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AbsTRACT
In order to optimally refine the multiple emerging 
drug targets for hepatitis B virus (HBV), it is vital to 
evaluate virological and immunological changes at 
the site of infection. Traditionally liver biopsy has been 
the mainstay of HBV disease assessment, but with the 
emergence of non-invasive markers of liver fibrosis, 
there has been a move away from tissue sampling. Here 
we argue that liver biopsy remains an important tool, 
not only for the clinical assessment of HBV but also 
for research progress and evaluation of novel agents. 
The importance of liver sampling has been underscored 
by recent findings of specialised subsets of tissue-
resident immune subsets capable of efficient pathogen 
surveillance, compartmentalised in the liver and not 
sampled in the blood. Importantly, the assessment of 
virological parameters, such as cccDNA quantitation, also 
requires access to liver tissue. We discuss strategies to 
maximise information obtained from the site of infection 
and disease pathology. Fine needle aspirates of the 
liver may allow longitudinal sampling of the local virus/
host landscape. The careful utilisation of liver tissue and 
aspirates in conjunction with blood will provide critical 
information in the assessment of new therapeutics for 
the functional cure of HBV.

The bACkdRop
Viral hepatitis remains the seventh most common 
cause of death worldwide, with mortality increasing 
sharply in the last decade to levels on the scale of 
HIV, tuberculosis or malaria.1 The dramatic recent 
progress in hepatitis C treatment means that this 
infection can now be cured with short courses of 
direct-acting antivirals, shifting the impetus to better 
case-finding and enhancing accessibility to these 
effective but expensive drugs. By contrast, hepatitis 
B can still only be cured in a tiny minority of the 
estimated 240 million people chronically infected 
with this virus. Reducing new infections by vacci-
nation and other preventative measures remains 
of paramount importance and in this regard, it is 
welcome news that the UK joined other EU nations 
with universal hepatitis B virus (HBV) vaccination 
of all neonates in 2017. For those already infected 
with HBV, there is the prospect of better treatments 
on the horizon, with efforts and expectations in 
academia and industry being dramatically intensi-
fied in response to progress in the fields of hepatitis 
C virus (HCV) infection and cancer. There is now a 
worldwide call for wider access to existing suppres-
sive therapies, to be followed by attempts to achieve 
the state of functional cure seen following natural 
resolution of acute infection, with minimal residual 

virus kept under long-term immune control without 
the need for ongoing antiviral drugs.2 3 

HBV is an hepatotropic virus, so the site of viral 
replication and disease pathogenesis is within the 
liver. Traditionally, a mainstay of management has 
therefore included assessment of liver histology 
using tissue obtained by a needle core biopsy. This 
remains the most accurate way of definitively 
assessing the degree of liver fibrosis for initial 
HBV disease staging and of ruling out other causes 
of liver disease. There is a strong case for the 
continued assessment of liver histology in combi-
nation with serological markers for treatment deci-
sions, particularly in ambiguous cases. In addition, 
their use may instigate other clinical investigations 
(eg, gastroscopy to exclude portal hypertension), in 
cases where advanced liver disease is detected. Liver 
biopsy is, however, no longer the standard of care 
in a number of clinics due to the advent of non-in-
vasive methods of fibrosis assessment.4 5 The use 
of transient elastography (TE) and serum markers 
to assess fibrosis, along with indirect assessment of 
liver inflammation/damage by serum transaminases 
and quantitation of circulating hepatitis B viral 
load and antigens is increasingly being regarded 
as an adequate alternative. This is reflected in 
recent updates to national and international clinical 
practice guidelines in which TE is recommended 
as the first-line modality for disease assessment, 
with liver biopsy reserved for indeterminate cases 
(figure 1).6–13 The move away from liver biopsies 
in routine HBV assessment is likely influenced by 
the fact that their use in HCV disease management 
has been rendered almost redundant. However, the 
place of liver biopsy in the management of chronic 
hepatitis B infection (CHB) is currently a subject of 
much debate.

TE, using FibroScan, allows rapid assessment 
of liver stiffness by employing a shear-wave to 
measure vibration-velocity, a technique previously 
used in the food industry to gauge the maturity 
of cheese.14 TE, and serum-based markers such 
as the enhanced liver fibrosis test (ELF)15 16 have 
some advantages (table 1) including better patient 
acceptability and suitability for longitudinal 
assessment. However, their major disadvantage is 
limited validation and lower diagnostic accuracy 
in HBV, particularly with coincident inflamma-
tion or steatosis.5 17 18 Liver biopsy remains the 
‘gold standard’ for the definitive assessment of 
HBV disease stage (table 1) and the availability 
of different techniques (Box) allows selection of 
the most appropriate for each case in order to 
minimise the small overall risk. Liver biopsy, as 
discussed below, is subject to sampling error and 
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should, ideally, be complemented by non-invasive assessments 
conducted in parallel and then used for follow-up for the clin-
ical management of HBV.

In this article, we argue that liver biopsy remains an 
important tool in the majority of patients with HBV infec-
tion, for clinical disease assessment and for research prog-
ress and evaluation of novel agents (table 1). Even in cases 
where the information gleaned may not directly alter patient 
management, it is pivotal for the optimisation of future ther-
apeutics, and an argument can therefore be made to seek 
ethical approval for such sampling. We review new findings on 
compartmentalisation within the liver, including a population 
of tissue-resident T cells capable of acting as local specialists 
in immune defence. On the basis of the many crucial aspects 
that cannot be assessed in the blood, we propose that liver 
biopsy should remain part of disease assessment in CHB and 
be prioritised in the evaluation of new strategies for functional 
cure of HBV.

WhAT We CAn sAmple in The blood
immune parameters
Most studies of HBV immune responses in humans have relied 
solely on blood sampling; many clear-cut changes have been 
detectable and useful insights into disease pathogenesis have 
been made. In a few studies, responses studied thoroughly in the 
periphery have been compared with those within intrahepatic 
lymphocytes by paired sampling of the liver in a small subset of 
donors.19–27 Until recently, such comparisons had generally vali-
dated blood monitoring, showing that findings made from the 
periphery were representative of their intrahepatic counterparts, 
with the same responses and features simply being present in a 
more exaggerated form in the liver (figures 2 and 3). HBV-spe-
cific CD8 T cells, critical for antiviral control, were found to 
be present at higher frequency in the liver than the blood but 
retained the same inverse correlation between frequency and viral 
load in both sites.19 24 It has been possible to define important 

Figure 1 Historical progression of the modality of liver disease assessment as outlined in national and international clinical practice guidelines for 
hepatitis B virus. CHB, chronic hepatitis B; NICE, National Institute for Health and Care Excellence; TE, transient elastography.

Table 1  Advantages and disadvantges of liver biopsy sampling, transient elastography and non-invasive markers of fibrosis  

liver biopsy Te and non-invasive markers of fibrosis

Advantages  ► Definitive histological diagnosis*
 ► Allows exclusion of other liver diseases* 
 ► Accurate fibrosis stage* 
 ► Additional assessment of necroinflammatory reaction and steatosis*
 ► Validated score for HBV* 
 ► Helpful for delineation in intermediate disease*
 ► Surplus tissue and slides stored for retrospective analysis*† 
 ► Tissue availability for routine HBV virological assessment (HBsAg staining)*† 
 ► Tissue availability for state-of-the-art virology (eg, cccDNA, integrated DNA)† 
 ► Tissue availability for state-of-the-art immunology research (eg, resident lymphocytes, HBV-

specific T cells)† 

 ► Minimal risk*
 ► Easy to perform*
 ► Lower cost per test*
 ► Painless, good patient acceptability
 ► Immediate results available at ‘point of care’‡*
 ► Easily repeated, allows longitudinal assessment*

Disadvantages  ► Invasive, bleeding risk (0.01% mortality)*
 ► Pain-related morbidity, variable patient acceptability*
 ► Sampling error*
 ► Contraindicated in certain cases*
 ► High cost per test*

 ► Costly equipment‡*
 ► Technical expertise required‡*
 ► Unreliable in obese patients‡*
 ► Skewed results with deranged LFTs‡*
 ► Optimal cut-off levels not validated in HBV*

*Relevant for clinical purposes.
†Relevant for research purposes.
‡Relevant to TE only.
cccDNA, covalently closed circular DNA; HBV, hepatitis B virus; HBsAg, hepatitis B surface antigen;  LFT, liver function test; TE,  transient elastography .
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mechanisms constraining these antiviral responses within the 
blood, such as their expression of the coinhibitory molecule 
programmed cell death protein 1 (PD-1), the death receptor, 
TNF-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) 
and the oxidative stress ligand MHC class I polypeptide-related 

sequence A  (MICA), although these changes became far more 
evident when examining their intrahepatic counterparts.24 26 28 29

Similarly, we were able to detect an expansion of granulo-
cytic myeloid-derived suppressor cells correlating with disease 
activity in the circulation of patients with CHB, although in the 
liver this population was further expanded, expressing a more 
immunoregulatory phenotype (increased arginase I and degran-
ulation, marked by increased surface expression of CD63).30 
Other immune responses, such as B cells, are not enriched in 
the liver and, along with antibody responses, are easily studied 
in the periphery31; however, their further evaluation in the liver 
remains important in light of work suggesting they can play 
local pathogenic roles in HBV.32 Crucially, as discussed below, it 
has now become evident that some specialised immune popula-
tions are completely compartmentalised in the liver, making the 
blood only one component of an adequate assessment of HBV 
immunity.

Virological parameters: emerging surrogates of covalently 
closed circular dnA in the periphery
The study of covalently closed circular DNA (cccDNA), the 
episomal viral genome of HBV within hepatocyte nuclei, 
remains of critical importance as extensive efforts are made to 
develop therapeutic approaches to degrade or silence it. A major 
barrier to progress in the field has been the inability to accurately 
measure cccDNA in blood and assays for its determination in the 
periphery are likely to face many hurdles.33 While serum HBV 
DNA and hepatitis B envelope antigen (HBeAg) status remain 
the foundation of virological assessment in today’s clinic, they 
provide limited information on cccDNA.34–36 This has led to 
a rigorous search for surrogates of cccDNA in the periphery.37 
Progress in this sphere will be dependent on access to liver tissue 
to validate the utility of any putative new marker. In recent 

box Types of liver biopsy

 ► Percutaneous biopsy:
 – Palpation/percussion guided or image-guided; 

transthoracic approach most common, subcostal approach 
may be used*

 ► Transvenous biopsy:
 – Transjugular/transfemoral approach. Required in patients 

with clotting abnormalities and ascites and for indications 
where free/wedge hepatic vein pressure measurements are 
required.

 ► Laparoscopic/surgical biopsy:
 – May be performed at time of surgical intervention. Liver 

can be directly visualised thus tissue yield is good, but 
general anaesthesia is required.

 ► Coaxial biopsy:
 – Needle puncture device through which smaller needle 

biopsies are performed. Multiple passes through this 
approach can be performed.

*Percutaneous biopsies can be performed with core aspiration needles; 
Menghini, Jamshidi or Klatskin. Usually performed with 16G needle 
which provides better cores, 18G needles may be used which may be 
better accepted by patients, but cores may be more fragmented. Sheath 
cutting needles may also be used (Tru-cut), usually smaller gauge, but 
sample may be less fragmented.

Figure 2 Schematic of A) peripheral and B) intrahepatic lymphocyte populations depicting examples that can be sampled from both sites but have 
an exagerated phenotype in the liver and others that are unique to the liver.
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years, quantitative HBsAg (qHBsAg), which is readily measured 
in the serum, has been proposed as a robust measure of cccDNA 
transcription. However, recent findings suggest that in patients 
with HBeAg-negative disease and those who have received long-
term nucleos(t)ide analogues (NAs), integrated DNA, rather than 
cccDNA, is a major source of circulating HBsAg.38 39 In addition, 
the quantity of HBsAg measured in the serum as free HBsAg has 
the possibility of being confounded by the presence of immune 
complexes with coexisting anti-HBs, or the emergence of pre-S/S 
variants preventing HBsAg release from hepatocytes, thus giving 
an unreliable measurement of total HBsAg.40 41 Future assays 
will aim to distinguish the small, medium and large constituent 
proteins of HBsAg, as well as that derived from cccDNA versus 
integrated DNA.

More recently, hepatitis B core-related antigen (HBcrAg) has 
emerged as a potentially more accurate surrogate for cccDNA 
than qHBsAg. Assays for ‘core-related antigen’ measure dena-
tured HBeAg, HBcAg and the pre-core protein (aa28 to aa15)42 
using a chemiluminescent enzyme immunoassay and reflect the 
sum of complete virions (with rcDNA or viral RNA), empty 
virions and secreted HBeAg. When HBV DNA becomes unde-
tectable on NA therapy, HBcrAg should better reflect the quan-
tity and transcriptional activity of cccDNA than qHBsAg, since 
it is unlikely to be produced by integrated DNA. In line with 
this, studies have shown that HBcrAg correlates with intrahe-
patic cccDNA both in treatment naïve patients43 and in those 
treated with NAs,44 although these findings have yet to be vali-
dated across all patient groups and genotypes.

HBV RNA can also be measured in the serum. It is packaged 
within nucleocapsids and both full-length and truncated RNA 
forms can circulate in patients.45 Prior to HBeAg seroconversion, 
HBV RNA levels are thought to fall and thus can predict HBeAg 
seroconversion.46 Levels of HBV RNA are also presumed to 
reflect intrahepatic cccDNA transcription. During NA therapy, 
pregenomic RNA from ongoing cccDNA transcription can no 
longer be reverse transcribed and instead accumulates and is 
encapsidated; secreted levels may serve as a predictor of viral 
rebound.47 However, no commercial assays are available for 
detecting HBV RNA levels and thus its utility as a surrogate for 
intrahepatic cccDNA remains unclear at this juncture.

WhAT We ARe missing in The blood
histology
Histology provides a more detailed assessment of the liver, 
reflecting cumulative damage over time in addition to ongoing 
inflammation. A recent meta-analysis of 683 patients has 
shown that even with slight increases in alanine aminotrans-
ferase (ALT), a substantial number of patients (up to 50%) have 
significant fibrosis.48 Moreover, in patients with normal serum 
ALT and levels of HBV DNA between 2000 and 20 000 IU/mL 
(so-called grey-zone patients), significant levels of fibrosis have 
been reported.49 We have previously shown that patients consid-
ered ‘immune tolerant’ (HBeAg+chronic infection) had levels 
of fibrosis similar to those found in patients labelled immune 
active (HBeAg±chronic hepatitis), notwithstanding differences 
in biochemical and virological parameters.50

Validated histological scoring systems are used in HBV; Ishak, 
Knodell and METAVIR being routinely used to assess disease 
activity.51 However, the potential for sampling error and interob-
server/intraobserver variability may lead to inaccuracy of fibrosis 
staging from liver biopsy alone. New methods of tissue image 
analysis to detect collagen proportionate area52 and collagen 
scoring by novel tools such as second harmonic imaging53 will 

reduce subjectivity. A liver biopsy can additionally be used to 
identify the coexistence of other diseases; in particular coinci-
dent steatosis and non-alcoholic steatohepatitis, an increasingly 
common comorbidity, would be indistinguishable from HBV-re-
lated liver inflammation without a biopsy.54 The ability to score 
interface hepatitis, confluent necrosis, portal inflammation, focal 
lytic necrosis, apoptosis and focal inflammation, which consti-
tute the histological activity index/necroinflammatory index, is 
unique to histological assessment of liver tissue.55

Beyond diagnostic evaluation, additional immunohistochem-
ical staining can be undertaken, providing novel insights into 
HBV immunopathogenesis. Combining histochemical analysis of 
liver injury with specialised stains of paraffin-embedded sections 
for immune cell distribution can provide valuable insights into 
HBV pathogenesis. For example, interleukin (IL)-17-producing 
CD4 T cells were seen to accumulate in the lobular and portal 
areas of livers with HBV-related injury, suggesting a role in 
disease pathogenesis.56 Localisation of natural killer (NK) cells 
in areas of hepatic necrosis implicated them in HBV-related liver 
damage57; NK cells expressing the death ligand TRAIL, and 
hepatocytes expressing the death-inducing receptor TRAIL-R2, 
were both increased on histological staining of HBV-infected 
livers, pointing to a pathogenic role for this pathway.21 Much 
remains to be learnt from more in-depth histology, to assess the 
topological relationship between viral particles, immune infil-
trates and disease pathology using newly available multiparam-
eter analysis, as discussed below.

immunological features of the liver
The liver has an immunological composition which is distinct 
from blood or other lymphoid and non-lymphoid organs. Its 
inherent cellular composition is strikingly different, and even 
when circulating cell types pass through the liver they may be 
differentially shaped by the local milieu of cytokines, nutrients 
and hypoxia; these influences are likely to be exaggerated by the 
sluggish blood flow through the narrow-lumen vascular bed of 
the sinusoids.58 In addition to the parenchymal cells (hepato-
cytes) that HBV replicates within, the liver contains unique 
non-parenchymal cell types including specialised scavengers/
antigen-presenting cells such as liver sinusoidal endothelial cells 
and Kupffer cells (liver-specific macrophages) that can influ-
ence neighbouring lymphocytes.58 59 Although Kupffer cells are 
the largest macrophage population in humans, they have been 
difficult to study due to lack of adequate markers to distinguish 
them from liver-infiltrating monocytes.60 They contribute to the 
tolerogenic environment provided by the liver, by producing 
immunosuppressive cytokines such as IL-10 and transforming 
growth factor-β (TGF-β).61

The intrahepatic lymphocyte population is very different from 
blood (figure 3); for example, the liver is selectively enriched for 
CD8 rather than CD4 T cells, a reversal of the situation in the 
blood. While classical Tregs (CD25+FoxP3+CD4+) have been 
identified in both blood and liver of patients with CHB,62–65 an 
atypical regulatory population of CD25-FoxP3+CD4+T cells 
has been found to be unique to the liver.66 The large population 
of CD8 T cells in the liver is dominated by memory subsets, with 
significantly less naïve CD8 T cells than blood.67 NK cells are 
much more prevalent in the liver than other peripheral tissues 
(with the exception of the uterus),68 accounting for up to 40% 
of all intrahepatic lymphocytes.57 69 More recently, it has been 
recognised that mucosal-associated invariant T cells are another 
innate-like cell that preferentially accumulate within the liver, 
at higher frequencies than either the blood or gut.70 In addition 
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to their T cell receptor (TCR)-dependent recognition of MHC 
class I-related molecule-presented bacterial riboflavin deriva-
tives, they can be activated in a TCR-independent manner by 
viral infection or toll-like receptor (TLR)-8 agonists to produce 
substantial quantities of interferon-γ (IFN-γ)71 72; as with NK 
cells, this requires accessory cell production of IL-12/IL-18.73 
Other non-conventional T cells enriched within the liver include 
γδ-T cells.74

immunological compartmentalisation in the liver
We have characterised a novel population of tissue-resident 
memory T cells (TRM) that can persist long term in the human 
HBV-infected liver and do not recirculate. These CD8 T cells 
have specialised adaptations for maintaining antiviral surveil-
lance within the tolerogenic liver environment. We find liver-res-
ident CD8 T cells,75–78 defined by the coexpression of retention 
markers CD69 and CD103 and by a unique transcription factor 
profile (T-betloEomesloBlimp-1hiHobitlo; figure 2), within both 
healthy and HBV-infected livers but never in the blood.67 Impor-
tantly, they are selectively increased in patients with well-con-
trolled HBV infection, contain T cells specific for epitopes from 
all major HBV proteins and survive in the liver even after resolu-
tion of infection. All intrahepatic T cells express more PD-1 than 
those in the circulation but levels of this coinhibitory receptor 
are significantly higher on CD8 TRM. Despite this, CD8 TRM are 
able to produce antiviral cytokines rapidly on restimulation, 
perhaps as a result of their high cell-autonomous IL-2,67 which 
has been shown to overcome PD-1-driven exhaustion.79 By 
contrast, liver CD8 TRM have lower granzyme expression than 

other non-resident intrahepatic CD8 T cells, suggesting they 
may be adapted to favour non-cytolytic over cytolytic antiviral 
function in order to preserve organ integrity.67 80 Thus, a large 
fraction of HBV-specific T cells are compartmentalised within 
the liver, restrained by high PD-1 to avoid excessive prolifera-
tion and senescence and allow long-term persistence, yet poised 
for rapid frontline protection.81

The presence of a population of memory CD8 T cells 
persisting within an organ long after infection resolution, yet 
retaining immediate antigen-specific effector function, was orig-
inally described for a neurotropic influenza virus 20 years ago.82 
In recent years, the concept of tissue-resident memory T cells has 
received a lot more attention, with elegant murine and human 
studies revealing their very high frequency among memory pools 
in many organs and their key role in both pathogen protection 
and disease pathogenesis.83–85 Many of the adaptations that 
we noted in liver TRM such as rapid effector function despite 
inhibitory receptors, and low turnover, are core features shared 
between human TRM in different tissues,86 whereas others, such as 
the capacity to patrol and remain within the sinusoids (through 
expression of lymphocyte functional-associated antigen-1 and 
CXCR6), are liver-specialised characteristics.75–77 87 88

The finding that a population of HBV-specific CD8 T cells with 
TRM characteristics can survive within the liver following HBV 
resolution provides a blueprint for future therapeutic attempts 
to achieve functional cure. It remains to be seen whether the 
cytokine signals (sequential IL-15 and TGF-β) that we found 
could impose the liver-resident signature on peripheral T cells in 
vitro, will have therapeutic applicability.67 Critically, it will not 

Figure 3 Relative frequencies of lymphocyte subsets between the blood and the liver (key indicates relative abundance between the two sites, not 
between different cell types).
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be possible to evaluate whether future novel immunotherapeutic 
strategies for HBV are harnessing or recapitulating this resident 
population, as recently described for a malaria vaccine,89 unless 
the liver is sampled. Likewise, it will be difficult to fully under-
stand the constraints that persisting HBV-specific T cells have to 
operate under, and their range of adaptations, unless those that 
live exclusively in the liver are studied.

The phenomenon of specialised lymphocyte populations 
being retained within the liver and not amenable to sampling in 
the blood is not restricted to CD8 TRM. Tissue-resident memory 
CD4 T cells are also well-described in other settings and may well 
play a role in CHB and there are likely other subsets of liver-res-
ident cells yet to be defined. Another liver-resident population 
that has come to light recently is a subset of NK cells expressing 
high levels of CXCR6,90 again with a distinctive transcriptional 
profile: TbetloEomeshi (figure 2).91 92 Analysis of human liver 
allografts has suggested that these NK cells can be derived from 
the circulating NK cell subset, then becoming imprinted by the 
liver to remain resident for many years.93 This population is 
present in healthy and diseased livers at highly variable frequen-
cies; the factors determining their frequency and physiological 
roles remain to be determined. In the setting of HBV infection 
they are able to express the death ligand TRAIL (figure 2), an 
inducible defence system allowing them to kill hepatocytes, stel-
late cells and HBV-specific T cells.21 26 69 94 In support of the 
latter, in situ analysis by immunohistochemistry of HBV sections 
from liver biopsies allowed the visualisation of NK cells in close 
proximity to T cells within the liver sinusoids.26 Antiviral and 
immunotherapeutic strategies used in HBV, particularly those 
inducing IFN-α, can potently expand and activate NK cells,95 96 
with NAs having limited impact on these cells.96 97 It will again 
be informative to sample the liver in order to see whether 
these and novel therapies differentially modulate liver-resident 
NK cells and their antiviral and immunoregulatory potential. 
These targeted analyses of selected immune cells have begun 
to be complemented by comprehensive approaches, comparing 
peripheral and intrahepatic transcriptome/proteome profiling to 
detect additional features of HBV in an unbiased manner.98–100

Virological compartmentalisation
As discussed above, sampling of liver tissue is required for the direct 
measurement of cccDNA and its transcriptional activity as existing 
surrogates measured in the circulation have substantial limitations. 
There are limited data on the impact of therapy on the decay of 
cccDNA101 102 and accurate future assessment of novel therapies on 
cccDNA will still ideally require liver biopsies.

Furthermore, the detection of integrated DNA and its 
response to novel therapies, an additional therapeutic goal under 
consideration, also relies on liver sampling.50 Integration of HBV 
DNA occurs through a process of illegitimate recombination by 
host enzymes acting on double stranded linear DNA,103 104 not 
required for productive replication. Integrated sequences cannot 
provide an adequate template for productive replication, but can 
produce HBsAg. Previously, the majority of research regarding 
integrated HBV DNA focused on its potential to drive hepato-
cellular carcinoma (HCC), however, recent work has shown that 
HBV DNA integration appears to occur early during infection 
and is detectable in patients considered to be in the so-called 
immune-tolerant disease phase (HBeAg+chronic infection).50 
The presence of integrated HBV DNA, its role in clonal hepato-
cyte expansion and events leading to hepatocarcinogenesis 
require further investigation, underscoring the need for more 
studies based on human tissue samples.105 Furthermore, the 

evaluation of current drugs and novel therapies, their impact on 
HBV DNA integration and the modulation of cancer risk in CHB 
will require the study of liver tissue. Until new biomarkers are 
devised that are capable of identifying patients at risk of HCC 
development, liver biopsy remains an indispensable tool in the 
pursuit for HBV cure.

Along with the evaluation of cccDNA and integrated HBV 
DNA in the infected-liver, the presence, quantification and 
localisation of HBV antigens at the site of infection remains 
vital to further augment our understanding of immunopatho-
gensis, and translation through to HBV therapies. Our previous 
work has shown the differentiation of disease phase based on 
HBcAg localisation, with redistribution from the nucleus to the 
cytoplasm as liver damage occurs. The mosaic distribution of 
HBV antigens might reflect different virological/immunological 
features, which merit further characterisation.50 These data are 
supported by a recent study underlining the link between HBcAg 
expression, HBV replication and higher cccDNA content within 
hepatocytes.106 Recent work has indicated that HBV antigens 
may not be adequately stained using conventional immunohis-
tochemical methods107 and further work using liver tissue is 
required to optimise their detection, using techniques such as in 
situ hybridisation probes.106

A WAy FoRWARd
How can we reconcile the need to sample the liver with the 
growing tendency to circumvent liver biopsy in the routine 
management of CHB? It is clear that much remains to be learnt 
about the histological, virological and immunological aspects 
of this disease that are restricted to the liver itself. This need is 
particularly pertinent when assessing new therapies or combi-
nations; in order to learn as much as possible about why these 
may fail and how they can be further refined, it is vital to maxi-
mise the information gleaned by including samples from the site 
of infection and pathology. The new findings of liver-resident 
populations of T and NK cells serve to underscore this paradigm. 
Much more remains to be learnt about adaptations of lympho-
cytes to the liver environment and their potential for therapeutic 
manipulation. Similarly, the discovery that HBV antigens and 
nucleic acids have distinct spatial distribution highlights the 
value of more sophisticated in situ analysis of virological events 
at the single cell level using liver sections of patients treated with 
novel antiviral agents.106 Liver biopsies will continue to provide 
that vital telescope onto the battlefield. On the other hand, it is 
natural that patients and clinicians favour non-invasive assess-
ments wherever possible.

Perhaps a good compromise for the immediate future will be 
to ensure that liver biopsies at least continue to be carried out in 
cases where the risk/benefit ratio is favourable for patients because 
histological assessment will help to guide clinical management. 
Examples of this include assessing the need to commence antiviral 
therapy in HBeAg-negative hepatitis with borderline or discrepant 
liver enzymes and elastography results or in patients who may 
have subtle liver disease despite fulfilling classical serum criteria 
of ‘immune tolerance’.108 Many clinicians consider that a biopsy is 
still justifiable to assess disease stage in the majority of patients with 
CHB. Since it has been shown that multiple passes do not increase 
the risk of complications,109 it makes sense to ensure that suffi-
cient tissue is obtained to allow thorough histological assessment, 
and state-of-the-art assays for compartmentalised viral and immu-
nological parameters such as cccDNA and HBV-specific T cells. 
In some cases, flow cytometric analysis could be supplemented 
by unbiased techniques such as RNA-sequencing (RNA-Seq) and 
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proteomics/metabolomics to learn more about the liver milieu as 
well as its cellular constituents.

A setting where there is a particularly strong argument to sample 
the liver is in early phase clinical trials of novel therapies for 
CHB, in order to optimally define their mechanism of action and 
limitations. It is crucial to assess the impact of antiviral and immu-
nomodulatory approaches on end points such as cccDNA and inte-
grated DNA within the liver as well as proxy measures like HBV 
DNA and HBsAg in the periphery. If, for example, a therapeutic 
vaccine or checkpoint inhibitor does not achieve functional cure, 
it will be informative to see whether it failed to expand liver-resi-
dent HBV-specific T cells. Such assessments ideally require paired 
pretreatment and end-of-treatment biopsies, which may continue 
to be achievable in substudies with limited patient numbers. 
However, it must be acknowledged that the mainstay of clinical 
and immune monitoring of CHB trials will continue to be periph-
eral blood. With evolving advances in high dimensional analysis of 
peripheral blood mononuclear cells   (PBMC), it should ultimately 
be possible to identify fingerprints within the peripheral immune 
response that can be used as indirect biomarkers of treatment effi-
cacy within an organ. This approach was exemplified by a recent 
study predicting tumour responses to PD-1 blockade using blood-
based immune profiling combined with tumour imaging.110 A 
period of consolidated effort to sample blood and liver in parallel is 
therefore essential to delineate peripheral markers that adequately 
reflect intrahepatic events in CHB. Historical data from studies in 
chimpanzees and woodchucks where both blood and liver were 
sampled should also be mined to learn more about the relationship 
between peripheral and intrahepatic changes.111 112

Another solution to facilitate longitudinal assessment of novel 
therapies is the use of fine-needle aspirates (FNA) of the liver in 
place of biopsies. This technique was first shown to allow moni-
toring of immune parameters of CHB in 2005,113 but has not 
yet been widely adopted. It can also allow some limited assess-
ment of hepatocytes and intrahepatic HBV antigens.114 Because 
it is rapid, painless and very safe, it can be repeated within as 
short an interval as 6 hours, and allows serial sampling through 
the course of therapy, as described recently in patients with 
HCV.115 116 At least 1 00 000 cells can be obtained, which allows 
several immune subsets to be examined using multiparameter 
flow and high dimensional analysis or even single cell PCR on 
sorted populations.117 118 We are currently investigating whether 
the full complement of liver-resident lymphocytes seen in tissue 
biopsies can also be extracted by FNA.

While FNA may prove very useful for selective immune-mon-
itoring of CHB treatment trials, it does not allow histological 
staining to examine responses in situ and better elucidate HBV 
pathogenesis. For this, better use could be made of stored paraf-
fin-embedded sections from the era when liver biopsies were 
more common in CHB. New multiplexed immunostaining, 
allowing automated quantitative assessment of multiple proteins 
on a single slide, will open up the opportunity for much more 
comprehensive visualisation of the topography of HBV viral 
particles and antigens in combination with immune infiltrates. 
This is vital in order to image the spatial relationship between 
infected hepatocytes and immune cells to better illuminate host-
pathogen interactions. At present, even the proportion and 
distribution of infected hepatocytes and their relationship to 
immune infiltrates has not been defined for different phases of 
infection. In addition to staining for HBsAg and HBcAg, it is now 
possible to use highly sensitive probes for in site hybridisation of 
HBV RNA.119 Other mechanisms to enhance our knowledge of 
the liver-specific environment in CHB include the capacity to 
now culture and infect primary human hepatocytes and to use 

three-dimensional models recapitulating some of their interac-
tions with, for example, Kupffer cells or stellate cells along with 
the addition of immune cells.120–122

In summary, a wave of new agents to treat HBV will be 
reaching clinical trials in the next few years. In order to capitalise 
on the opportunity to learn from these initial attempts at func-
tional cure, and to select optimal combinations, it is imperative 
that we intensify efforts to sample the liver as well as blood. This 
need has been reinforced by recent studies highlighting unique 
immune responses compartmentalised within the liver, along 
with the hallmarks of persistent HBV: integrated and cccDNA. 
Available liver tissue or aspirates must be used in carefully 
planned virological and immunological studies, aided by new 
techniques that allow simultaneous assessment of many param-
eters. Studies including liver samples will provide vital clues to 
modify and combine the array of new antiviral and immuno-
modulatory therapies on the horizon for HBV.
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