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Abstract: Speciality malts and their extracts have physicochemical characteristics such as colour,
flavour, and aroma sorted for in food production. Speciality malts used in food production are
mostly produced from cereal grains. Hence, this study aimed to produce speciality malts from
Bambara groundnut (BGN) seeds and analyse their physicochemical characteristics and metabolites.
The base, toasted, caramel, and roasted malt were produced by drying at different temperatures
and times. Syrups were produced isothermally from the speciality malts. The speciality malts and
syrups were assessed for colour, pH, protein, α and β-amylases, total polyphenols, antioxidants, and
metabolite profiling. The BGN speciality malts were assayed for fatty acid methyl esters (FAME),
hydrocarbons, sugar alcohols, sugars, acids, amino acids, and volatile components using capillary
gas chromatography-mass spectrometry (GC-MS) and gas chromatography with flame ionisation
detection (GC-FID). The colours of the speciality malts and syrups were significantly (p = 0.000)
different. The protein content of the BGN speciality malts was significantly different (p = 0.000),
while the protein content of the syrups was not significantly different. The amylase activities of
the BGN speciality malt decreased with the change in kilning temperatures and time. The α- and
β-amylase activities for the specialty malts were 1.01, 0.21, 0.29, 0.15 CU/g and 0.11, 0.10, 0.10,
0.06 BU/g. The total polyphenols and antioxidant activities differed for all BGN speciality malts.
There were twenty-nine volatiles detected in the BGN speciality malts. Fifteen amino acids consisted
of seven essential amino acids, and eight non-essential amino acids were detected in the speciality
malts. Fatty acid methyl esters (FAME) identified were palmitoleic, oleic, linolelaidic, linoleic, and
arachidic acid. The sugars, organic acids, and sugar alcohols consisted of lactic acid, fructose, sucrose,
and myo-inositol. The BGN speciality malts exhibited good physicochemical characteristics and
metabolites that can make them useful as household and industrial ingredients for food production,
which could be beneficial to consumers.

Keywords: Bambara groundnut; α-amylase; β-amylase; total polyphenols; antioxidant; steeping;
sprouting; metabolites

1. Introduction

Household processing such as dehulling, boiling/cooking, pressure cooking, milling,
roasting, fermentation, soaking, and malting are applied to improve the physicochemical
properties of cereals and legumes [1–4]. Malting is an inexpensive household food pro-
cessing method that has recently gained attention from researchers to study legumes [4–8].
Malting consists of three simple steps: steeping, sprouting, and drying under controlled
conditions [9,10].

Malting of legumes has been reported to encourage an increase in free amino acids
and vitamins by the modification of the functional properties of the seed’s physical and
chemical components [11–13]. In addition, malting promotes hydrolytic enzymes, which
are not present in ungerminated grains [14,15]. Due to the activation of the hydrolytic
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enzyme, the malting process (soaking, sprouting, and kilning) gives malted grains their
characteristic colour, taste, flavour, and nutritional components [16–18].

The final step of malting, kilning, is a biochemical process applied to cereals and
legumes to enhance their physicochemical properties. The kilning temperature and time
are increased to obtain desired malt properties such as enzymes, moisture removal for
stabilisation, raw flavours removal, malty flavours, and colour development [19–23]. Dur-
ing the kilning process, the reaction of sugars and amino acids promotes melanoidins and
reductones through the Maillard reaction [19,24–26]. The melanoidins formed are respon-
sible for the antioxidant potential of the speciality malt types [21,24,26,27]. For example,
the dark speciality malts’ Maillard reaction products (melanoidins) are significant antioxi-
dants that increase with increasing malt colour due to changes in kilning temperature and
time [23,25,28].

Producing speciality malts comes with different drying temperatures [24,29,30]. Base
malts are produced at a low temperature between 50 and 80 ◦C for their high degree of
diastatic power. The base malt mostly precedes other speciality malts such as roasted,
toasted, and caramel malts used in food processing for various benefits [24,31,32]. Caramel,
roasted, and toasted malts are termed speciality malts because they are produced primarily
because of their characteristic high antioxidants, colour, and flavour [28,30,32,33]. Generally,
speciality malts and their extracts (syrup) add sensory benefits to the final product by
enhancing their colour, flavour, and taste [34,35].

Barley is the most used ingredient in malt production, and it is majorly used in the
brewing and food industries [36]. Although barley malt is commonly used, other cereals
and legumes are also malted to access their nutritional value [37]. Mung beans, soybeans,
cowpea, black beans, lentils, chickpea, and Bambara groundnut are some of the legumes
that have been sprouted and studied for their nutritional, physicochemical, and functional
characteristics [38].

Bambara groundnut (BGN) is not a commonly known legume crop in many parts
of the world. However, it is categorised as the third most crucial legume in Africa, after
peanuts and cowpeas [39,40]. Sustainable food experts have gained interest in BGN because
it is an underutilised and nutritious crop [41]. BGN is an indigenous plant cultivated in
Africa on a small scale by subsistence farmers [42,43]. It is a good quality protein food
containing substantially high proteins, carbohydrates, fats, and minerals [13,40].

Following the malting process, BGN seeds’ physicochemical, functional, thermal,
health-promoting, and nutritional properties greatly improved while reducing their anti-
nutritional factors [13,15]. Abba et al. [44] noted that malting BGN improved its protein con-
tent. Value-added snacks, weaning, ready-to-eat, and composite products have been made
from malted BGN seeds and have shown improvement over the unmalted seeds [45,46].
The nutritional and functional characteristics of malted BGN in the production of Okpa, com-
posite biscuits, flours, and infant formula, have been investigated [46,47], where the malted
BGN samples were acceptable to consumers. Bambara groundnut was subjected to steeping
(36 and 48 h) and sprouting (0 to 144 h) at different times to study its physicochemical
characteristics [48]. The study reported that the BGN malt exhibited good physicochemical
characteristics peculiar to malt products and can be used as a functional food ingredient in
food and beverage formulations [48]. In this study, the amylase-rich BGN malt produced
by steeping for 36 h and sprouting for 96 h was used to produce speciality malts. However,
no documented study has reported the physicochemical characteristics of BGN speciality
malts and syrup products. Thus, this work investigated the production of BGN speciality
malts and syrups, their physicochemical characteristics, and metabolites.

2. Results and Discussion
2.1. Colour Characteristics of Bambara Groundnut Speciality Malts and Syrups

The CIE L*a*b* colour space coordinates, chroma, and hue of the BGN speciality malts
consisting of base (BM), caramel (CM), roasted (RM), and toasted (TM) malts are shown in
Table 1. The lightness (L*) and the hue angle (h◦) decreased from 74.12 to 45.98 and 71.54



Molecules 2022, 27, 4332 3 of 27

to 53.90 for the BGN speciality malt types. The redness (a*), yellowness (b*), and chroma
increased for the BGN speciality malts, 3.96 to 16.44, 11.85 to 22.68, and 12.50 to 28.03,
respectively. There was a significant difference across the lightness, redness, yellowness,
chroma, and hue for all the speciality malts. As seen by the physical eye, the colour of the
speciality malt was as shown in Figure 1.

Table 1. Colour characteristics of Bambara groundnut speciality malt 1.

BGN
Speciality

Malt
L* a* b* C h◦

Base 74.12 ± 0.29 a 3.96 ± 0.71 a 11.85 ± 1.24 a 12.50 ± 1.30 a 71.54 ± 2.63 a

Caramel 74.24 ± 0.26 a 4.76 ± 0.86 a 15.31 ± 0.26 a 16.04 ± 0.33 a 72.74 ± 2.98 a

Roasted 63.91 ± 0.45 b 9.87 ± 0.52 b 22.41 ± 2.55 b 24.51 ± 2.23 b 66.05 ± 3.06 b

Toasted 45.98 ± 0.27 c 16.44 ± 0.63 c 22.68 ± 2.99 b 28.03 ± 2.80 b 53.90 ± 2.48 c

1 Values are the mean of triplicates ± standard deviation; mean values in the same column with different
superscript letters are significantly different (p ≤ 0.05). BGN—Bambara groundnut, L*—lightness; a*—redness,
b*—yellowness, C—chroma, h◦—hue angle.
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Figure 1. Bambara groundnut speciality malts: (a) base malt, (b) caramel malt, (c) roasted malt, and 
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yellow, blue, green, or purple object [58]. Hue angle (h°) can accurately determine how 

Figure 1. Bambara groundnut speciality malts: (a) base malt, (b) caramel malt, (c) roasted malt, and
(d) toasted malt.

The colour change has been attributed to the non-oxidative Maillard reaction due to
heat [32]. The reaction between reducing sugars and amino acid contents of malted grains
consists of the Maillard reaction’s complex reactions [49]. The reactions are important
mechanisms of non-enzymatic browning during heat processing of malt [50]. The factors
affecting the degree and magnitude of the Maillard reaction are temperature, time, water
activity, and concentration [32]. These factors affect the end product and give the prod-
ucts their characteristic colour, flavour, and anti-oxidative activity, which are essential in
industrial food products [51].

The colour of the malt is greatly affected by temperature and time [52]. Yahya et al. [53]
reported a similar result in the production of barley and malt roasting operations where
the product became darker as temperature increased above 150 ◦C, showing lightness
(L*) reducing from 75 to 40. Furthermore, the evaluation of the colour coordinates in the
study of barley speciality malt features showed a colour difference, whereby there was a
decrease in lightness (L*) at high temperatures, while the redness (a*) and yellowness (b*)
increased at higher temperatures [33]. Studies on the development of Maillard reaction
during roasted (caramel) malt production demonstrated that the colour formation depends
mainly on the time and temperature of kilning [24,28,54].

However, the colour changes were attributed to the measure of shorter chain melanoidins
or caramelisation by conversion to darker-coloured malt with increased temperatures [22].
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The base, caramel, roasted, and toasted malt syrup’s lightness values are indicated in Table 2.
The chroma and hue angle (h◦) for the base, caramel, roasted, and toasted malt syrups ranged
from 8.68 to 21.75 and 59.20 to 73.53◦, respectively. The hue angle (ho) of the BGN syrups
represents the red to yellow colour range (0◦–90◦). There is, however, a significant (p = 0.000)
difference in the speciality malt syrup’s lightness, redness, yellowness, and chroma, except
for hue. The higher colour values signify the BGN speciality malt syrup colour’s intensity.
The reduction in lightness of the syrups from base malt syrup to toasted malt syrup was
attributed to the Maillard reaction developing Maillard reaction products during heating and
caramelisation [55,56]. The parameter redness (a*) and yellowness (b*) were positive values
indicating reddish and yellowish syrup colours. The redness was highest for the roasted malt
syrup, and the yellowness was lowest for toasted malt syrup, attributed to the differences
in the kilning temperatures and time [57]. The BGN speciality malts syrups’ chroma was
lowest for the toasted BGN speciality malt syrup. The chroma values refer to the colour
saturation, where low chroma values are weak, and high chroma values are highly saturated
or strong [58,59]. The chroma values for the study on rice syrup were low, with a dark brown
colour range compared to this study [25,60].

Table 2. CIE L*a*b*, chroma, and hue for the Bambara groundnut speciality malt syrups 1.

Colour
Characteristics

Bambara Groundnut Speciality Malt Syrups

Base Malt Caramel Malt Roasted Malt Toasted Malt

L* 49.56 ± 0.15 a 52.77 ± 0.07 b 41.43 ± 0.32 c 28.55 ± 0.69 d

a* 8.07 ±1.63 a 7.78 ± 1.46 a 9.51 ± 2.64 a 2.52 ± 0.99 b

b* 15.82 ± 1.41 a 20.28 ± 0.76 b 16.22 ± 3.12 a 8.30 ± 1.40 c

Chroma 17.82 ± 1.10 a 21.75 ± 0.70 b 19.04 ± 1.75 a 8.68 ± 1.62 c

Hue angle 62.94± 5.10 ab 69.03 ± 3.90 ab 59.20 ± 11.47 a 73.53 ± 3.66 b

1 Values are mean ± standard deviation of triplicate values; mean values in the same column with different
superscript letters are significantly different (p ≤ 0.05). L*—lightness; a*—redness, b*—yellowness.

The speciality malts’ hue angle was higher than that of the syrups due to heat applica-
tion during mashing. Hue angle (h◦) is the attribute of a colour distinguished by the red,
yellow, blue, green, or purple object [58]. Hue angle (h◦) can accurately determine how
humans perceive colour, as shown in Figure 2 [60]. The BGN speciality malt syrup hue
angle range of 59.20 to 73.53◦ indicated reddish-yellow. The hue angle (h◦) of the speciality
malt syrup is consistent with other studies that reported a decrease in h◦ value during
heat application to syrup [57,58]. In addition, the colour of the BGN speciality malt syrup
indicated that more colour developed during the wort boiling based on temperature and
time [61].

Malt extract boiling generally increases wort colour due to the formation of melanoidins,
the caramelisation of sugars, and polyphenols’ oxidation [62]. The application of heat
reduced the lightness (L*), redness (a*), yellowness (b*), and the hue of the syrup for all
BGN speciality malt syrups, while hue angle (h◦) increased. Moreover, the toasted malt
syrup exhibited the darkest colour for the colour parameters (CIE L*a*b*, chroma). The
decrease in lightness, redness, and yellowness of speciality malt syrup has been attributed
to the formation of colour compounds (melanoidins) due to the Maillard reaction during
kilning and further heating when producing syrups, thus providing desirable colours to
food produced with them [60].

The speciality malt, extracts, and syrups are good sources of natural colour enhance-
ment in food industries for beverages, baked items, and culinary recipes [63,64]. The colour
enhancement can be attained using a base malt ratio with specialised malt flours, malt
extracts, or syrup [63,65]. The speciality malts and syrups in this study exhibited colours
desirable in the food industries, which could be used to impact the colours of baked goods
and breakfast meals similar to the popular barley malt [22]. Furthermore, being signifi-
cantly different could mean that the speciality malts and syrups could impact different
shades of colours as ingredients in product formulation.
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2.2. The pH Characteristics of the Bambara Groundnut Speciality Malts and Syrups

The pH for the BGN speciality base (BM), caramel (CM), roasted (RM), and toasted
(TM) malts ranged from 6.30 to 6.52. The base, roasted, and toasted malts were not
significantly different, as shown in Figure 3. However, the base, roasted, and toasted
malts exhibited higher pH than the caramel malt. The caramel malt had the lowest pH
value, while the higher pH in the three speciality malts has been attributed to variations in
temperature and time [33]. However, the high pH of the base malt is a characteristic of base
malt [66]. During their study, Vandecan et al. [33] showed that the time and temperature
of roasting caramel malt resulted in a pH increase. Their results showed that malt pH
decreased with increasing kilning temperature due to the acidic Maillard reaction products,
reductones and melanoidins. However, there was a pH increase after the initial decrease
with increased roasting temperature to 180 ◦C, similar to this study. The pH increase
was ascribed to the decline in the concentration of acidic components due to evaporation,
further conversion, and polymerisation reactions [24,33]. In their study, Geurts [67] noted
that the malt pH depends on the production method used to create speciality malt. The
effects of pH on speciality malts have been studied, where it was discovered that dark malts
tend to exhibit higher pH than pale (base malt) and light caramel malt [67,68]. The high pH
is due to the dark roasted and toasted malt products being roasted at high temperatures
that are enough to use Maillard reaction, caramelisation, and pyrolysis, which can affect
the pH of the speciality malt [67,69].
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The characteristic pH values of the BGN speciality malt syrups for the base, caramel,
roasted, and toasted malt syrups were 5.52, 5.13, 5.46, and 5.71, respectively, in Table 3.
The pH of the toasted malt syrup was much higher than the base, caramel, and roasted
malt syrups, with a significant (p = 0.000) difference. pH is crucial in wort production; it
regulates the activity of the enzymes (external and internal) in the mash [70]. The mashing
and wort boiling period is the application of heat treatment that can separate the calcium
ion (Ca2+) bound with phosphates (K2PO4) and polypeptides to form insoluble compounds
by the release of hydrogen ion (H+) and decrease the wort pH [70–73]. Due to boiling, the
wort becomes acidic with a range of 0.1–0.3 pH units for a typical boiling process due to
the melanoidins formation [61,62]. Moreover, the pH of the BGN caramel, roasted, and
toasted speciality malt syrups was lower and was attributed to the formation of acids from
sugars compared to the base malt syrup [62,67,72].

Table 3. pH characteristics of Bambara groundnut speciality malt syrups 1.

Bambara Groundnut Speciality Malt Syrup pH

Base malt 5.52 ± 0.06 a

Caramel malt 5.13 ± 0.04 b

Roasted malt 5.46 ± 0.03 a

Toasted malt 5.71 ± 0.01 c

1 Mean values on the column with different superscripts are significantly different (p ≤ 0.05).

Due to heat application during boiling, the pH is relatively low after malt syrup
production [73]. The pH values of the wort produced from chickpea, yellow pea, common
vetch, and green lentil were 5.44, 5.7, 5.53, and 5.51, respectively [74]. These are in the same
range as this study’s BGN speciality malt syrup. The pH of the BGN speciality malt syrups
is in the same range as that of the barley malt syrups under study in the specific European
brewery convention range [74–77]. The BGN speciality malt syrups exhibiting a similar pH
range might make them useful in brewing industries as a substitute for malted barley. Thus,
producing BGN malt syrups isothermally, as described in this study, produced products
that could be used in product formulation, promoting BGN as a functional ingredient.

2.3. The Protein Content of Bambara Groundnut Speciality Malts and Syrups

The protein content values of the base, caramel, roasted, and toasted BGN speciality
malts are 15.41, 14.12, 16.22, and 17.58, respectively, as shown in Figure 4. The protein
contents for the BGN speciality malts are significantly (p = 0.000) different, with caramel
malt having the lowest protein content. The difference in the protein content could be due
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to different kilning temperatures and times. It was noted that high kilning temperatures
of malted HomChaiya rice influenced the protease enzymes similar to this study, which
invariably increased the soluble protein and amino acids [51]. Therefore, the increase is
attributed to the soluble protein as kiln temperature increased due to an acceleration of
proteolytic activities.
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Figure 4. Protein content of Bambara groundnut speciality malts. Values are the mean of tripli-
cates ± standard deviation; mean values on the bars with different letters are significantly different
(p < 0.05).

In contrast to the results of this study, Diedericks et al. [40] reported a reduction in
the protein of BGN seeds subjected to roasting from 70 to 179 ◦C for soaked and unsoaked
BGN seeds. They attributed the reduction to the exposure to high temperature due to
denaturation of proteins depending on their thermal stability. However, [78] recorded no
difference in protein content at different temperatures up to 100 ◦C in Greek barley.

The Bambara groundnut speciality malt syrups protein content was lower after mash-
ing and boiling, ranging from 9.73, 10.37, 11.10 to 11.35 for the base, caramel, roasted, and
toasted malt speciality syrups, respectively, as shown in Figure 5. Based on the Kruskal–
Wallis test, protein distribution was the same across the syrups, showing no significant
difference. However, [74,79,80] produced gluten-free worts and malt extracts from legumes,
resulting in high protein content with reduced anti-nutritional constituents and increased
antioxidants. Wort boiling is a thermal process whereby various chemical, physicochemical,
physical, and biochemical reactions occur. The boiling of the wort is important for sterilis-
ing the wort, stopping enzymatic reactions, water evaporation from the wort, unwanted
aroma compounds removal, and hot break or hot trub, which is the precipitation of the
wort protein contents’ insoluble coagulum [62,81].
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The protein content of malt is dependent on the enzyme-to-substrate ratio, that is,
the ratios of α- and β-amylases/starch and endo-peptidases/proteins [62]. The protein
contents of the malt extract decrease after boiling, which matches the results reported
by [82] and [83]. The reduction in protein can be attributed to protein degradation during
mashing and wort boiling [84,85]. In contrast to the reduction in protein observed in this
study and literature, [83] established that the barley wort protein content increased, and this
was ascribed to the elevated stability of the soluble proteins. However, the BGN speciality
malt syrup exhibited a good proportion of protein content that could benefit consumers.

2.4. Amylase Activities of Bambara Groundnut Speciality Malts and Syrups

The α and β-amylase activities for the base, caramel, roasted, and toasted BGN
speciality malts were 1.01, 0.21, 0.29, 0.15 CU/g and 0.11, 0.10, 0.10, 0.06 BU/g, respectively,
as shown in Table 4. The amylase activities of the BGN speciality malts differed significantly
(p = 0.000) across the malt types. Studies have shown that amylase activities change with
changes in kilning temperature and time, which is similar to this study’s results [36,51,
86,87]. Kilning temperature and time of the germinated sorghum grains reduced the
α- and β-amylase activities [88]. Uriyo [89] observed that kilning black-eyed peas at
higher temperatures reduced the α-amylase activities, and β-amylase activity could not
be detected in the germinated cowpea. The α and β-amylase of cowpea, buckwheat,
sorghum, teff, and barley malt were found to decrease linearly with an increase in drying
temperature [87,90–92]. As with other studies on sorghum, buckwheat, teff, barley, and
cowpea, β-amylase was low or absent after kilning, which correlates with this study on
BGN speciality malt [89,93]. In addition, α- and β-amylase decreased with a change in
kilning temperature and time, where the β-amylase showed the lowest value. The resultant
reduction in α and β-amylase regarding kilning temperature and time was because diastatic
enzymes can only survive in mild kilning due to the formation of heat-stable complexes
in the starch granules [94]. The decrease in the enzymatic activity could thus be due
to the heat denaturation of grains, known as the enzyme-inactivating phase [86,90,95].
The barley α-amylase is more thermostable than β-amylase; the α and β-amylase of the
BGN speciality malts have shown similar thermostability [87,91]. There was an increased
inactivation by kilning due to denaturation by heat application [87,95,96]. Despite the heat
application during kilning, mashing, and boiling of malt wort to produce syrup, some
amylase survives [94,97–99].

Table 4. Bambara groundnut specialty malts α and β-amylase activities 1.

BGN Speciality Malt Alpha-Amylase Beta-Amylase

Base 1.01 ± 0.01 a 0.11 ± 0.00 a

Caramel 0.21 ± 0.00 b 0.10 ± 0.00 b

Roasted 0.29 ± 0.00 c 0.10 ± 0.00 c

Toasted 0.15 ± 0.00 d 0.06 ± 0.00 d

1 Values are the mean of triplicates ± standard deviation; values in the same column with different superscripts
are significantly different (p ≤ 0.05).

The base, caramel, roasted, and toasted BGN speciality malt syrups (BMS, CMS, RMS,
and TMS) α-amylase values were 0.39, 0.31, 0.30, 0.31 CU/g, and β-amylase values were
0.14, 0.13, 0.15, 0.21 BU/g, respectively, as shown in Table 5. There is a significant (p = 0.000)
difference across the amylase activities of the speciality malt syrups. The increase in the
α and β-amylase activities observed in the BGN speciality malt syrups after wort boiling
is due to the activities of the enzymes [61,100]. The production of malt-based syrups
involves producing the malt, the mashing process to produce wort from the malt, and the
concentration of the wort to malt syrup by boiling [74,101]. Characteristics of malt syrup
are brown, sweet, gluey liquids with diastatic enzymes (base malt) or without diastatic
enzymes (speciality malt) [102]. Speciality malts are very important for enhancing and
improving malt wort (syrup) by improving its colour and flavour [102].
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Table 5. Amylase activities of Bambara groundnut speciality malt syrups 1.

BGN Speciality Malt Syrup α-Amylase β-Amylase

Base malt 0.39 ± 0.00 a 0.14 ± 0.00 a

Caramel malt 0.31 ± 0.00 b 0.13 ± 0.00 b

Roasted malt 0.30 ± 0.00 b 0.15 ± 0.00 c

Toasted malt 0.31 ± 0.00 c 0.21 ± 0.00 d

1 Values are the mean of triplicates ± standard deviation; values in the same column with different superscripts
are significantly different (p ≤ 0.05).

The α-amylase activity of the base malt syrup was the highest, while the roasted malt
syrup activity was shown to be the lowest. The β-amylase is thermally unstable; it is
denatured at high temperatures, thus the low content in this study [97]. The mashing and
wort boiling temperature could have affected the β-amylase content due to the mashing
temperature of 60 ◦C in this study [100]. In their study, De Schepper et al. [103] noted that
α-amylase and β-amylase are temperature-dependent. α-amylase is inactivated at 63–71 ◦C
and β-amylase at 54–66 ◦C [103]. These two enzymes are very important as α-amylase
breaks complex, insoluble starch molecules into smaller, soluble molecules that are more
stable thermally. α-amylase produces low molecular weight sugars, glucose, maltose, and
maltotriose. β-amylase, being an unstable enzyme at high temperatures, produces only
maltose. Once its activity reaches a peak, it declines and then drops at an increase in
temperature [104–106]. The activities of these enzymes (α- and β-amylase) are relatively
dependent on the temperature and time of mashing and wort boiling [103], as shown in
this study. The inactivation is thus attributed to the starch hydrolyses by the two enzymes.
α-amylase is an endo-acting enzyme that degrades starch during mashing and cleaving
α-1,4-D-glucosidic linkages to produce oligosaccharides and limit dextrins [97,107,108]. On
the other hand, β-amylase is an exo-acting enzyme, hydrolysing starch and oligosaccharide
α-1,4-D-glucosidic linkages from the non-reducing end to produce maltose [109–111]. Thus,
having enzyme-rich malt and syrup would greatly depend on the extraction temperature
due to the heat-sensitive nature of the α- and β-amylases. However, boiling the BGN syrup
at temperatures lower than 60 ◦C could increase amylase concentrations.

2.5. Total Polyphenols Content and Antioxidant Activities of Bambara Groundnut Speciality Malts
and Syrups

Total polyphenols content and antioxidant activities of BGN speciality malts are il-
lustrated in Table 6. There was a significant (p = 0.000) difference with an increase in total
polyphenols and antioxidants content from 1.50 to 3.11 mg GAE/g. Moreover, the antioxi-
dants increased, where FRAP ranged from 4.89 to 15.89 µmol AAE/g and DPPH ranged
from 6.36 to 14.13 µmol TE/g. The increase in total polyphenols and antioxidants during
kilning may be attributed to the extraction and release of bound phenolic compounds ((+)-
catechin and ferulic acid) due to friable tissue created by kilning [10,30,112]. This friable tis-
sue made it easy to extract the phenolic compounds better by synthesising some hydrolytic
enzymes in studied grains such as barley, quinoa, millet, and sorghum [21,113–118].

Table 6. Total polyphenols and antioxidant activities of Bambara groundnut speciality malts 1.

Bambara Groundnut
Speciality Malt

Polyphenol
(mg GAE/g)

FRAP
(µmol AAE/g)

DPPH
(µmol TE/g)

Base 1.50 ± 0.09 a 4.89 ± 0.30 a 6.36 ± 0.05 a

Caramel 1.55 ± 0.07 a 5.86 ± 0.23 a 6.81 ± 0.92 a

Roasted 3.11 ± 0.25 b 15.39 ± 0.56 b 14.13 ± 0.13 b

Toasted 2.86 ± 0.23 b 15.89 ± 0.90 b 13.70 ± 1.22 b

1 Values are the mean of triplicates standard deviation; values in the same column with different superscripts
are significantly different (p ≤ 0.05). GAE—gallic acid equivalent, AAE—ascorbic acid equivalents, TE—Trolox
equivalent.
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The total polyphenols by Folin–Ciocâlteu reagent (FCR), antioxidant activities by
ferric-reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) as-
say showed an increase with the increase in kilning time and temperature. Increased antiox-
idant properties are contributed by the Maillard reaction products (MRPs) produced during
kilning of the malting process [23]. Mainly, the roasting processes exhibit heat-induced
antioxidants MRP called melanoidins [31,119]. Continuous research on antioxidants during
the malting process, especially the kilning time and temperature, has clearly shown that
dark speciality malt had the most significant antioxidant activities [31,120].

The BGN speciality malt syrups exhibited total polyphenols of 0.72, 0.65, 1.20, and
1.60 mg GAE/g, FRAP 2.00, 1.20, 2.42, and 4.43 µmol AAE/g, and 1.56 1.51, 2.11, and
2.96 µmol TE/g, for the base, caramel, roasted, and toasted BGN speciality malt syrups,
respectively, in Table 7. There was a significant difference across the BGN speciality syrups.
The total polyphenols activity in the toasted malt syrup was the highest, while the caramel
malt had the lowest value.

Table 7. Total polyphenols and antioxidant activities of Bambara speciality malt syrups 1.

BGN Speciality Malt
Syrup

Total Polyphenols
(mg GAE/g)

FRAP
(µmol AAE/g)

DPPH
(µmol TE/g)

Base malt 0.72 ±0.04 a 2.00 ± 0.14 b 1.56 ± 0.13 a

Caramel malt 0.65 ± 0.03 a 1.20 ± 0.02 a 1.51 ± 0.13 ab

Roasted malt 1.20 ± 0.05 b 2.42 ± 0.05 c 2.11 ± 0.30 b

Toasted malt 1.60 ± 0.19 c 4.43 ± 0.18 d 2.96 ± 0.49 c

1 Values are the mean of triplicates ± standard deviation; values in the same column with different superscripts
are significantly different (p ≤ 0.05). GAE—gallic acid equivalent, AAE—ascorbic acid equivalents, TE—Trolox
equivalent.

Since Maillard reaction activities enhance the colour of the speciality malt during
kilning of malt and boiling of wort, there is an increase in total polyphenols after boiling the
malt extracts to produce syrup [28]. Coghe et al. [31] showed in their investigation that dark
speciality malts and their extracts had the highest antioxidant activities due to higher heat
application, as heat treatment is linked with an increase in antioxidant activity. The antioxi-
dant activity of speciality malt wort increase was attributed to redox-reducing antioxidants
developed during curing and roasting, giving rise to malt colour change and antiradical
antioxidant activity formed during the Maillard reaction [22,121]. Samaras et al. [19] noted
that the antioxidant activity of phenolic compounds and antioxidants was higher for the
darkly kilned malts as Maillard reaction products increased. Maillard reaction products
have antioxidant properties that influence the oxidative stability of wort [22,24,28]. How-
ever, studies have shown that malt kilned at high temperatures has the most increased
antioxidant activity, contributing to higher intensities of Maillard reaction products [36,117].
Congress worts produced from vetch, green lentil, chickpea, and yellow pea malts had high
phenolic and antioxidant components [74]. In the Folin–Ciocalteu, DPPH, and FRAP assays,
vetch had the highest total polyphenols and antioxidants [74]. The high content of total
polyphenols and antioxidants is attributed to the dark colour and hardcover characteristics
of this type of legume seed, having higher flavonoids and condensed tannins, which may
increase antioxidant activity [74,122]. Research works and reports have noted that legumes
with dark-coloured and tough seed coats have strong antioxidant characteristics [122–126].
BGN is characterised by tough and coloured (black, dark brown, red, white, and speckled)
varieties that could be attributed to the increased antioxidant in BGN speciality toasted malt
activities in this study [124,127]. Thus, a desirable high total polyphenolic and antioxidant
food product could be produced from the BGN toasted malt and syrup.

2.6. Total Soluble Solid of Bambara Groundnut Malt Syrups

The degree Brix (◦Brix) of the BGN speciality malt syrups was 11.57, 9.97, 25.90,
and 15.93 ◦Brix, as illustrated in Figure 6. The ◦Brix for roasted malt syrup was the
highest, indicating the highest total soluble solids content. A degree Brix (◦Brix) is a gram
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of sucrose in 100 g of solution. The soluble solids recorded in the legume malt worts
by Gasiński et al. [74], without the addition of enzyme consisting of vetch, green lentil,
chickpea, and yellow pea (2.40, 1.59, 2.39, and 2.80 Plato◦ (≈◦Brix)), were lower than
the values for BGN malt syrups. Meanwhile, in the malted and unmalted rice syrups
production by Ofoedu et al. [69], the ◦Brix was higher for the malted rice syrups, peaking
at 72.10 ◦Brix. The high ◦Brix value was attributed to increased hydrolytic activity during
germination and mashing by releasing more hydrolysates.
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Figure 6. Degree Brix of Bambara speciality malt syrups. Values are the mean of triplicates ± stan-
dard deviation; mean values on the bars with different letters are significantly different (p < 0.05).
BMS—base malt syrup, CMS—caramel malt syrup, RMS—roasted malt syrup, TMS—toasted
malt syrup.

Furthermore, it was recognised that the physicochemical characteristics and quality of
malts depend on the kilning duration and intensity, which will affect the mashing and wort
quality [78]. The quality of the extract and malt extract syrup will add value to the produc-
tion of foods by serving as a source of sweetener, flavour, colour, and enzymes [128,129].
The high total soluble content of the roasted malt syrup could be desirable in produc-
ing a non-alcoholic beverage that will add natural sweetness to the product and benefit
consumers’ well-being.

2.7. Metabolites of the Bambara Groundnut Speciality Malts

The BGN speciality malts (base malt, caramel malt, roasted malt, and toasted malt)
were profiled for metabolites, including the amino acids, sugars, sugar alcohol, organic
acids, fatty acids methyl esters (FAME), and volatiles, as illustrated in the following sections.

2.7.1. Amino Acid Compositions of Bambara Groundnut Speciality Malts

The amino acid of the BGN speciality malts was significantly (p = 0.000) different
from the base, caramel, roasted to toasted except for leucine which was not significantly
different across the BGN speciality malts, as shown in Table 8. The non-essential amino
acids consist of aspartic acid, glutamic acid, cysteine, serine, proline, alanine, glycine, and
tyrosine. Lysine was the highest amino acid for the base, caramel, and roasted malts at
61.97, 52.67, and 38.89 mg/g, respectively, while aspartic acid was the highest for toasted
malt at 14.46 mg/g. On the other hand, methionine was the lowest amino acid for all BGN
speciality malt types. This is because methionine, a sulphur-containing essential amino acid,
is more deficient in legumes than other essential amino acids while rich in lysine [130–132].
However, raw BGN has a considerably high amount of methionine, ranging from 1.30 to
2.90 g/100 g compared to other legumes [133–136].
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Table 8. Amino acids concentrations of Bambara groundnut speciality malts 1.

Essential
Amino Acid

Amino Acids Concentration (mg/g)

Base Malt Caramel Malt Roasted Malt Toasted Malt

Lysine 61.97 ± 1.17 a 52.67 ± 0.17 b 38.89 ± 0.40 c 10.72 ± 0.82 d

Threonine 15.385 ± 0.05 a 12.93 ± 0.08 b 13.55 ± 0.11 c 9.90 ± 0.01 d

Phenylalanine 13.99 ± 0.15 a 11.25 ± 0.01 b 12.81 ± 0.18 c 9.16 ± 0.51 d

Valine 12.47 ± 0.31 a 11.95 ± 0.06 b 12.14 ± 0.01 ab 7.91 ± 0.08 c

Leucine 11.91 ± 0.23 a 10.41 ± 0.10 a 10.45 ± 0.54 a 11.26 ± 1.42 a

Isoleucine 10.60 ± 0.08 a 9.97 ± 0.02 b 8.46 ± 0.01 c 7.25 ± 0.10 d

Methionine 4.52 ± 0.04 a 4.38 ± 0.04 b 4.24 ± 0.06 c 1.92 ± 0.05 d

Non-Essential
Amino Acid

Aspartic acid 27.45 ± 0.22 a 21.84 ± 0.05 b 23.00 ± 0.07 c 14.46 ± 0.25 d

Glutamic acid 22.24 ± 0.06 a 19.98 ± 0.01 b 21.44 ± 0.35 c 13.66 ± 0.04 d

Cysteine 22.34 ± 0.01 a 12.94 ± 0.25 b 15.38 ± 0.12 c 7.23 ± 0.36 d

Serine 13.10 ± 0.06 a 10.51 ± 0.00 b 11.59 ± 0.16 c 11.75 ± 0.06 c

Proline 13.14 ± 0.10 a 11.62 ± 0.13 b 11.49 ± 0.52 b 7.16 ± 0.14 c

Alanine 7.87 ± 0.13 a 7.35 ± 0.01 b 7.40 ± 0.23 b 4.05 ± 0.14 c

Glycine 7.42 ± 0.01 a 6.81 ± 0.03 b 5.73 ± 0.03 c 2.71 ± 1.93 d

Tyrosine 4.73 ± 0.02 a 4.26 ± 0.04 b 4.02 ± 0.06 c 3.06 ± 0.02 d

1 Values are the mean of duplicates’ standard deviation; values in the same row with different superscripts are
significantly different (p ≤ 0.05).

The amino acid profile for the BGN speciality malt (BM, CM, RM, and TM) showed
higher amino acid contents than the raw BGN seeds. Nzelu [137] and Chinma et al. [15]
noted that germination increases the amino acid content of BGN due to protease activity.
However, there was a consistent decline in the amino acids of the BGN speciality malts.
The decline has been attributed to different kilning temperatures and the initiation of
Maillard reactions between reducing sugars and amino compounds in barley malts [138].
Samaras et al. [19] noted that the concentrations of amino acids decreased with increased
heat treatment applied to barley grains in the production of speciality malts. The decrease
in amino acids was also attributed to the Maillard reaction level and sugar caramelisation
by Strecker degradation at higher temperatures [32,139]. This study showed that BGN
speciality malts varied in amino acid concentration due to the drying conditions; hence,
the base malt with the highest amino acid concentration could be optimised for production
to use as functional ingredients in food and beverage production.

2.7.2. Acids, Sugars, and Sugar Alcohol of Bambara Groundnut Speciality Malts

Lactic acid, a non-volatile organic acid, was present in all the BGN speciality malts,
where toasted malt (0.06 mg/g) had the highest content. There was a significant (p = 0.000)
difference in the lactic acid concentration for the base, caramel, roasted to toasted BGN
speciality malts. The higher lactic acid contents have been attributed to the kilning time
and temperature by [140]. Comparing two malting regimes of barley, South [141] noted
that kilning time is important for final lactic acid levels in malts, where long kilning times
lead to high levels of lactic acids. It was suggested that lactic acid must have been produced
by dividing the grain microbes of the malt during kilning. The concentrations of the acid,
sugar, and sugar alcohol in the BGN speciality malts are illustrated in Table 9.
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Table 9. Acid, sugars, and sugar alcohol concentration of speciality Bambara groundnut malts 1.

Acid, Sugar,
and Sugar

Alcohol (mg/g)

Bambara Groundnut Speciality Malts

Base Caramel Roasted Toasted

Lactic acid 0.04 ± 0.00 ab 0.01 ± 0.00 a 0.03 ± 0.00 ab 0.06 ± 0.00 b

Fructose 0.02 ± 0.00 a 0.07 ± 0.00 a 0.34 ± 0.03 b 0.02 ± 0.00 a

Sucrose 4.77 ± 1.10 a 5.27 ± 1.50 a 9.08 ± 3.10 b 6.33 ± 0.70 ab

Myo-inositol 0.04 ± 0.00 a 0.22 ± 0.10 ab 0.47 ± 0.10 bc 0.76 ± 0.40 c

1 Values are the mean of duplicates ± standard deviation, values in the same row with different superscripts are
significantly different (p ≤ 0.05).

Sugars and sugar alcohols consisting of fructose, sucrose, and myo-inositol were also
present in the BGN speciality malts in appreciable concentrations, as is illustrated in Table 9.
The toasted malt (0.76 mg/g) had the highest concentration of myo-inositol, while the
roasted malt had a higher concentration of fructose and sucrose at 0.34 and 9.08 mg/g,
respectively. However, the fructose and sucrose concentrations for the BGN speciality
malts were not significantly different. The varying concentration of sugars in the BGN
speciality malt was attributed to the intensity and duration of the heat applied during
kilning, resulting in Maillard reaction formation and sugar caramelisation common in
extremely roasted malts [19]. However, Almeida et al. [142] noted that sucrose is more
abundant in the pilsner malt (base malt variety) profiled by high-performance–liquid
chromatography (HPLC). However, it was suggested that the heat application during
kilning increased the sugar composition of the final malt product as sugar was used as
precursor for the thermally generated compounds [51]. Therefore, based on the sugar,
sugar alcohol, and acid concentration of the BGN speciality malt in this study, toasted malt
could be produced for its use in the production of various food products, particularly in
beverage industries.

2.7.3. Fatty Acids Methyl Esters (FAME) of Bambara Groundnut Speciality Malts

The FAME identified in the base, caramel, roasted, and toasted Bambara groundnut
speciality malts were palmitic, oleic, linolelaidic, linoleic, and arachidic acid, as illustrated
in Figure 7. The metabolite levels on the heatmap correspond to the colour temperature, and
higher temperatures indicate higher levels of FAME compounds. The BGN speciality malts
exhibited FAME in different concentrations. Linoleic acid was abundant in all the BGN
speciality malt types, while oleic acid was the lowest and was absent in the roasted malt.
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The major fatty acid components in raw BGN are caprylic, capric, lauric, palmitic,
palmitoleic, oleic, and linoleic acids [143,144]. Whereby linoleic acid was found to be the
highest fatty acid in raw BGN seeds [145], which could contribute to its concentration in
the speciality malts. Similar to this study, Özcan et al. [146] reported that linoleic acid
content in barley malt increased during the malting process (steeping, sprouting, and
drying), whereas oleic and palmitic acid content decreased. Bravi et al. [147] also noted
that the linoleic acid increased in barley malt after kilning, which could be why the BGN
speciality malt in this study exhibited high concentration. Furthermore, an increase in
heat application to linoleic acid has been found to increase its concentration, which was
attributed to varying lipids biosynthesis during the malting process [148–150]. Linoleic
acid, oleic acid, and palmitoleic acids are essential unsaturated fatty acids necessary in
human food to prevent certain heart diseases [143,151–154]. Therefore, being abundant in
the BGN speciality malt across all products could benefit human health and encourage its
production in large quantities.

2.7.4. Volatile metabolites in Bambara groundnut speciality malts

A total of 29 volatile metabolites were identified in the BGN speciality malts based
on retention times and mass spectrometric data from MS libraries by HS-GC-FID. The
volatile compounds consisted of pyrazine, furans, aldehydes, ketones, esters, and alcohols.
The most abundant volatile compound in the BGN speciality malts was the pyrazine,
2,5-dimethyl, higher in the toasted malt. Conversely, the lowest volatile compound was the
2,3,5-Trimethyl-6-ethylpyrazine in all the BGN speciality malts. The volatile compounds in
the speciality malts are on the heatmap illustrated in Figure 8.
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The most abundant volatiles in the BGN speciality malts were the pyrazines. Pyrazines
are volatile compounds with monocyclic aromatic rings with two nitrogen atoms. Foods
can contain different groups of pyrazines, which consist of alkyl, methoxy, and sulphur-
containing chains [155]. However, pyrazine, 2,5-dimethyl, is the most abundant in the BGN
speciality malts. It is characterised by chocolate and roasted nut flavours [156]. Thus, it is
an essential flavour compound in roasted food products, especially roasted coffee [157].
In addition, it is used as a flavour additive and odorant in foods such as cereals; it also
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occurs naturally in asparagus, green tea, crispbread, malt, raw shrimp, soya, and wheat
bread [158–161]. Its high concentration in the BGN toasted malt could be attributed
to the subjection to higher temperatures after initial drying of 50 ◦C. Methylpyrazine
volatile compounds, heterocyclic volatiles, are formed by the Maillard reaction and are
also common in the pyrolysis process at higher temperatures and with very low moisture
contents [139,162]. The pyrolysis process thus suggested that the maltol present in the BGN
speciality malts was formed in addition to Maillard reactions, which accounts for its higher
concentration in toasted malt due to its low moisture and high-temperature drying.

Maltol (3-Hydroxy-2-methyl-4-pyrone), a naturally occurring organic compound used
as a flavour enhancer, is found only in highly roasted speciality malts such as roasted and
toasted malts [163]. Maltol is formed due to the Maillard reaction and is characterised
by a sweet baked aroma typical in highly heated malts [139]. The impact of different
times and temperatures applied during the caramelisation process of roasted and toasted
malt developed the caramel-like flavour maltol [33]. Maltol is a safe, reliable, natural
antioxidant, food preservative, and flavour [164]. It is found in baked products, red ginseng
root, coffee, chicory, soybeans, bread crusts, and caramelised foods [35,165]. It has also been
used in catalysis, cosmetics, pharmaceutical formulation, and food chemistry [166,167]. In
addition, it can be used to treat anaemia, tumour, nerve cell oxidative stress, and kidney
damage [164,168]. Studies have also shown that maltol reduced acute alcohol-induced
liver injury, prevented oxidative injury through activating some signalling pathways, and
prevented cisplatin-induced acute kidney injury [169,170].

The lowest volatile compound was the 2,3,5-Trimethyl-6-ethylpyrazine, mainly in
roasted malt. It is a nitrogen-containing compound in the pyrazines group of volatile
heterocyclic [160]. It is characterised by an earthy, nutty, roasted flavour formed during
roasting at high temperatures between 135 and 250 ◦C [155]. It is also a chocolate enhancer
used in foods containing coffee, cocoa, meat, and potatoes as a roasted flavour [171].

The volatiles in the BGN speciality malts have flavour characteristics used in the food
industries to enhance and improve acceptability of food products for consumers [155,171].
These days, organic and natural labels have been gaining popularity as consumers become
more aware of the ingredients in their food. Due to the high demand of consumers to eat
organically grown food, the need for volatile flavours has increased, and there is a need to
extract these volatiles from natural products for use in food production [171–173]. Thus,
toasted malt with more abundant volatiles, such as maltol and pyrazine, 2,5-dimethyl,
could be used for food and beverage production. Moreover, the physicochemical and
biochemical characteristics of the speciality BGN malts and their syrups produced from
optimum amylase malt showed good characteristics that can be incorporated into food
production as ingredients or condiments.

3. Materials and Methods
3.1. Materials, Reagents, and Equipment Sources

The amylase-rich BGN malt, speciality malt, and syrups were obtained from the
Department of Food Science and Technology, Cape Peninsula University, South Africa.
Chemicals and reagents were of analytical standards. Alpha and beta-amylase kits were
from Megazyme Ltd., Ireland. The equipment was from the Department of Food Science
and Technology and Oxidative Stress Research Centre, Cape Peninsula University of
Technology, Cape Town, South Africa. Equipment included the Dumas nitrogen analyser
LECO CN 628 (Leco Corp., St Joseph, MI, USA). The Avanti®J-E centrifuge JSE111330
(Beckman Coulter Inc., Indianapolis, IN, USA), and Thermo Scientific MultiSkan plate
reader spectrophotometer (Thermo Scientific, Waltham, MA, USA). The other equipment
included the pH meter (Hanna Checker pH meter, Model HI1270), water bath, Colour Flex
EZ (Model TC-P III-A, Tokyo Denshoku Co., Ltd., Tokyo, Japan), and an Excalibur Food
Dehydrator (Excalibur, Sacramento, CA, USA).
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3.2. Bambara Groundnut Speciality Malts and Syrups Physicochemical Analysis
3.2.1. Colour Determination of Speciality Bambara Groundnut Malts and Syrups

Following the method of [174], the colour measurement of the Bambara groundnut
speciality malts and their respective extract syrups were analysed using Colour Flex EZ
(Hunter Lab, Reston, VA, USA) with daylight illumination set at D65, 10◦ standard observer
angle, and 25 mm aperture. The standard black (L* = 8.47, a* = −0.96, b* = 2.79) and
white (L* = 8.47, a* = −0.96 b* = 2.75) tiles were used for the instrument’s calibration. Five
grams (5 g) of the samples in triplicate was measured into a glass sample cup (Hunter Lab
04720900, 6.4 cm) with an internal diameter of 6.4 cm following the method by [175]. The
CIEL*a*b* (Commission Internationale de l’Eclairage’s) was used to measure the colour
parameters, where L* is 0 = black and 100 = white, a* is −a* = greenness, and +a* = redness
and b* is −b* = blueness and +b* = yellowness, respectively. As shown in Equations 1 and
2, the chroma and hue angle (h◦) were calculated following the method of [176].

C =

√
a∗2+b∗2 (1)

where C = chroma; a*2 = redness; b*2 = greenness.

ho = tan−1
(

b∗

a∗

)
(2)

where h◦ = hue angle; a*2 = redness; b*2 = greenness.

3.2.2. Determination of Speciality Bambara Groundnut Malts and Syrups pH

Ten milligrams (10 mg) of milled BGN speciality malts (BM, CM, RM, and TM) was
separately mixed with 40 mL of distilled water in a 50 mL centrifuge tube for 5 min using
a vortex mixer by following the [177] method with some differences. After mixing, the
centrifuge tubes containing the mixtures were kept for 1 h at ambient temperature and
centrifuged for 10 min at 1500× g. The supernatant’s (at room temperature) pH was
measured in triplicate using a laboratory pH meter calibrated with buffers 4 and 7 (Hanna
Checker pH meter, Model HI1270).

3.2.3. Protein Content Determination of Bambara Groundnut Speciality Malts and Syrups

Bambara groundnut speciality malts and syrups’ crude protein was determined using
the LECO CN 628 Dumas nitrogen analyser (Leco Corp, St Joseph, MI, USA). The samples
in triplicate were analysed after five blanks, EDTA standard, and ProNutro control sample.
The samples to the value of 0.09 mg were wrapped and tightly folded in tin foil cups,
P/N: 502-186-200, and combustion was carried out in pure oxygen at a temperature of
950 ◦C in the reactor consisting of the combustion catalyst. A mixture of gases containing
CO2, H2O, NO, and NO2 (carbon dioxide, water, and nitrogen) was created during the fast
combustion reaction. Designated columns absorbed the gases, where oxygen was removed,
and nitrogen oxides were converted into nitrogen. The remaining carbon dioxide (CO2)
and water (H2O) were removed via a thermal conductivity column carried by helium gas.
The nitrogen content was then measured by the Dumas Nitrogen analyser. Following
the [178] method, the crude protein was calculated by multiplying the protein factor of
6.25 expressed in percentage with the measured nitrogen.

3.2.4. Determination of Apparent Degree BRIX (◦Brix) of Bambara Groundnut Syrups

The method of Ofoedu et al. [69] was used to measure the total soluble sugar of the
syrups at a temperature of 20 ◦C with a handheld KERN-SOHN refractometer (KERN ORA
10 BA/BB Kern & Sohn, GmbH, Germany). First, the standardisation of the handheld
refractometer was carried out with distilled water at 20 ◦C until the Brix value read zero.
Then, one drop of each BGN syrup was dropped on the lens (sensitive surface) using plastic
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filling pipettes to take measurements. Finally, the total sugar contents (◦Brix) were read
from the refractometer scale in triplicate.

3.2.5. α- and β-Amylases Activities of Bambara Groundnut Speciality Malt Determination

Following the method of [179], the alpha and beta-amylase (α- and β-amylase) activi-
ties of the BGN speciality malts and syrups were determined in triplicates. Sections 1 and 2
detailed the determination of the α- and β-amylase enzymes through the enzymatic Cer-
alpha Method (K-CERA, Megazyme) and the enzymatic kit Beta-amylase (Megazyme,
K-BETA3).

Alpha-Amylase Assay Procedure (Ceralpha Method)

The milled BGN speciality malts and syrups of 3.0 g were measured separately into
50 mL conical flasks. Twenty millilitres (20 mL) of extraction buffer solution of pH 5.4 was
added to each flask and was stirred vigorously using the vortex mixer. The samples were
then extracted for 20 min at 40 ◦C in the incubator and occasionally stirred with a vortex
mixer. After extraction, 25 mL of each sample was measured into 50 mL centrifuge tubes
and centrifuged with Centrifuge 5810R at 1000× g for 10 min. Finally, the sample extracts
were separated into 25 mL centrifuge tubes for the assay procedure

The assay was carried out by measuring 0.2 mL aliquots of Megazyme unbuffered
amylase HR reagent containing blocked p-nitrophenyl maltoheptaoside (BPNPG7, 54.5 mg)
and thermostable α-glucosidase (125 U at pH 6.0) into 25 mL centrifuge test tubes. Then, the
0.2 mL amylase HR reagent and the sample extracts were preincubated at 40 ◦C for 5 min.
Next, the preincubated 0.2 mL of the samples was added directly to the tubes’ bottom
containing the 0.2 mL of the amylase HR reagent solution and incubated at 40 ◦C for 20 min.
Exactly 3 mL of stopping reagent (10 g of tri-sodium phosphate in 1 L of distilled water
pH adjusted to 11.0) was added immediately after incubation; the tubes were vigorously
stirred using a vortex mixer. The Thermo Electron Corporation MultiSkan Spectrum was
set at 400 nm against distilled water to read the absorbance of the solution in triplicate.

Beta-Amylase Assay Procedure (Betamyl-3 Method)

The BGN speciality malt and syrups (0.5 g) were weighed into 25 mL centrifuge tubes,
and 5 mL extraction buffer containing Tris/HCl 25 mL, 1 M, pH 8.0 plus disodium EDTA of
20 mM and sodium azide of 0.02% w/v diluted in distilled water was added. The enzymes
were allowed to extract for one hour at room temperature, with repeated stirring on the
vortex mixer. Then, the mixtures were centrifuged using the Eppendorf Centrifuge 5810 R
at 2000× g for 10 min. Immediately after centrifugation, 0.2 mL of the filtrate was added
to 4 mL of the dilution buffer containing MES dilution buffer 48 mL, 1 M, pH 6.2 plus
disodium EDTA 20 mM, BSA 10 mg/mL, and sodium azide of 0.09% w/v. The mixed
solution was then used for the assay of β-amylase activities.

The assay of the β-amylase was performed by placing an aliquot of 0.2 mL of the
diluted samples into the bottom of 25 mL centrifuge tubes. The tubes were preincubated
at 40 ◦C for 5 min, and after incubation, 0.2 mL of preincubated Megazyme Betamyl-3
substrate solution (p-nitrophenyl-β-D-maltotrioside (PNPβ-G3) plus β-glucosidase (50 U))
was added. Then, stabilisers were added to each diluted sample, and the vortex mixer was
used to stir the mixture. These mixtures were incubated at 40 ◦C for 10 min, after which
3.0 mL of the stopping reagent (10 g of Tris buffer (Megazyme cat. No. B-TRIS500)) in
900 mL of distilled water, pH adjusted to 8.5 was added, and the contents stirred with
the use of the vortex mixer. The absorbance of the solution and reagent blank reading
was read at 400 nm against distilled water with a Thermo Scientific MultiSkan microplate
spectrophotometer.
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3.2.6. Total Polyphenols and Antioxidants Activities of Bambara Groundnut Speciality
Malt Determination

Followed the methods of [116,180,181], the total polyphenols and antioxidants activities
of the BGN speciality malts determinations were carried out with the Folin–Ciocâlteu reagent
(FCR), ferric-reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH)
assays, as explicated in the following three sections.

Total Polyphenols Content by Folin–Ciocâlteu Reagent (FCR) Assay

Five hundred milligrams (500 mg) of BGN speciality malt and syrups was measured
into screw-cap tubes to determine the total polyphenols with gallic acid as the standard.
The BGN speciality malt and syrups were extracted with 10 mL of 70% methanol mixed
with 0.1% HCL. The samples were then centrifuged after mixing with a vortex mixer using
the Eppendorf Centrifuge 5810 R at 4000× g, 21 ◦C for 5 min. The Folin–Ciocalteu assay
was carried out by measuring 25 mL of the decanted liquids and mixing it with 125 µL of
0.2 M Folin–Ciocalteu reagent and 100 µL of 7.5% Na2CO3 solution in 96-well transparent
plate. The absorbance was read in triplicate with a Thermo Scientific MultiSkan microplate
spectrophotometer reader (734 nm at 25 ◦C) after a 2 h incubation period. The standard
calibration curve was constructed with 40 mg gallic acid (Sigma Cat Nr: G7384). The results
were expressed as mg Gallic acid equivalents (GAE)/g).

Antioxidant Activities by Ferric-Reducing Antioxidant Power (FRAP) Assay

Bambara groundnut speciality malt and syrups of 500 mg were weighed into 50 mL
screw-cap tubes. Ten millilitres of 70% methanol (containing 0.1% HCl) was added to the
samples in the screw-cap tubes. The samples were mixed with a vortex, then centrifuged
at 4000 rpm for 5 min and the supernatants (10 µL each) were pipetted into microplate
wells in triplicates. Three hundred microlitres (300 µL) of the FRAP reagent was added to
each sample in the microplate wells. Ascorbic acid was the standard, and distilled water
was the blank. The samples were incubated for 30 min at 37 ◦C, and absorbance was read
at 593 nm. The Thermo Scientific MultiSkan microplate spectrophotometer was used for
reading absorbance. The results were expressed as mg ascorbic acid equivalents (AAE)/g.

Antioxidant Activities by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Assay

The Bambara groundnut speciality malts and their syrup free radical scavenging ability
were determined using the DPPH radical (25 mg/L) in 70% methanol. Each of the samples
was mixed with 0.275 mL DPPH solutions. The samples and standards were incubated at
37 ◦C for 30 min in the dark, and absorbance reactions were read at 517 nm. The Thermo
Scientific MultiSkan microplate spectrophotometer was used for reading absorbance. The
standard was Trolox, and results were expressed as µmole Trolox/g.

3.2.7. Metabolite Profiling of Bambara Groundnut Speciality Malt

The metabolite profiling was carried out on the Bambara groundnut speciality malts.
The sugars, sugar alcohols, organic acids, and amino acids were profiled by capillary gas
chromatography–mass spectrometry (GCMS) [182–186]. A gas chromatography–flame
ionisation detector (GC-FID) was used to analyse the fatty acid methyl esters (FAME) [187].
A headspace gas chromatography–flame ionisation detector (GC-FID) was used to analyse
the fatty acid methyl esters (FAME) and volatile compounds [188].

Determination of Fatty Acids Methyl Esters (FAME) and Hydrocarbons by Gas
Chromatography–Flame Ionisation Detection (GC-FID)

The analysis of fatty acid and hydrocarbons was carried out by extracting and convert-
ing the BGN speciality malt lipids into fatty acid methyl esters (FAME). The extraction was
carried out using diethyl ether and petroleum ether in methanol. A model Agilent 7890A
gas chromatography (GC) coupled with Flame Ionisation Detection (GC-FID) was used for
detection according to the [188] method, 996.06 with some modifications.
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The BGN speciality malts of 1.5 mg were weighed into the separate 70 mL test tubes
to digest. The tube’s contents were thoroughly mixed with 100 mg of pyrogallic acid,
2 mL internal standard solution of 5 mg/mL undecanoic acid dissolved in hexane, and
2 mL ethanol. Immediately after mixing, 10 mL of 32% HCL was mixed into each tube.
The tubes were then placed in a 70–80 ◦C water bath for 40 min, and the contents were
mixed every 10 min. After digestion, the tubes were removed and allowed to cool to room
temperature. The 25 mL diethyl ether was added to each tube and shaken for 5 min for
extraction. Petroleum ether of 25 mL was further added and shaken for 5 min. After
separating the two layers, the clear upper layer was decanted into 150 mL beakers, and
ether was evaporated in the fume hood to dryness.

Derivatisation of the samples was carried out by reconstituting the residues in 3 mL
chloroform and diethyl ether. The solutions were transferred into 10 mL tubes and evapo-
rated under the nitrogen stream to dry. Immediately after drying, 2 mL of 2% H2SO4 in
methanol reagent and 1 mL toluene were added. The tubes were tightly closed and placed
in the incubator at 100 ◦C for 45 min, then cooled to room temperature. After cooling, 5 mL
distilled water and 1 mL hexane were added and thoroughly shaken, using the vortex mixer
for 1 min. The layers were left to separate, and the top layers were carefully transferred to
20 mL test tubes. Approximately 1 g anhydrous Na2SO4 was added to each tube to have
a clear solution. The clear solutions were then transferred into 2 mL clear vials, and GC
analysis was carried out. Fatty acids were identified by comparing their retention times to
the retention times of the standard.

Sugars, Acids, and Sugar Alcohols Determination by Gas Chromatography–Mass
Spectrometry (GC-MS)

Sugars, sugar alcohols, and organic acids were analysed using GCMS by measuring
1 mL of 70% methanol (MeOH), then adding approximately 100 mg of the BGN speciality
malts and extracting at 45 ◦C in the oven for 3 hours. The extracted samples of 130 µL were
dried completely with a gentle stream of nitrogen and derivatised with 100 µL of methox-
amine at 40 ◦C for 2 h. Then, 30 µL of N, O-Bis (trimethylsilyl) trifluoroacetamide (BSTFA)
was added and derivatised at 60 ◦C for 30 min. Finally, the samples were transferred into
2 mL GC vials, and 1 µL was injected onto the GC-MS in spit-less mode.

Separation was performed on a gas chromatograph (Trace 1300, Thermo Fisher Scien-
tific S.p.A., Strada Rivoltana 20090 Rodano-Milan, Italy) coupled with a mass spectrometer
(TSQ 8000, Thermo Scientific). The carbohydrates were separated on a non-polar capillary
column Rxi-5Sil MS (30 m, 0.25 mm ID, 0.25 µm film thickness). Helium was used as the
carrier gas at a 1 mL/min flow rate. The injector temperature was maintained at 250 ◦C. The
oven temperature was 80 ◦C for 1 min and was ramped up to 300 ◦C at a rate of 7 ◦C/min
and held for 2 min.

Amino Acids Determination by Gas Chromatography–Mass Spectrometry (GC-MS)

Following the method of [189] with a little difference, 3 mL of 6M HCl was added to
ca. 500 mg of the BGN speciality malts (BM, CM, RM, and TM). They were hydrolysed for
24 h at 110 ◦C, cooled down to room temperature, and diluted at a ratio of 1:9 with 70%
methanol (v/v). Next, 100 µL was transferred into a 2 mL tube and dried completely under
a gentle stream of nitrogen. Then, the samples were reconstituted and derivatised with
30 µL silylation reagent N-tert-butyldimethylsilyl- N-methyl trifluoroacetamide (MTBSTFA)
and 100 µL acetonitrile at 100 ◦C for 1 h. After which, they were cooled down to room
temperature and injected into the GC-MS instrument for analysis.

Component separation was performed on a gas chromatograph (Trace1300, Thermo
Fisher Scientific S.p.A., Strada Rivoltana 20090 Rodano-Milan, Italy) coupled to a TSQ8000
mass spectrometer (Thermo Scientific). The GC-MS system was connected to a TriPLUS
autosampler. Amino acids were separated on a capillary column Rxi-5Sil MS (30 m,
0.25 mm ID, 0.25 µm film thickness). Helium was used as the carrier gas at a 1 mL/min
flow rate, and the injector temperature was maintained at 250 ◦C. In addition, 1 µL of
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the sample was injected in spit-less mode. The oven temperature was programmed to
100 ◦C for 1 min and ramped up to 300 ◦C at a rate of 15 ◦C/min and held for 6 min. The
Agilent mass spectrometer detector (MSD) was operated in scan mode, and the source
and quad temperatures were maintained at 250 ◦C and 150 ◦C, respectively. The transfer
line temperature was maintained at 250 ◦C. The mass spectrometer was operated under
electron impact (EI) mode at ionisation energy of 70 eV by scanning from 35 to 650 m/z.

Volatile Compounds Determination by Headspace Gas Chromatography–Mass
Spectrometry (HS-GC-MS)

The headspace gas chromatography–mass spectrometry (HS-GC-MS) analyses were
performed using a model Agilent 7890B Gas Chromatography–5977A coupled with a Mass
Spectrometer detector system (Agilent Technologies, Santa Clara, CA, USA) with a split-
less injector that is suitable for GC analysis by following the method of [187] with some
differences. The Agilent J&W GC HP-5ms capillary column of 30 m × 0.25 mm × 0.25 µm
was used to separate the volatiles. The carrier gas was helium, with a 0.6 mL/min flow rate.
Two hundred and fifty microlitres of the speciality malts volume was injected with a split
ratio of 50:1 and weighed into 10 mL glass headspace vials covered with silicon septum
with a purge flow of 3 mL/min and screw-capped. The oven temperature was 50 ◦C, held
for 5 min, increased at 10 ◦C/min to 200 ◦C and held for 5 min with a running time of
25 min. The injector temperature, pressures, and volume were set at 240 ◦C, 2.6149 psi, and
250 µL, respectively. The incubation temperature and time were set at 120 ◦C and 300 s,
respectively. The samples were then run concurrently.

The compounds were identified through Wiley mass spectral (MS) library and Golm
metabolome database search. The volatile compounds identification was performed by
comparing the mass spectra with the spectra of the reference compounds in both the Wiley
MS library and was verified based on mass spectra obtained from the literature. The volatile
results were provided based on the compounds’ quality and peak area counts.

3.3. Identification of Metabolite Compounds

Identification of BGN speciality malt constituents was performed by comparing the re-
tention times and mass spectra with reference compounds. Moreover, it was conducted by
comparing mass spectra with the entries of the National Institute of Standards and Technol-
ogy mass spectra library NIST02 and the GOLM metabolome database [183,184,186,190].

3.4. Statistical Data Analysis

All results were reported as mean ± standard deviation of three independent trials.
Multivariate analysis of variance (MANOVA) was used to establish differences between
treatments. Duncan’s multiple range test was used to separate means where significant
differences existed ((SPSS version 26.0, IBM Corporation, Armonk, NY, USA)). Kruskal–
Wallis test was used to test the distribution of protein when normality is violated to
determine the mean differences between treatments.

4. Conclusions

This study successfully produced speciality Bambara groundnut malts and their corre-
sponding syrups from the amylase-rich green BGN malts steeped at 36 h and sprouted at
96 h. The speciality malts and syrups exhibited colours desirable in the food industries,
which could be used to impact different shades of colours as ingredients in product for-
mulation in baked goods. The BGN speciality malt syrups exhibited a similar pH range to
malted barley syrup, making it a functional ingredient in the beverage industries. Bambara
groundnut speciality roasted malt and toasted malt syrup exhibited favourable protein con-
centration compared to base and caramel malts, which could benefit human health when
consumed. The enzyme activities were affected by heat application during malt kilning and
extract boiling due to the heat-sensitive nature of the α- and β-amylases. However, boiling
at temperatures lower than 60 ◦C could be recommended for the production of BGN syrups
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with higher amylase concentrations. The toasted malt and its syrup exhibited the highest
total polyphenolic and antioxidant activities, which could make it a desirable functional
food product ingredient. The ◦Brix of the roasted malt syrup was the highest, which could
be a desirable attribute in producing non-alcoholic beverages by adding natural sweetness
to the product, and which can be of benefit to consumers who are health-conscious. The
profile of metabolite components in the speciality BGN malt included amino acids, fatty
acid methyl esters, sugars, sugar alcohol, acid, and volatiles. The metabolites identified
in the BGN speciality malt could add value to the sensory properties and nutritional and
functional characteristics of BGN seeds. Thus, the speciality Bambara groundnut malt
possesses components that can be incorporated into human diets for their health benefits.
Hence, its use in the food and beverage industries should be encouraged.
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