for MSC dif-
ferentiation and function (Nuschke et al. 2014). An in vitro 
study using primary murine osteoblast cells also showed 
that blocking autophagy through the knockout of FIP200, 
an essential component of the mammalian ULK1 complex, 
inhibited osteoblast differentiation, further demonstrating 
the importance of autophagy during the establishment of 
the osteoblast population (Liu et al. 2013).

From osteoblast and chondrocyte cells, bone is formed 
via two different mechanisms. In intramembranous ossifica-
tion, bone is secreted directly by osteoblasts which is how 
much of the craniofacial skeleton, vertebral column, and fins 
are formed in zebrafish (Bird and Mabee 2003). Conversely, 
in endochondral ossification, chondrocytes first form a carti-
laginous skeletal template which is then gradually replaced 
by bone. For tetrapods, this is how long bones form, whilst 
in zebrafish the ceratohyal and hyperurals are formed this 
way (Mundlos and Olsen 1997). As the organism develops, 
bone is lengthened and modelled until the final skeleton is 
formed, although constant remodelling of the skeleton in 
response to changes in mechanical loading or bone fractures 
continues throughout life.

This process of bone modelling and remodelling is medi-
ated by osteoblasts, osteoclasts, and osteocytes. Osteoblasts 
line the surface of the bone and are responsible for synthesis-
ing, secreting, and mineralising the bone matrix. Osteoblasts 
that become trapped within bone further differentiate into 
osteocytes which interact as a mechano-sensing network 
and direct the recruitment of osteoblasts and osteoclasts to 
local bone areas. Meanwhile, osteoclasts differentiate from 
hematopoietic precursors and migrate to areas of active bone 
remodelling to help degrade and resorb bone. The coordi-
nated activity of these cells is essential to ensuring bone 
homeostasis as disturbances to this equilibrium can lead to 
disease (Table 1). Autophagy is one process that has been 
shown to be essential for maintaining this balance and for 
regulating bone and cartilage cell differentiation, formation, 
and function.

Autophagy in bone formation

Osteoblasts are the primary cell type responsible for bone 
formation and both their survival and function are regulated 
by autophagy. The differentiation of osteoblasts from MSCs 
is regulated by the transcription factors RUNX2 and SP7 
(also known as Osterix). During this process, studies have 
shown that autophagy is upregulated to help these cells sur-
vive the hypoxic bone environment and to combat oxidative 
stress (Nollet et al. 2014), as manipulation of autophagic 

activity levels positively correlates with osteoblast survival 
(Li et al. 2017).

Beyond survival, autophagy activity is closely linked to 
osteoblast mineralisation. Osteoblasts form mineralised bone 
through the deposition of hydroxyapatite crystals into the 
collagen based bone matrix. As the matrix matures, these 
crystals are organised into a lattice structure within the col-
lagen, forming bone. These hydroxyapatite crystals have 
been identified in autophagic vacuoles within osteoblasts, 
and the inhibition of autophagic flux has been shown to 
block the outward extrusion of these minerals (Nollet et al. 
2014). Further to this, depletion or deletion of ATG5, ATG7 
or Beclin1, which are essential for autophagosome forma-
tion, have all been shown to cause decreased bone mass and 
mineralisation (Nollet et al. 2014; Zahm et al. 2011). In the 
case of targeted ATG7 loss in mice, an increased number of 
bone fractures were recorded and suggested to be associ-
ated with induced ER stress and decreased osteoblast num-
bers (Li et al. 2018; Piemontese et al. 2016). Meanwhile, 
another in vitro study showed that deletion of FIP200 in 
osteoblasts impaired their terminal differentiation, inhibit-
ing bone formation, and causing an osteopenia phenotype 
(Liu et al. 2013).

There are several bone disorders linked to osteoblast 
dysfunction whose pathogenesis has also been linked to 
autophagy dysregulation, such as Osteogenesis Imperfecta 
and osteoporosis (Table 1). For all bone disorders which are 
caused by excessive and disorganised or insufficient bone 
formation, treatment options are limited. This is because 
there are few drugs available which can effectively and safely 
target and promote osteoblast numbers and activity (Kawai 
et al. 2011; Riggs and Parfitt 2005). Therefore, influenc-
ing osteoblast activity through an alternative target, such as 
autophagy, could be a useful therapeutic mechanism, empha-
sising the need for more research into understanding the role 
of autophagy in osteoblast development and function.

Autophagy in bone resorption

At sites of bone remodelling, hematopoietic mononuclear 
myeloid stem cells (HSCs), primarily residing in the bone 
marrow, can differentiate into osteoclasts and migrate to 
the bony tissue surface in a process mediated by colony-
stimulating factor 1 (CSF-1) and RANK ligand (RANKL) 
(Zhao et al. 2007). Once differentiated and activated, osteo-
clasts attach to the bone surface, forming a seal via actin 
rings and begin bone resorption through the secretion of 
lysosomal proteases, metalloproteinases, and cathepsin K 
(CTSK). In mice, autophagy has been shown to play a role 
in osteoclast differentiation as HSC-specific loss of ATG7 
caused increased genomic and cellular damage to HSCs and 
a failure to differentiate (Mortensen et al. 2011), indicating 
that autophagy may be important for the maintenance of 
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HSCs. In addition to differentiation, autophagy helps osteo-
clasts survive in the locally hypoxic environment of the bone 
surface. In vitro studies have shown that in hypoxic environ-
ments, autophagy is upregulated in osteoclasts to reduce cell 
stress and to protect against apoptosis (Wang et al. 2011; 
Zhao et al. 2012). Correspondingly, increased autophagy 
activity enhances osteoclast differentiation (Shi et al. 2015).

Autophagy has also been shown to be involved in osteo-
clast activity and function. Osteoclasts resorb bone through 
the secretion of matrix-degrading molecules onto bone via 
secretory lysosomal vesicles. They have a characteristic 
ruffled border where the exocytosis of lysosomes occurs, 
and these lysosomes have been shown to be labelled with 
MAP1LC3 (DeSelm et al. 2011). Through the use of con-
ditional knockout mouse models, roles for the ATG con-
jugation machinery in osteoclast formation and resorptive 
activity have been suggested (DeSelm et al. 2011). Loss of 
ATG5 and ATG7 has been shown to impair ruffled border 
formation and lysosomal trafficking and secretion, causing 
a reduction in bone-resorption capacity, and increasing tra-
becular bone volume. These mice also showed a decrease 
in MAP1LC3 and RAB7 (a RAB GTPase) localisation 
to the ruffled border and inhibited CTSK release, which 
likely explains the effect on resorptive activity. Similarly, 
MAP1LC3A – a specific sub-form of MAP1LC3 – was 
knocked down, both actin ring formation and CTSK release 
were blocked, thereby inhibiting resorption activity (Chung 
et al. 2012). Taken together, these data suggest that ATG 
proteins have a clear role in regulating osteoclast activity. 
This is further highlighted in the pathogenesis of bone dis-
orders caused by defective osteoclast function which are 
also linked to mutations in autophagy related proteins, as 
mentioned in Table 1.

Autophagy in bone maintenance

Osteocytes are terminally differentiated cells formed from 
osteoblasts which have become trapped within the bone 
matrix. They are vital for bone health and maintenance 
and are responsible for regulating the bone remodelling 
process. Through the extension of dendrite-like processes 
within the bone matrix, osteocytes connect to form a vast 
network which detects and responds to hormonal and mech-
anistic changes within the bone environment by directing 
the recruitment of osteoblasts and osteoclasts to local bone 
areas.

Just as autophagy has a key role in osteoblast differentia-
tion and function, autophagy has been shown to be impor-
tant for osteocyte health and maintenance. Firstly, during 
the osteoblast to osteocyte transition, the cells must undergo 
a dramatic change in cell shape and composition which 
requires an active recycling of organelles (Dallas and Bone-
wald 2010). Secondly, a study using human and rat bone 

tissue demonstrated that osteocytes show an accumulation 
of MAP1LC3 puncta and that this expression is higher in 
osteocytes than osteoblasts (Zahm et al. 2011). This indi-
cates a high basal level of autophagy which is likely to be 
necessary to survive the nutrient and oxygen poor environ-
ment of the bone matrix.

Looking into the role of autophagy in osteocyte function-
ing, when autophagy activity was inhibited in mice by the 
osteocyte specific deletion of ATG7, there was a significant 
decrease in bone mass which was associated with reduced 
osteoblast and osteoclast numbers, and a disturbance in 
bone homeostasis (Onal et al. 2013). Similarly, in mice with 
ATG7 deficient osteoblasts, osteocytes showed decreased 
cellular projections and reduced ER degradation and turno-
ver (Piemontese et al. 2016). Together, these results indicate 
a clear role for autophagy in osteocyte function, whilst also 
demonstrating the level of interaction between these skeletal 
cell types and how the dysfunction of one can impact the 
activity of others. This, therefore, has a significant impact 
upon bone health and homeostasis and should be an impor-
tant consideration when studying bone disorders and select-
ing possible drug targets.

Autophagy in cartilage formation and maintenance

Alongside bone cells, cartilage forming chondrocytes also 
play a critical role within skeletal development and function. 
Chondrocytes are responsible for forming both the initial 
cartilaginous skeleton during endochondral ossification and 
the articular cartilage layer between bones, which enables 
fluid joint movement. As with the other skeletal cell popu-
lations, autophagy has been shown to be a vital process for 
chondrocyte differentiation, function and survival (Vuppa-
lapati et al. 2015; Zhang et al. 2013).

During endochondral bone formation, chondrocytes form 
the cartilage anlage of the future bone through the secretion 
of a collagen-rich matrix. This process continues until the 
chondrocytes reach a non-proliferative, hypertrophic state 
at which point the cells undergo apoptosis, triggering the 
resorption of cartilage and its mineralisation into bone by 
invading osteoblasts (Berendsen and Olsen 2015). Some 
chondrocytes remain within regions near to the end of the 
forming bone known as growth plates, where the chondro-
cytes continue to proliferate and secrete a cartilage matrix 
to enable longitudinal bone growth via ossification. During 
this process of chondrocyte proliferation and differentiation, 
in vitro studies have shown there is a positive correlation 
with levels of autophagy activity (Vuppalapati et al. 2015), 
and maturing chondrocytes show high MAP1LC3 expres-
sion (Srinivas et al. 2009). In growth plate chondrocytes, 
mice with a chondrocyte specific deletion of ATG7 showed 
impaired matrix secretion due to the retention of synthesised 
type II procollagen (a major component of cartilage matrix) 
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within the ER (Cinque et al. 2015). Meanwhile another study 
showed that the conditional loss of ATG5 or ATG7 in mice 
enhanced chondrocyte cell death and decreased cell prolif-
eration resulting in reduced growth plate activity and growth 
retardation (Vuppalapati et al. 2015).

Joint articular cartilage is retained throughout life, 
although due to the limited regenerative and repair capa-
bilities of articular cartilage, homeostatic mechanisms such 
as autophagy are vital for its maintenance and preservation 
(Barranco 2015; Zhang et al. 2013). For example, healthy 
human cartilage shows a high expression of key autophagy 
factors such as ULK1, Beclin1, and autophagosome-asso-
ciated MAP1LC3-II, indicating that autophagy is a consti-
tutively active mechanism within cartilage (Caramés et al. 
2010). Meanwhile, mice with a conditional knockout of 
ATG5 in chondrocytes showed increased articular chondro-
cyte cell death, which escalated with age, and an accumula-
tion of p62 in the articular cartilage, indicating abrogated 
autophagic flux (Bouderlique et al. 2016). By 1 year of age, 
these mice had experienced significant or complete loss of 
articular cartilage at joint sites and severe development of 
the joint disease osteoarthritis (OA). Together, these results 
suggest that autophagy may play a protective role against 
cartilage degradation by maintaining chondrocyte health and 
survival. This is further supported by data demonstrating 
that patients with osteoarthritis, which is characterised by 
the progressive loss of articular cartilage, show decreased 
expression of key autophagy markers which continue to 
decline further as the severity of the disease increases (Cara-
mes et al. 2010).

Zebrafish as a model to study autophagy 
during skeletal development and pathology

As discussed above, it is clear that autophagy is an important 
player within bone and cartilage cell development and main-
tenance, and that its activity is vital for sustaining skeletal 
homeostasis. Indeed, there are multiple skeletal disorders 
that are triggered by an imbalance in bone or cartilage cell 
activity with accompanying dysregulated autophagy activ-
ity. Many of these disorders are chronic and debilitating, 
and currently have limited treatment options available. 
Therefore, expanding our understanding of the cellular and 
molecular processes that are central to the co-ordination 
of bone and joint development, such as autophagy, will be 
crucial for the advancement of new therapeutics for these 
diseases, as well as for broadening our understanding of their 
pathogenesis.

Much has been learnt about the skeletal system and its 
associated disorders through the use of animal models 
(Gomes and Fernandes 2011). In vivo models offer obvious 
advantages over in vitro cell models for skeletal research 

as the complex, moveable, three-dimensional structure of 
bones and joints cannot be fully recapitulated within an 
in vitro system. Equally, the effects of other cell and tissues 
types and their related secretions on cartilage and bone cells 
cannot be recaptured within a unicellular system. Whilst a 
number of different animals have been used as models for 
bone research, mouse models remain the most extensively 
used due to their generally lower husbandry cost, fast gen-
eration times, ease of handling and genetic tractability (Som-
mer et al. 2019). However, despite these advantages, rodent 
models do have some inherent limitations for bone and 
autophagy-based research such as, differential bone loading 
compared to humans, and a lack of visual accessibility at a 
cellular level and during early developmental stages.

Increasingly, zebrafish (Danio rerio) are being recog-
nised as a useful alternative to rodent models for skeletal 
and autophagy research. Firstly, zebrafish are highly fecund, 
with a single pair able to lay up to 300 eggs a week, which 
develop externally as optically translucent larvae. This 
allows for the study of both cellular and gross morphologi-
cal changes during early development, without the need for 
invasive experimental techniques or animal sacrifice. Sec-
ondly, zebrafish are highly genetically tractable, as through 
the use of genetic tools such as TALEN (Bedell et al. 2012) 
and CRISPR/Cas9 (Talbot and Amacher 2014) embryos 
can be injected with constructs at the single cell stage to 
generate transgenic or genetically altered zebrafish lines. As 
these tools continue to improve, and with access to a fully 
sequenced genome, it is possible in zebrafish to efficiently 
and specifically target multiple genes in a high-throughput 
manner (Liu et al. 2019). It is through such methods that 
many knockout and reporter lines have been developed and 
used to model specific diseases or to visualise and track spe-
cific proteins or cell types, such as bone cells or autophagy 
related proteins.

As vertebrates, zebrafish show a high genetic similarity to 
humans (Kabashi et al. 2011), and all of the core mammalian 
autophagy-related proteins can be found within the zebrafish 
genome, with the overall amino acid identity between these 
and their human counterparts ranging between 40 and 96% 
(Mathai et al. 2017). This high degree of conservation indi-
cates that the autophagy pathway operates in a very similar 
way within zebrafish compared to humans and has enabled 
the development of many mutant and transgenic autophagy 
zebrafish lines (Table 2).

Despite clear structural differences, zebrafish also share 
similar skeletal physiology to mammals, including the same 
joint types and joint components such as joint cavities, artic-
ular cartilage and synovial membranes (Askary et al. 2016). 
This has been most widely shown in the larval zebrafish 
jaw which has been extensively studied and remains one 
of the main joint sites used to model joint development. 
Additionally, the overall molecular mechanisms underlining 
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vertebrate skeletal segmentation, joint development, and fin/
limb development are very similar and are likely to have 
been conserved across species (Crotwell and Mabee 2007).

Many human skeletal disorders can be modelled in 
zebrafish and can recapitulate the phenotypes seen in higher 
vertebrates. For example, equivalent models for disorders 
such as osteogenesis imperfecta, scoliosis, osteoporo-
sis, Stickler syndrome, and osteoarthritis are available in 
zebrafish (Askary et al. 2016; Carnovali et al. 2019; Law-
rence et al. 2018; Mackay et al. 2013). Additionally, as 
zebrafish develop osteoarthritis naturally during ageing, 
the pathogenesis of the disease and its common symptoms 
such as increased spinal deformities, vertebral dislocations, 
and fractures, and the formation of osteophytes can be eas-
ily explored (Hayes et al. 2013). Taken together, these data 
demonstrate that zebrafish are representative, relevant, and 
useful models for the study of bone and joint development, 
the pathology of skeletal disorders, and the genes involved in 
either processes. They also present some unique advantages 
for the dynamic and real-time study of autophagy activity 
and expression within different skeletal cell types and sys-
tems from early development to adulthood.

Current tools available to study autophagy 
in zebrafish

Transgenic and mutant zebrafish lines

Given the genetic and physiological similarities between 
humans and zebrafish, multiple transgenic and mutant 
lines targeting key autophagy and skeletal genes have been 
developed in zebrafish (for common skeletal zebrafish lines, 
see (Bergen et al. 2019)). Although these lines have been 
well used for studies within their respective fields, much 
less research has been done using autophagy and skeletal 
zebrafish lines in combination.

The first transgenic autophagy reporters generated in 
zebrafish were the GFP-Map1Lc3 and GFP-Gabarap trans-
genic lines, with reporters expressed under the control of 
the constitutive cytomegalovirus (CMV) promoter (He et al. 
2009) (Table 2). Both Map1Lc3 and Gabarap are homo-
logues of yeast Atg8, and each form a subfamily of proteins 
in mammals and fish. In mammalian cells, the MAP1LC3 
and GABARAP family members act cooperatively to enable 
autophagosome formation and/or cargo recognition, and as 
such, are equally useful for measuring autophagy in vivo 
and in vitro. However, overall, Map1Lc3 is the most widely 
used marker for identifying and visualising autophagy activ-
ity. During autophagy, GFP-Map1Lc3 acts like endogenous 
Map1Lc3 and becomes conjugated to PE in the developing 
phagophore and remains associated with the autophagosome 
until its full closure (Fig. 1). Using fluorescence microscopy, 

this lipidated form of GFP-Map1Lc3-II can be visualised as 
puncta or as ring-like structures as shown in Fig. 3 (Kabeya 
et al. 2000; Mizushima et al. 2004).

The GFP-Map1Lc3 transgenic zebrafish line has been 
used in several studies to explore the role of autophagy in 
bacterial clearance (Mostowy et al. 2013), blastema forma-
tion following fin amputation (Varga et al. 2014), and in liver 
homeostasis (Cui et al. 2012). With regards to skeletal biol-
ogy, this line can also be used to explore the expression pat-
tern of autophagy during early development and to identify 
cell types showing high expression of autophagy activity. As 
shown in Fig. 3, we were able to identify that during devel-
opment, zebrafish show high expression of GFP-Map1Lc3 
around joint sites, and that the cells in the joint interzone 
specifically show increased GFP-Map1Lc3 expression com-
pared to the surrounding cells. Given the optical clarity of 
zebrafish, these fish can be imaged live under anaesthetic, 
and the expression of Map1lc3 can be tracked throughout 
development in the same fish.

Moreover, through the use of skeletal cell specific trans-
genic lines, the expression of GFP-Map1Lc3 can be cor-
related to a specific cell type. For example, transgenic lines 
expressing Col10a1 or sp7 can be used to label osteoblasts 
at different stages of differentiation; transgenic GFP-trap fish 
can be used to label osteoclasts; whilst fluorescent label-
ling of type II collagen can be used to monitor chondro-
cytes and cartilage development and formation. Similarly, 
there are many antibodies and transgenics available for the 
labelling of muscles, collagens, tendons, and ligaments, ena-
bling the expression of Map1Lc3 to be explored in many 
different cell types related to the skeletal system. This can 
allow for the identification of patterns in autophagy activ-
ity during skeletal patterning and differentiation, either in 
normal development, in response to the mutation of genes 
of interest, or during pharmacological (Seda et al. 2019) 
or mechanical manipulation (Brunt et al. 2016). These data 
could be correlated to phenotypes seen in disease models to 
explore how autophagy activity may be being altered within 
different bone disorders. There are also several autophagy-
specific knockout zebrafish lines which have been shown to 
block or impair autophagy activity (Table 2). These enable 
investigations of how loss of autophagy activity affects the 
differentiation and function of skeletal cells and the gross 
development and performance of the skeleton.

While expression of GFP-Map1Lc3 can be very useful for 
identifying where autophagy may be upregulated, its expres-
sion alone cannot be used to determine autophagic flux or 
dynamics. For example, an increase in Map1Lc3 puncta 
could be due to elevated autophagy activity, and/or due 
to impaired lysosomal clearance (i.e. impaired autophagic 
flux) (Klionsky et al. 2016). To measure autophagic flux 
in zebrafish, lysosomes can be labelled with either a dye 
such as LysoTracker (Fig. 3b), or a fluorescent probe, such 
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as mCherry-Lamp1 or Lamp2 (Sasaki et al. 2017). In this 
way, colocalisation between GFP-Map1Lc3 and a lysosomal 
marker can be used to assess the level of autophagic activ-
ity. Similarly, drugs which block autolysosome formation 
(e.g. lysosomal  H+-ATPase inhibitors), and therefore pre-
vent the turnover of Map1Lc3 puncta, can also be applied 
to assess autophagic flux (Fig. 1). However, when using 
autophagy modulators it is important to consider their full 

effects in vivo, as several target other non-autophagic path-
ways such as the endocytic pathway, or cause other indirect 
effects (Klionsky et al. 2016).

Dual fluorescent probes, or tandem-tags, such as 
mCherry-GFP-Map1Lc3, are also very useful for analysing 
autophagy flux. Unlike the fluorescent GFP probe, mCherry 
is less sensitive to the acidic environment of the lysosome, 
and therefore is not quenched. By measuring the proportion 

Fig. 3  Examples of how GFP-Map1Lc3 transgenic zebrafish line can 
be used to study autophagy in a skeletal context, a Confocal images 
of the lower jaw and lower jaw joint of a transgenic CMV:EGFP-
map1lc3b zebrafish at 3 days post fertilisation (dpf), immunostained 
for collagen Type II (red) and anti-GFP for lc3 (green). Scale 

bar = 50 µm and 10 µm, respectively. b Confocal images of epidermal 
cells in transgenic CMV:EGFP-map1lc3b zebrafish imaged at 5dpf 
after treated with 100 µl BafilomycinA1 or DMSO for 16 h followed 
by 45  min live staining in red LysoTracker dye. Inset boxes show 
zoom of white checked box. Scale bar = 10 µm
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of yellow (green and red puncta together) and red puncta 
(autophagosomes and autolysosomes, respectively), the level 
of autophagic flux activity can be estimated. Together, these 
tools provide a more accurate way to measure autophagy 
activity and differences in autophagy levels quantitatively 
between different fish. Indeed, these tools have been used 
in zebrafish studies to determine how autophagic flux is 
affected by specific genetic mutations within bone and car-
tilage cells (Hu et al. 2019; Santos-Ledo et al. 2017). These 
studies showed that changes to bone and cartilage cell dif-
ferentiation and functioning were in part due to dysregulated 
autophagy activity. Therefore, these tools could also be used 
to help establish whether bone disorders alter autophagic 
flux within specific cells and to explore the potential benefit 
of autophagy-modulating drugs at addressing this imbalance.

Recently, there has been increased interest in using 
zebrafish scales as model for imaging bone cell dynamics 
(Bergen et al. 2019; Pasqualetti et al. 2012). Although their 
structure is simpler compared to mammalian bones, sev-
eral studies have shown that osteoclasts and osteoblasts can 
respond to hormones and other substances indicating that 
their activity and fundamental regulation is unchanged (Car-
novali et al. 2016; de Vrieze et al. 2015; Park et al. 2016). 
Therefore, zebrafish scales offer a new in vivo bone model 
for the live imaging of osteoclasts and osteoblasts in fluo-
rescent transgenic lines. Looking ahead, this model could 
be used to study autophagy dynamics in bone cells using 
transgenic autophagy lines, or to screen autophagy modulat-
ing drugs for their effects on bone cell activity.

High‑throughput drug screening

Over the last 20 years, zebrafish larvae have become an 
established model for high throughput chemical screens 
(Cully 2019; Rennekamp and Peterson 2015). Utilising the 
transparency, small size, and ease of drug administration, 
zebrafish can provide both the high-throughput capabilities 
of an in vitro system with the full complexities of whole 
organism biology. Combining this system with high-reso-
lution imaging and fluorescent reporters/dyes means that 
the effects of putative drugs on a specific cellular pathway 
or disease mutation can be rapidly quantified, assessed and 
validated (Early et al. 2018; Mathias et al. 2012; Walker 
et al. 2012). To date, eleven compounds have been identified 
through zebrafish screens as potential therapeutics, of which 
nine are in or about to enter early clinical trials (Cully 2019), 
including one for the connective tissue disorder, Fibrodys-
plasia ossificans progressive. As several skeletal disorders 
can be accurately modelled in zebrafish, this system could 
be applied as a primary screening platform for identifying 
and testing potential therapeutics for these disorders. Using 
autophagy reporter lines, it could also be used to identify 
new autophagy modulating drugs or to test the efficacy of 

current modulators on skeletal disease pathology. For exam-
ple, the GFP-Map1Lc3 line has been used to validate the 
effect of potential autophagy enhancers, such as AUTEN-
67, identified through small-molecule library screens (Papp 
et al. 2016). Meanwhile, Khuansuwan et al. used a neuron-
specific GFP-Map1Lc3b line to validate the effect of two, 
in-trial drugs for Parkinson’s as autophagy modulators (Khu-
ansuwan et al. 2019).

As mentioned previously, interest is growing in the use 
of zebrafish scales as an ex vivo model. This model has 
the advantage that screens can be performed on scales har-
vested from a single fish thereby reducing intra-individual 
variation, and it allows for compounds to be tested in the 
context of homeostasis within a mature tissue (de Vrieze 
et al. 2015). Already, this model has been used to study the 
effect of different drugs on bone cells (Park et al. 2016), and 
to screen compound libraries to identify new osteo-anabolic 
and catabolic drugs (de Vrieze et al. 2015). Similarly, this 
system has been proposed for the identification of drugs 
for osteoporosis, whereby scales collected from fish with 
osteoporosis-specific mutations are used to screen for pos-
sible therapeutic drugs (Bergen et al. 2019). Together, both 
of these systems show enormous potential as primary test-
ing platforms and demonstrate how zebrafish can be used to 
provide fast, functional validation of prospective new drugs.

Bone repair and regeneration assays

As zebrafish fins and scales remain optically accessible 
throughout adulthood, zebrafish provide a useful tool for 
dynamically observing the factors involved in bone regen-
eration and bone repair (Fig. 4). Similar to other teleosts, 
zebrafish can regenerate parts of their body following ampu-
tation. In the fins, this regeneration process is relatively 
quick and within two weeks all major tissue, including bone, 
joints, and nerves are largely restored (Watson and Kwon 
2015). Using a fin regeneration assay, Varga et al. explored 
the role of autophagy within this process and showed that 
the genetic and pharmacological inhibition of autophagy 
impairs fin regeneration (Varga et al. 2014). This high-
lighted an important role for autophagy in tissue patterning 
and renewal. Further investigations into this process could 
be helpful for identifying how manipulation of autophagy 
can be used to promote bone and cartilage cell renewal and 
replacement, especially during ageing.

Zebrafish are also a useful model for fracture repair stud-
ies as they show a fracture healing response with callus 
formation which is very similar to mammals (Sousa et al. 
2012; Tomecka et al. 2019). Using the GFP-Map1Lc3 line 
and the live bone stain, Alizarin red, we were able to per-
form a fin fracture assay which showed that the expression of 
Map1Lc3 increases during the early stages of fracture repair 
(Fig. 4). This indicates that the autophagy activity may be 
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upregulated during the repair response and suggests a role 
for autophagy in bone repair. Similarly, these tools could 
also be utilised within the zebrafish scale system which was 
recently used to model the fracture repair response (Kob-
ayashi-Sun et al. 2020). Using both of these models, the 
impact of autophagy modulating drugs, such as rapamycin, 
on the rate of fracture repair could be explored. Given that a 
number of bone disorders result in the development of weak-
ened and fracture-prone bones, this could be particularly 
useful model for discovering potential bone repair therapies.

Future directions and conclusion

Existing studies have established zebrafish as a powerful 
model for studying vertebrate development and model-
ling genetic diseases, including various skeletal disorders 
(Carnovali et al. 2019; Kwon et al. 2019). Use of zebrafish 
in autophagy studies is more recent but growing nonethe-
less, and draws on the ease and plasticity of live imaging 
options they present, which simply cannot be paralleled 
in the more commonly used rodent autophagy models. As 

Fig. 4  Using GFP-Map1Lc3 
transgenic zebrafish line to 
study the role of autophagy 
in fin fracture repair and bone 
regeneration – Top, Schematics 
depicting how bone fracture 
repair and regeneration assays 
can be performed in zebrafish 
and how live staining of bone 
can be performed in adult 
zebrafish using Alizarin Red. 
Bottom, Fluorescent stereomi-
croscope images of a fracture 
repair assay performed in 
a transgenic CMV:EGFP-
map1lc3b zebrafish at 6 months 
post fertilisation, live stained 
with Alizarin Red (red). 
Dpi days post injury; scale 
bar = 200 µm. Figure made in 
collaboration with Miss Lucy 
McGowan
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outlined above, initial studies using zebrafish autophagy 
models have already provided a new insight into the role of 
autophagy in skeletal cell differentiation and functioning, 
bone repair and regeneration, and drug discovery.

As these tools are further refined, the advantages of this 
model can be further exploited for autophagy research. 
For example, the development of conditional knockout 
lines of autophagy related genes for skeletal cells would 
enable the role of autophagy in these cells to be explored 
more accurately. Moreover, the development of inducible 
knockout lines would be especially helpful as the loss of 
essential autophagy proteins has proved to be developmen-
tally lethal in several models (Dong et al. 2020; Mawed 
et al. 2019).

The use of cultured zebrafish scales as an ex vivo model 
is a very recent development that shows great potential 
for exploring the dynamics between autophagy and bone 
cell activity and function. As a flat but 3D whole skeletal 
preparation, autophagy assays similar to those done within 
in vitro models could be performed in zebrafish scales. This 
would help deepen our understanding of autophagy activity 
within osteoblasts and osteoclasts, and how different drugs 
or genetic mutations impact upon autophagy flux. The poten-
tial use of cultured scales in high throughput drug screening 
is also still yet to be fully explored. Together with zebrafish 
larvae, the scale system could help bridge the gap between 
modelling the complex biology of bones and rapidly testing 
and validating potential drugs.

As the tools available for genetic manipulation and in vivo 
imaging in zebrafish continue to improve, this model will be 
fundamental to progressing our understanding of autophagy 
cell biology and the significance of its role in skeletal devel-
opment and pathology. Whilst it should be appreciated that 
not all observations from zebrafish, as with any animal 
model, are translatable to the human condition, zebrafish 
can still make a valuable contribution towards understand-
ing the interactions between the autophagy pathway and the 
skeletal system, and in developing new therapeutics.
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