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Abstract: Immunonutrition appears as a field with great potential in modern medicine. Since
the immune system can trigger serious pathophysiological disorders, it is essential to study and
implement a type of nutrition aimed at improving immune system functioning and reinforcing it
individually for each patient. In this sense, the nucleotide-binding oligomerization domain-1 (NOD1),
one of the members of the pattern recognition receptors (PRRs) family of innate immunity, has been
related to numerous pathologies, such as cancer, diabetes, or cardiovascular diseases. NOD1, which
is activated by bacterial-derived peptidoglycans, is known to be present in immune cells and to
contribute to inflammation and other important pathways, such as fibrosis, upon recognition of its
ligands. Since immunonutrition is a significant developing research area with much to discover, we
propose NOD1 as a possible target to consider in this field. It is relevant to understand the cellular
and molecular mechanisms that modulate the immune system and involve the activation of NOD1 in
the context of immunonutrition and associated pathological conditions. Surgical or pharmacological
treatments could clearly benefit from the synergy with specific and personalized nutrition that even
considers the health status of each subject.
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1. Immunonutrition at a Glance

Immunity, nutrition, inflammation, infection, and injury are among the topics that are
included in the concept of immunonutrition, an interdisciplinary and emerging field with
high future projection [1,2]. A well-balanced diet is fundamental for maintaining human
health. The nutritional status of each subject and other immunological biomarkers help
immunonutrition practice; however, the whole metabolism of the individuals, along with
their genetics, their underlying diseases, and even their lifestyles, need to be taken into
account. As we will discuss later, there are numerous cases in which immune-modulating
nutrition supposes a useful and cutting-edge tool. People with the potential risk of malnu-
trition (e.g., children or adolescents, elderly, pregnant women, or athletes) and nutrition
or patients suffering from immune-related diseases (including allergies and metabolic
disorders such as diabetes) will benefit from immunonutrition studies and approaches.
This field also allows the analysis of the roles and effects of nutrients (both of conventional
origin or obtained from functional foods) and bioactive compounds in the host health and
in the immune system. Lifestyle influences, such as diet composition, sedentary or exercise
habits, stress, or sleep routines are also evaluated within immunonutrition. Modulation
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of immune system responses based on nutrient intake contributes to the expression of
essential immunoregulatory genes [3–5].

Even if it is a well-known fact that the immune system function and development
require an adequate nutritional status, the study of the connections between the immune
system and nutrition is rather recent. First, research on the nutrition–infection link was
advanced: infection influenced the nutritional condition while nutrition determined the
host defense extent. This idea was collected in a 1968 World Health Organization monograph,
before the great development of immunology as a science and the emergence of immune
response studies that put it all together. Nutrients (or micronutrients) deficiencies lead to
compromised immunity and host defense. The first article on immunonutrition arrived
almost 70 years ago, in 1947. Since then, a multitude of scientific publications on the subject
has been released [3,6,7].

Interactions between the immune system and nutrients are subjects of growing re-
search interest. After infection, and innate and acquired immune system activation,
metabolic changes happen to release nutrients from adipose tissue and muscle ready
to be used by immune cells. These nutrients help to repair tissues, modulate cytokine
turnout, or protect tissues from harmful effects of free radicals and other oxidants, etc.
Therefore, undernutrition or malnutrition, both of them leading to insufficient or inade-
quate intake of macro- and micronutrients, negatively affects the immune system response.
Immune cell functions, phagocytic activity, host defense, complement system, cytokine
release, antibody responses, or affinities are among the immune mechanisms impaired
after these altered conditions [4,6,8]. However, this perspective based on the essentiality of
nutrients or their biochemical role in supporting the function and activity of the immune
system is experiencing significant changes toward a more molecular-targeted influence on
immunity. For example, the effects derived from the interaction of certain nutrients (i.e.,
serine-type protease inhibitors) with the innate immune “Toll-like” receptor (TLR)-4 [9,10]
or the role and extent that dietary modulation of this receptor can determine selective
functional differentiation response(s) of innate immune mediators are receiving increasing
interest. This point of view is aligned with the life sciences-based Process for the Assessment
of Scientific Support for Claims on Foods (PASSCLAIM) that was coordinated by the Institute
of Life Sciences (ILSI) Europe [11].

There are three main and potential targets for immunonutrition: mucosal barrier
functionality, cellular defense, and inflammation (local or systemic; related to inflammatory
mediators). Antioxidants, vitamin D, fatty acids, carbohydrates, bovine colostrum, prebi-
otics, probiotics, proteins, minerals, and herbal supplements are some topics associated
with immunonutrition. They are called immunonutrients, that is, molecular compounds
with a double function: they act as components of the diet and at the same time influence
the immune system. Arginine, glutamine, n-3 fatty acids, branched-chain amino acids, and
nucleotides are the most studied nutrients in this science. Indeed, there exist commercial
enteral feeds, which combine some or all of these nutrients. Therefore, two tactics that
will be discussed later may govern clinical trials: those that obtain benefit from a single
immunonutrient approach or the ones that use a nutrient-combination strategy. In the first
case, enteral glutamine supplementation has been demonstrated to reduce the incidence of
pneumonia, bacteremia, and fatal sepsis in critically ill patients and the incidence of severe
sepsis in premature neonates [12,13]. Glutamine is an essential nutrient for gut mucosal
cells and even more necessary if we consider that mucosal atrophy implies bacterial inva-
sion and the entrance of microorganisms into the bloodstream. Accordingly, parenteral
glutamine has also been used in clinical trials. Supplemental oxygen requirement, venti-
lation support, length, and time of stay in the intensive care unit were diminished after
enteral lipid-modified feed in moderate and severe acute respiratory distress syndrome
patients. In addition, their capacity to develop organ failure and their mortality tended to
be decreased [1,5,6,12,14,15].

An inflammatory storm involving immune system activation, pro- and anti-inflammatory
mediators, paracrine and endocrine effectors, free radicals and oxidants release lead to
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multiple organ failure mentioned above in critically ill patients [16,17]. The need for an
exogenous supply of specific nutrients in critically ill or surgical patients paved the way for
immunonutrition attempts (Figure 1). It should be noted that immunosuppression is a crit-
ical period after major surgery (or after hyperinflammation and an excessive compensatory
response in critically ill subjects) that exhibits an increased risk of infection, morbidity, and
mortality. This area is where immunonutrition comes into play, strengthening the immune
system and favoring selectively driven response(s) to reduce derived complications and im-
prove the clinical evolution of these patients. Early treatment is key to reduce inflammation
and avoid/decrease the immunosuppression phase. However, there is much controversy
about the real benefits of immunonutrition in critically ill patients; therefore, more studies
are needed [1,2,12,15,18].
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Figure 1. Immunonutrition overview. Basic pillars of immune-modulating nutrition. The term
immunonutrition is mainly powered by four interconnected concepts: immune system, nutrition,
body organ metabolism, and the human microbiome. These relationships pave the way for a wide
and complex multidisciplinary topic with potential applications. The immune system comprises
an intricate network of mechanisms, signals, cells, organs, and tissues. It is extraordinarily variable
between subjects and when it fails, it can shift the fine line between health and disease. Bad dietary
habits can lead to the poor nutritional status of the subject and consequently to severe pathologies.
Nutritional interventions are needed at this point. Single nutrients or combined therapies, all of
them designated as immunonutrients, are considered key tools. The most studied are arginine (Arg),
glutamine (Gln), n-3 fatty acids (ω-3 PUFAs), amino acids, and nucleotides. Antioxidants, fatty acids,
carbohydrates (CHO), prebiotics, probiotics, proteins, minerals, and food supplements are other
employed immunonutrients. Deficiency of certain nutrients leads to compromised immunity and a
high predisposition to infections. The immune system fights against harmful agents such as bacterial
antigens supported by its ability to distinguish between self and nonself molecules. This includes
foreign components and commensal microbiota. After infection, innate and adaptive immune
responses occur, generally through inflammatory processes and metabolic changes. These events can
trigger tissue injury, as well as undernutrition or malnutrition. An inadequate intake of macro- and
micronutrients negatively affects the immune system. Nutrients help repair tissues (wound healing),
modulate cytokine release, or protect organs from free radicals or oxidants. Immunonutrition
provides potential benefits to varied and numerous populations: from critically ill patients to
professional athletes, and including patients undergoing surgery, subjects with immuno-related
diseases, people at potential risk of malnutrition, or the elderly.
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Exercise practice can benefit greatly from immunomodulatory nutrition protocols. Ex-
perts in the field have elaborated a large document that contains scientific evidence, critical
points of view, and new perspectives in this field (Consensus Statement. Immunonutrition
and Exercise [7]).

Since immunonutrition has emerged as a potential ally to fight numerous diseases or
as a way to improve human health in several circumstances, different related societies have
been founded. Among these institutions, it is worth mentioning the International Society for
Immunonutrition (ISIN), due to its ability to establish itself worldwide. The latest example
of this important contribution is its aim of promoting adequate nutrition to strengthen
the immune system and of establishing strategies of trained innate immunity, as well as,
especially acquired immunity, against COVID-19 infection. Based on scientific evidence
and promoting the expansion and dissemination of knowledge in this field of nutrition
linked to immunity, these societies contribute to the development of immunomodulatory
nutrition (https://immunonutrition-isin.org/ accessed on 30 March 2020).

There are different parameters and measurements that can help studies on immunonu-
trition and the application of new therapeutic strategies. Several groups have analyzed
markers for their suitability to indicate the modifications that nutrients exert on the immune
system. For example, immune responses can be modified by decreased cell proliferation,
decreased protein synthesis, nutrient deficiencies, and impaired metabolic pathways under
malnutrition conditions. Other useful immunological biomarkers and immunonutrition
evaluation parameters are the following: circulating factors such as immunoglobulins in
human fluids (IgG, IgA, IgM, IgD, and IgE); acute phase proteins (complement factors,
C-reactive protein, and ceruloplasmin); levels of cytokines and cytokine receptors; immuno-
competent cell count and functionality, and other functional and genetics of the immune
system [3,4].

The immune system is a highly complex defense network of mechanisms, signals,
cells, organs, and tissues, whose goal is to protect the human being. Conventional versus
nonconventional or extramedullary hematopoiesis are key processes by which blood cellu-
lar components (including the most relevant immune actors, leukocytes) are formed [19].
However, this intricate system is extremely variable between subjects and can also cause
illness when it fails or there are deficiencies in its performance. Many immunometabolic-
based chronic diseases such as cancer, the nonalcoholic fatty liver disease that carries a
high risk of type 2 diabetes, obesity, and other important features of metabolic syndrome,
Alzheimer’s disease, and autoimmune or cardiovascular diseases have been related to
inappropriate immune and inflammatory responses. However, both hereditary and non-
hereditary determinants modulate the variability of the immune system [20]. Therefore,
an in-depth study and understanding of these biological processes, in addition to the
individualized use of nutrients as regulators of the immune function, is essential.

2. State of the Art: Immune Cells and NOD1

Potentially harmful agents are recognized and fought off by the immune system,
which responds to countless antigens. Its capacity to distinguish between self or nonself
molecules and events and to establish tolerance of self-elements is essential for the subject.
This includes external components and beneficial commensal microbiota. There are three
main levels of immune defense: (1) physical (e.g., skin, mucous membranes, endothelia),
physiological (such as sneezing or diarrhea), chemical (e.g., low pH and antimicrobial
molecules), or biological (normal microbiota) barriers (all of them normally known as
physicochemical barriers); (2) innate or unspecific immunity (for a rapid defense action); (3)
acquired, adaptive or specific immunity (more complex and persistent, leading to immuno-
logical memory). Immune responses comprise different blood-borne issues, including
soluble components and cells.

The unspecific immunity involves soluble factors (cytokines, complement factors, and
acute-phase proteins), and cells (granulocytes (neutrophils, basophils, and eosinophils),
monocytes/macrophages, and natural killer (NK) cells). Adaptive immunity implies

https://immunonutrition-isin.org/
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a more efficient response after reexposure to a specific antigen. It is executed mainly
by B, T, T cytotoxic, and T helper lymphocytes and soluble components (cytokines and
antibodies). However, innate and acquired immune systems are interconnected and have
been shown to be linked by cell-to-cell or cell–surface protein contacts and by cytokines
release. What is clear is that there is certainly a close interaction between both types of
immune responses [3,6,21].

Immune cells express pattern-recognition receptors (PRRs) that recognize and are
activated by molecular patterns associated with microbes or pathogens (MAMPs or PAMPs,
respectively). Different signaling pathways and cell responses are triggered by these
receptors [22–25]. Interactions of PRRs with normal intestinal microbial or nonpathogenic
molecules confer a protective mechanism for the host that contributes to immune memory
training. Impairments in these mechanisms lead to the development of immune diseases.
An essential component of the bacterial cell wall formed by two β-1,4-linked sugars,
N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) is called peptidoglycan
(PGN) or murein. PGN glycan strands are cross-linked by short peptides (two to five
amino acids). The general backbone presents certain diversity when comparing Gram-
negative and Gram-positive bacteria. In the last case, L-lysine is usually the dibasic amino
acid, while Gram-negative bacteria contain meso-diaminopimelic acid (DAP). Among
the intracellular cytoplasmic PRRs, nucleotide-binding oligomerization domain-1 and
-2 (NOD1/NOD2) share overlapping signaling pathways but different specificities in
MAMPs/PAMPs recognition [26–31]. NOD1 recognizes and is activated by bacterial PGNs.
To this purpose, the γ-D-glutamyl-DAP (iE-DAP) is sufficient to activate NOD1. iE-DAP is
mainly associated with Gram-negative bacteria, but it is also present in a few Gram-positive
bacteria (e.g., Listeria monocytogenes or Bacillus spp.). Nevertheless, Gram-negative bacteria
constitute the main class of microorganisms present in the gastrointestinal microbiota.
These changes in bacterial composition can have important consequences on disease
severity since PAMPs from the gut microbiota modulate intestinal mucosal immunity
via TLRs and other PRRs. Gut microbiota composition has been directly associated with
innate immunity [32]. In addition, changes in the diversity of the intestinal microbiota
can worsen or improve insulin resistance and therefore type 2 diabetes (T2D) in mice and
patients [33,34], possibly due to interaction with innate immune signaling through the TLR4,
NOD1/NOD2 proteins, etc., as yet undefined pathways [35,36]. Activated NOD1/NOD2
recruit receptor-interacting serine/threonine-protein kinase 2 (RIPK2), transducing the
activation of the “nodosome” after RIPK2 autophosphorylation (Figure 2). RIPK2 is further
polyubiquitinated by E3 ubiquitin ligases, which allow the additional recruitment of
mitogen-activated protein kinase kinase kinase 7 (MAP3K7, also known as TAK1) and
subsequent activation of the IKK/NF-κB signaling pathway [31,37–40].
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MAMPs/PAMPs binding, recruiting the kinase RIPK2 that becomes autophosphorylated and polyu-
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that results in the activation of Mitogen-Activated Protein Kinases (MAPKs) and NF-κB translocation
to the nucleus.
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NOD1 is expressed in several cells, from nonhematopoietic (such as endothelial
cells) to hematopoietic and immune cells (e.g., monocytes/macrophages, neutrophils, NK
cells, lymphocytes). Functional NOD1 in neutrophils, for example, has been related to
Staphylococcus aureus and Streptococcus pneumoniae clearance [41–44]. However, this PRR is
associated with innate immunity and with the acquired immune response (Figure 2). For
example, NOD1 stimulation primes antigen-specific T cell immune responses primarily
with a Th2 polarization profile. Interestingly, along with other TLRs of innate immunity,
NOD1 leads to Th1, Th2, and Th17 immune responses. Furthermore, NOD1 activation
and downstream signaling contribute to B cell antigen receptor-engaged mature B cells’
survival [45,46].

Regarding immunonutrition, both counts and functionality of phagocytic neutrophils
and monocytes/macrophages are important due to their response to infections and to
their involvement in autoimmune diseases. From an immunonutritional point of view, the
myeloid F4/80 population in rodents and the epidermal growth factor module-containing
mucin-like receptor 1 (EMR1) equivalent in humans appear to be susceptible to the
immunonutritional-driven polarization by dietary protease inhibitors [47,48]. Further-
more, when considering immunonutritional strategies to include protease inhibitors in
complex food matrices (e.g., bread formulations), they have been shown to be effective
in controlling insulin resistance [49]. The normal reference values are relevant for the
practice of immunonutrition, especially when there is malnutrition or special pathologies.
Nutritional status can be indirectly measured by total lymphocyte count, establishing a
gradient from mild to severe malnutrition based on their number of cells per mm3 or by
immunocompetent phenotypic and functional flow cytometry assays [3].

3. NOD1-Related Diseases and Nutrients: The Potential Benefit of
Immunonutrition Approaches

There are at least 196 reported diseases associated with NOD1, from several cancers
or neoplasms to inflammatory, metabolic, immune, and infectious diseases, as shown in
the Open Targets Platform: https://www.targetvalidation.org/target/ENSG00000106100
/associations (accessed on 20 April 2021). Since NOD1 was discovered, it has always
been considered an active and key mediator in human metabolism and inflammation. It is
directly involved in signaling pathways of cell stressors (e.g., calcium influx or endoplasmic
reticulum mechanisms, as indicated later) and regulates downstream pathways in response
to metabolic mediators such as glucose and fatty acids. NOD1 stimulation is believed to be
the result of a combination of bacterial and metabolic ligands [50,51].

There exists a link between immunocompetent cell functions and adipose tissue
homeostasis, including leptin and TNF-α in adipose tissue [7,8]. In this line, cell death
plays also a determinant role within these mechanisms [52]. Programmed cell death and
innate immune system signaling are closely related. NOD1 activation has been connected
with cell death induction (mainly via caspase 8 activation) and, in addition, cell death is
involved in the regulation of inflammatory processes [53–55]. Inflammation was shown
to be partially modulated by certain nutrients such as fatty acids, retinol, tocopherol, or
zinc. This observation established a new interesting field of study within immunonutrition
where balancing n-3 and n-6 fatty acid consumption was a key intervention [3].

3.1. NOD1, Adipose Tissue, and Obesity

Consumption of Western diet in humans and its equivalent in mice, high-fat diet
(HFD), results in the upregulation of NOD1 signaling. These diets involve weight gain,
an increase in adiposity, and the development of a proinflammatory onset. Consequently,
NOD1 activation in adipocytes leads to NF-κB and protein kinase A-triggered lipolysis.
This lipolysis prompts an increase in available fatty acids, which can ultimately lead to
insulin resistance. The metabolic effects derived from fatty acids are the consequence
of several molecular and cellular mechanisms: from stimulation of hormone receptors
to modifications in the fluidity of the cell membrane. In this regard, saturated fatty
acids (e.g., lauric acid) favor NOD1 activation in several cell types, including adipocytes,

https://www.targetvalidation.org/target/ENSG00000106100/associations
https://www.targetvalidation.org/target/ENSG00000106100/associations
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while unsaturated fatty acids (e.g., docosahexaenoic acid (DHA)) impair NOD1 auto-
oligomerization and its ligand-induced inflammation. In fact, DHA negatively regulates the
stimulation of NOD1 signaling by saturated fatty acids. Therefore, nutritional interventions
targeting fat and the immune system at the same time would be promising. Fat-enriched
diets are well-known drivers of metabolic syndrome and cardiovascular diseases [50,56].
In this context, the administration of immunonutritional protease inhibitors has been
shown to be effective in modulating lipid homeostasis and shaping the gut microbiota,
ameliorating the severity of hepatocarcinoma under HFD [10].

3.2. NOD1 and Atherogenesis

Our group and others [57–60] have described a prominent role for NOD1 in the lead-
ing cause of death worldwide: cardiovascular diseases (CVDs). NOD1 has been shown to
contribute to atherogenesis, both in early and advanced disease. Since atherosclerosis is
the main underlying cause of most of the CVDs and it involves lipid deposition and NOD1
in addition to other important inflammatory and immune components, immunonutrition
approaches represent another essential front to fight them. NOD1 is induced and activated
in atherosclerotic tissues. NOD1 deletion in Apoe−/− mice, one of the most commonly used
animal models of atherogenesis, reduces the burden of the disease and the accumulation of
leukocytes within the lesions, especially monocytes and neutrophils. Endothelial NOD1 ac-
tivated by PGNs or oxidized LDLs (oxLDLs, important within diet and lipid sources), leads
to overexpression of VCAM-1 and subsequent adhesion of leukocytes to athero-prone ves-
sels [57–60]. When atherogenesis progresses, there is a risk of atherothrombosis and acute
coronary syndromes, triggered by unstable plaque rupture, cell necrosis, hyperinflamma-
tion, and decreased collagen content. In these circumstances, cells such as macrophages and
smooth muscle cells play a critical role since they proliferate, undergo apoptosis, and form
foam cells within the plaque. NOD1 is involved in all these processes that contribute to the
vulnerability of atheromas [58,61]. Cardiac dysfunction, impaired excitation–contraction
coupling, and Ca2+ handling have also been associated with NOD1 [62]. Furthermore,
subsequent studies have shown that NOD1 activation by noxious stimuli and stress is also
involved in cardiac remodeling and hypertrophy, heart failure, and mitochondrial energy
balance and mitophagy [63]. Therefore, knowing that the diet and its derived nutrients
and metabolites influence both the energy state of the cells and the production of damage
signals, immunomodulatory nutrition strategies become important.

3.3. NOD1 and Diabetes

Consistent with this, it has also been observed that mice fed HFD have higher glucose
and insulin basal concentrations, insulin resistance, and glucose intolerance. Not only
high-fat diets positively regulate NOD1, but also high sugar intake, as occurs in the Western
diet [56,64–72]. For example, high glucose levels can activate NOD1 in mesangial cells.
In fact, adipocytes stimulated with iE-DAP or other NOD1 ligands exhibit enhanced pro-
inflammatory responses and diminished insulin receptor signaling, leading to a decreased
glucose uptake by insulin and to insulin resistance [50]. In addition, diabetes, obesity,
and hyperglycemia cause dysbiosis of the intestinal microbiota favoring gut permeability
and the consequent increase in circulating bacterial products. Activation of NOD1 by
these microbe-derived molecules can disrupt other signaling pathways and metabolic
routes, thus establishing a self-feedback loop [50,73]. For example, microbiota recognition
by NOD1 in bone marrow mesenchymal stromal cells can modulate hematopoiesis in
mice [74]. In contrast, NOD1-mediated renal antibacterial defenses are dampened by
cyclosporin A (CsA) [75]. Another NOD1–microbiota–metabolism connection is shown in
a work by Zhang et al., in which they demonstrate that microbes-derived NOD1 ligands
directly regulate insulin trafficking in pancreatic beta cells. NOD1 ligands are released into
the bloodstream by intestinal lysozyme and Rab1a, recruited by NOD1, leading to insulin
signaling [76]. What is clear is the importance of micro and macronutrient homeostasis in
this immune system–microbiome–metabolism axis. Interestingly, evidence has shown that
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vitamin D administration downregulates 66 genes and upregulates 291 genes involved in
the biological function and homeostasis of more than 160 signaling pathways associated
with metabolic dysfunctions, CVDs, autoimmune disorders, and cancer [4].

3.4. NOD1 and Cancer

The NOD1–cancer axis has been widely confirmed and it is quite relevant due to the
high morbidity and mortality associated with these diseases [25,39,54,77–82]. For instance,
a recent study has shown that activated NOD1 leads to the progression of colorectal
carcinogenesis by modulating the immunosuppressive functions of tumor-infiltrating
leukocytes via arginase-1 activity [77]. Other previous studies have also linked NOD1
activities to colon cancer and metastasis [79,82] and carcinogenic responses to Helicobacter
pylori pathogen [80]. Given the high impact of nutrition on the gastrointestinal tract and
the microbiota content (also closely linked to NOD1) and the information provided by
these studies, new immunonutrition strategies are required. There are also studies on
the involvement of NOD1 in other tumor-related diseases such as cervical cancer, breast
cancer, and head and neck squamous cell carcinoma [25,39,54,78,81,83]. Patients with these
cancers would benefit from immunomodulatory nutrition strategies targeting NOD1.

3.5. NOD1 and Kidney Dysfunction

Clear cell renal cell carcinoma is another example of the involvement of NOD1 in
cancer processes, although it is related to the pathogenesis of another organ—the kid-
ney [84]. NOD1 is expressed in human and murine renal tubular epithelial cells [85,86].
Renal ischemia/reperfusion injury activates NOD1 due to tubular epithelial apoptosis
and inflammation [85,87]. Furthermore, a complex and interesting study linked immuno-
suppressive drugs such as CsA with NOD1: CsA inhibited the innate renal antibacterial
responses of NOD1 in both mice and human transplant recipients [75]. Other NOD1/NOD2
KO models have been used to decipher the role of these PRRs in the onset of renal disease
and inflammation [88]. Due to all these data and the fact that kidneys are involved in
nutrients and xenobiotics metabolism, as well as in blood filtering, a combined NOD1-
immunonutrition therapy must be tackled in specific patients. In addition, high-protein
diets can damage the kidneys and lead to severe diseases, which is why immunomodula-
tory nutrition is essential.

3.6. NOD1 and Respiratory and Hepatic Diseases

Lung cells, including epithelial cells, are also involved in the activation and functions
of NOD1. As an example, NOD1 activates CCAAT/enhancer-binding protein β (C/EBPβ)
signaling pathways in these cells after bacterial or agonists recognition [89]. Since lung
and respiratory tract diseases could benefit from immunonutrition, as shown in the case
of acute respiratory distress syndrome, NOD1 inhibition or downregulation appears as a
potential therapeutic target [90].

NOD1 regulates liver molecular and cellular mechanisms as well. For example,
this immune PRR contributes to liver ischemia/reperfusion injury. NOD1 modulates
the overexpression of adhesion molecules and regulates infiltration of neutrophils in the
liver, which are responsible for causing the injury [91]. Given that the liver constitutes
a “metabolic turbine” where multiple anabolic and catabolic processes occur and where
nutrients are metabolized, immunonutrition and NOD1-targeted approaches are likely
candidates to restore liver homeostasis and function.

3.7. NOD1 and Thyroid Hormones Homeostasis

Recent work published by our group links NOD1 with metabolism, thyroid hormones,
and energy expenditure. NOD1 is also expressed in the thyroid and other highly metabolic
cells and tissues, such as adipose tissue, including inguinal white adipose tissue (iWAT) and
epididymal white adipose tissue (eWAT). NOD1 activation in Wt mice after 6 weeks HFD
regimen resulted in decreased lipogenesis in iWAT and eWAT, compared to their Nod1−/−
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counterparts, as well as differences in bile acid metabolism and thyroid hormone homeosta-
sis. Interestingly, Nod1−/− mice showed accelerated diet-induced obesity, demonstrating
the involvement of this PRR in metabolism and body weight regulation and becoming a
good target for immunonutrition. Accordingly, NOD1 influences thyroid hormones’ func-
tions (T3, T4), which are implicated in the modulation of metabolic routes related to lipids
(e.g., lipogenesis and lipolysis), carbohydrates, bile acids, energy storage/expenditure, and
thermogenesis. Furthermore, all of these complex processes and their interrelationships
can lead to severe disorders, such as hypothyroidism, hyperthyroidism, Graves’ disease, or
even cancer.

The biology of the thyroid is also linked to infections and sepsis. Along these lines,
it has been confirmed that the intestinal microbiota is altered depending on HFD and
NOD1 function. The immune system has a relevant role in this regard, and we report that
immune cells express thyroid receptors and these cells are modulated directly or indirectly
by thyroid hormones. In addition, the thyroid gland is regulated by the nutritional status
and other signals such as leptin or appetite-controlling peptides. Therefore, there is a need
for an immunonutrition approach for thyroid dysfunctions involving or not involving
NOD1 [41,58].

3.8. NOD1, Thyroid Hormones, and Pregnancy

Thyroid hormones and the endocrine system are also crucial during pregnancy for
normal fetal and neonatal brain development. Interestingly, several NOD1–pregnancy
relationships have been established. NOD1 is widely expressed in maternal and fetal
tissues. For example, NOD1 in the uterine wall, decidua, and placenta causes inflammation
in both normal and preeclamptic pregnancies, but especially in the first case, as it is upreg-
ulated [92]. Furthermore, NOD1 regulates the decidual stromal cell role in the maintenance
of pregnancy during the first trimester [70]. NOD1 expression and activation have also
been investigated in the fetal membrane, placenta, and plasma obtained from pregnancies
with premature rupture of membranes [93]. Accordingly, related to the previous comments
on NOD1 activation in conditions of high glucose and diabetes, and its relationship with
insulin resistance, this PRR expression is enhanced in the adipose tissue of women with
gestational diabetes. Notably, increased maternal inflammation and peripheral insulin
resistance consist of two features of pregnancy, which evolved with gestational diabetes
mellitus [94]. Other works linked NOD1 activation and signaling with fetal death and
growth restriction through fetal–maternal vasculopathy, thus connecting several pathogenic
events [95]. Furthermore, after Chlamydia trachomatis infection, NOD1 participates in the
induction of IL-1β release in human trophoblasts [96], cells in which the regulation of
NOD1 and the pattern of cytokine secretion have been analyzed [97]. Prematurity has
been strongly associated with infection, and there are studies that go further and relate
it to the activation of NOD1 by bacterial ligands sensing [98]. Additionally, pregnancy
constitutes a physiological context that exemplifies the importance of immunometabolic
interactions for both the mother and the embryo. This is a unique physiological state, in
which the immune tolerance of the developing fetus coincides with the immune activa-
tion to induce insulin resistance necessary to meet the energy needs of the mother, along
with an increased demand for glucose by the embryo [99]. The intergenerational transfer
of immunometabolic properties between mother and offspring can help prevent further
development of chronic diseases as well as their severity [100]. Given the importance of
balanced nutrition in pregnant women and the connections between them, the immune
system, and the implications of NOD1 for health and disease, immunonutrition seems such
as a perfect treatment combination approach.

NOD1 participates in processes related to lactation. This occurs even in other species
such as cows or goats. In dairy cows, for example, a high-concentrate diet-induced apopto-
sis of mammary epithelial cells by the NOD1 and caspase-8 pathways [101] while triggering
NOD1-NF-κB downstream proinflammatory signaling pathways [102]. Another interesting
study cited the relationship between NOD1 downregulation in neutrophils from peripar-
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turient dairy cows, the dysregulation of neutrophils, and their increased vulnerability
to infectious diseases [103]. In goats, sodium butyrate inhibited NOD1 activation in lac-
tating mammary glands during subacute ruminal acidosis. NOD1 signaling pathway
activation in cow and goat mammary glands usually occurs during ruminal acidosis after
translocation of lipopolysaccharide from the digestive tract into the bloodstream [101].
Therefore, studies on these issues suggest two ways of modulating NOD1 under nutritional
conditions: acting indirectly on livestock (which provide us with food and factors that
regulate our immune system) or studying these mechanisms in humans and applying them
to improve immunity.

3.9. NOD1 and Inflammatory Diseases

An adequate nutritional status is required for optimal wound healing, thus setting
a promising outlook for immunonutrition. Molecular mechanisms such as inflammation,
cell migration or proliferation, coagulation, and remodeling, contribute to wound healing.
Therefore, nutritional depletion or deficiency of certain nutrients could lead to an impaired
wound healing process. In fact, malnourished subjects often have ulcers, infections, and
delayed healing or even nonhealing wounds. In contrast, nutritional supplementation
with beneficial effectors, such as arginine or curcumin, stimulates restorative events in this
host [104–107]. Given that migratory leukocytes and immune responses play a fundamental
role in these processes and that NOD1 is an active actor in immune cells, it would not be
surprising if combined strategies based on wound healing favored by this receptor were
taken into account.

Another example of the contribution of NOD1 to human disease is illustrated in the
expression and functions of NOD1 in dental pulp odontoblasts. NOD1 activation and
derived release of chemokines lead to the appearance of pulpitis. This is interesting because
odontoblasts recognize caries-related pathogens and trigger inflammation and subsequent
pulpitis [108]. In this regard, NOD1 was demonstrated to sense periodontal pathogens
(e.g., Porphyromonas gingivalis, Fusobacterium nucleatum, and Aggregatibacter actinomycetem-
comitans) [109] and putative newly identified pathogens (Eubacterium nodatum, Eubacterium
saphenum, and Filifactor alocis) to initiate innate immune responses [110]. This spp. are
important in the development of periodontitis inflammatory disease. Interestingly, other
external factors, such as cigarette smoke, have been determined to regulate NOD1 signaling
and β-defensins in the oral mucosa and therefore host defense against pathogens [111]. A
carefully studied immune-related nutrition can help both prevent tooth decay and disrupt
NOD1 activation (Figure 3).



Biomedicines 2021, 9, 519 11 of 20Biomedicines 2021, 9, x FOR PEER REVIEW 11 of 20 
 

 

Figure 3. Health or disease: a matter of the well-known PRR NOD1 with possibilities of taking 

advantage of alliances with immunonutrition. NOD1, a cytoplasmic PRR of the innate immunity, 

is expressed in nonhematopoietic cells (such as endothelia) and in hematopoietic and immune 

cells (e.g., monocytes/macrophages, neutrophils, NK cells, lymphocytes). PRRs recognize molecu-

lar patterns associated with microbes or pathogens (MAMPs or PAMPs) and become activated. 

Impairments in this activation lead to the development of autoimmunity and other diseases. Com-

ponents of the bacterial cell wall (peptidoglycan (PGN) and murein), are recognized and activate 

NOD1. γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) is sufficient to accomplish NOD1 activa-

tion. iE-DAP is mainly present in Gram-negative bacteria, which constitute the main microorgan-

isms in the human gut. There exist at least 196 reported diseases related to NOD1, ranging from 

several cancers or neoplasms to metabolic, inflammatory, immune, and infectious diseases, as 

summarized in this figure. NOD1 is overexpressed and activated under these pathological condi-

tions. Therefore, NOD1-related diseases connected with nutrient metabolism, deficiencies, or dis-

orders can benefit from carefully studied immunonutrition approaches and clinical applications. 

Blue letters, events, and pathways related to NOD1 signaling. 

4. A Focus on Future Strategies 

It is widely shown that human nutrition is associated with the content and function 

of the gut microbiota. In turn, the intestinal microbiota is related to metabolic diseases and 

the immune system. The prevalence of certain diseases, such as metabolic ones, including 

obesity, has been increasing over the past decades [112]. In an interesting study, exercise 

was opposed to obesity-related changes in the gut microbiota [113]. In another work, sci-

entists highlighted the importance of combining novel diet and gut microbiome-modulat-

ing strategies to treat inflammatory bowel disease in an immunonutrition approach [114]. 

Therefore, there are strong connections between diet, exercise, microbiota, immune sys-

tem, and health or disease that highlight the need to understand better the mechanisms 

involved in the concept of immunonutrition. A pronounced leukocytosis, including a high 

Figure 3. Health or disease: a matter of the well-known PRR NOD1 with possibilities of taking
advantage of alliances with immunonutrition. NOD1, a cytoplasmic PRR of the innate immunity, is
expressed in nonhematopoietic cells (such as endothelia) and in hematopoietic and immune cells (e.g.,
monocytes/macrophages, neutrophils, NK cells, lymphocytes). PRRs recognize molecular patterns
associated with microbes or pathogens (MAMPs or PAMPs) and become activated. Impairments
in this activation lead to the development of autoimmunity and other diseases. Components of
the bacterial cell wall (peptidoglycan (PGN) and murein), are recognized and activate NOD1. γ-D-
glutamyl-meso-diaminopimelic acid (iE-DAP) is sufficient to accomplish NOD1 activation. iE-DAP is
mainly present in Gram-negative bacteria, which constitute the main microorganisms in the human
gut. There exist at least 196 reported diseases related to NOD1, ranging from several cancers or
neoplasms to metabolic, inflammatory, immune, and infectious diseases, as summarized in this figure.
NOD1 is overexpressed and activated under these pathological conditions. Therefore, NOD1-related
diseases connected with nutrient metabolism, deficiencies, or disorders can benefit from carefully
studied immunonutrition approaches and clinical applications. Blue letters, events, and pathways
related to NOD1 signaling.

4. A Focus on Future Strategies

It is widely shown that human nutrition is associated with the content and function of
the gut microbiota. In turn, the intestinal microbiota is related to metabolic diseases and
the immune system. The prevalence of certain diseases, such as metabolic ones, including
obesity, has been increasing over the past decades [112]. In an interesting study, exercise was
opposed to obesity-related changes in the gut microbiota [113]. In another work, scientists
highlighted the importance of combining novel diet and gut microbiome-modulating
strategies to treat inflammatory bowel disease in an immunonutrition approach [114].
Therefore, there are strong connections between diet, exercise, microbiota, immune system,
and health or disease that highlight the need to understand better the mechanisms involved
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in the concept of immunonutrition. A pronounced leukocytosis, including a high count
of neutrophils, results after harsh exercise. In addition, immunosuppression induced
by a prolonged or exhaustive exercise triggers dysfunction of the immune system and
inflammatory responses. These disorders eventually lead to a pronounced decrease in the
resistance to pathogens and to an overall increased risk of infections and diseases. Some
biomarkers of immune function, such as the number and activity of immune cells, the
expression of the major histocompatibility complex II, the delayed-type hypersensitivity
response, salivary IgA, etc., are altered after intense exercise [7,14,115].

Glucose, amino acids, and lipids are nutrients that have a clear function in immunonu-
trition, contributing to energy production in immune cells and to their correct proliferation.
Micronutrients, such as zinc, iron, magnesium, and vitamins, are essential for proper and
competent immune function. It is noteworthy that some nutrients or micronutrients must
be obtained from the diet since they cannot be directly synthesized in human cells or cannot
be sufficiently produced. Novel immunonutrition supplements such as β-glucan, quercetin,
or curcumin hold promise for improving immune function and reducing infections after
vigorous exercise [7,13,14,115]. Recently published work has identified a specialized bone
marrow cell progenitor that contributes to lymphocyte production in response to exercise,
suggesting that mechanosensitive osteogenic progenitors are involved in immune system
responses and in the clearance of bacterial infections [116]. Regarding NOD1, even if this
PRR and exercise training have not yet been directly related, it is clear that NOD1 activation
contributes to insulin resistance, cardiac dysfunction, and muscle contraction [62,68].

As mentioned above, critically ill patients are an important population that will
potentially benefit from immunonutrition strategies [2,5,6,12,14,15,18]. Evidence on the
host immune system and gut microbiome interactions in critically ill patients highlights
key research areas for the design and use of specific and individualized treatments [16].
Furthermore, NOD1 mRNA is suppressed in monocytes of septic patients, increasing the
risk of infections [117]. Accordingly, the expression of genes involved in the innate immune
response, including NOD1, changes in critically ill patients suffering sepsis and related
malnutrition [17].

Nutritional interventions are considered promising ways to improve impaired im-
mune function and predisposition to infection with aging [118,119]. The elderly, similar
to overweight and obese individuals, present an increased inflammatory condition. They
generally have a high prevalence of nutrient deficiencies that affect their immune response,
defense against infection, and cognitive function. Adapted physical activity training pro-
grams are beneficial for this population. Immunosenescence, a cell-mediated reduction
in immune function, favors the highest rates of morbidity and mortality in the elderly.
However, age appears to be related to an enhanced inflammatory response. Therefore,
regular moderate exercise improves immune function in this population. For example,
calisthenics exercise stimulates the activities of T lymphocytes and natural killers in older
women. Micronutrient deficiency, inflammation, muscle damage, and oxidative stress
increased in the elderly, while glucose tolerance and insulin sensitivity decreased with
aging. These alterations highlight the need for immunonutritional strategies for them, and
if they consider the role of NOD1 in aging, they will be more complete and effective [7,8].

The influence of microRNAs (miRNAs) as key regulatory elements in physiological
processes, inflammation, the activity of the immune system, and various human disorders,
such as cancer or infectious diseases, has long been known. miRNAs are short, noncoding
RNAs that bind to specific mRNA sequences and lead to the suppression or degradation of
translation of the respective target mRNAs. They are important posttranscriptional modu-
lators of hematopoietic cell fate decisions, for example, or are involved in the regulation of
gene expression associated with the immune response. However, the precise mechanisms
involved in these biological and pathological processes are poorly defined in this still de-
veloping field [79,120–122]. An example of miRNAs in immune-related metabolic diseases
is presented in a study in which miRNA-495 inhibited the inflammation caused by high
glucose, the extracellular matrix accumulation, and the differentiation of cardiac fibroblasts
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by NOD1 downregulation [123]. Knowing that NOD1, as we mentioned above, is closely
related to atherosclerosis and CVDs, a combined immunonutrition–microRNA strategy
would be expected to be effective.

Inhibitors of the immune system and immune checkpoint inhibitors are novel molecules
with immunoregulatory effects in different pathologies among which several cancers stand
out [124,125]. Some examples to mention that are related to diseases in which NOD1
contributes in some way would be the following referenced works: [48], [126], and [51].
Hence, a double immunonutrition–inhibitor(s) strategy (and even more, targeting NOD1)
will be helpful in combating certain diseases.

The process of elucidating antigen receptor heterogeneity and cellular, antibody, and
cytokine responses involved in health and disease is called immunoprofiling. This field
allows the identification of new biomarkers aimed at determining the severity, course, and
outcome of the disease, as well as the patient’s response to a specific treatment. Poten-
tial translational applications are immunotherapy of cancer, inflammatory dysfunctions,
autoimmune disorders, and infectious diseases. However, with respect to all types of
diseases, since immune cells are almost as diverse as people, promising and innovative meth-
ods of single-cell analysis, combined with immunoprofiling techniques, are being used.
Immunoprofiling approaches used in the service of immunonutrition may be of great use
in the future [127–129].

It is known that immunonutrition studies use vaccination responses to obtain data on
immunomodulatory mechanisms. These responses are influenced by factors as wide as
environmental, infectious, and related to lifestyle or nutrition. Additionally, peptides with
DAP, therefore NOD1 ligands, have adjuvant activity. Of note, Freund’s adjuvant activity
requires monomeric PGN subunits as minimal structures to be functional. These NOD1
agonists with adjuvant capacity showed antibacterial and antiviral activities while having
antitumor roles. Therefore, there is an obvious link between the immune system, nutrition,
vaccination, NOD1, and infection that needs to be investigated in depth. [3,130].

Interestingly, there are different current clinical trials on immunonutrition. Many
of them use different nutrient combinations and strategies, such as a mix of arginine,
n-3 fatty acids, and nucleotides with/without glutamine in critically ill and surgical pa-
tients. Normally, they show higher total nitrogen content, antioxidant vitamins (e.g., A
and E), and minerals (such as selenium) levels. Here, is a reduced selection of some of
these promising clinical trials: “Immunonutrition Supplementation for Improved Burn
Wound Healing in Older Adults” (NCT04725071), “Effect of Preoperative Immunonutrition
in Upper Digestive Tract” (NCT04027088), “Preoperative Immunonutrition and Cardiac
Patients” (NCT03445221), “Effect of Perioperative Immunonutrition on Recurrence and
Infections in Crohn’s Disease Patients (EPIRIC)” (NCT04014517), “Immunonutrition and
Carbohydrate Loading Strategies in Breast Reconstruction” (NCT03764943), “Periopera-
tive Immunonutrition, Phagocytic, and Bactericidal Activity of Blood Platelets in Gastric
Cancer Patients” (NCT01704664); and others than have been completed: “Changes in
Inflammatory Response after Immunonutrition Compared to Standard Nutrition in Col-
orectal Cancer Tissue” (NCT04732442), “Effect of Enteral Immunonutrition on Immune,
Inflammatory Markers, and Nutritional Status in Patients Undergoing Gastrectomy for
Gastric Cancer” (NCT03730545), “Preoperative Immunonutrition in Normo-Nourished
Patients Undergoing Fast-Track Laparoscopic Colorectal Surgery” (NCT04692545), “Effect
of Immunonutrition on Inflammatory Markers after Bariatric Surgery” (NCT03010280),
“Effects of Immunonutrition on Biomarkers in Traumatic Brain Injury” (NCT03166449),
and “Immunonutrition in Cardiac Surgery” (NCT00247793). All of them prevent or treat
highly prevalent human diseases, demonstrating the importance of such novel interven-
tions and the need for more studies. However, none of these trials appear to address a
NOD1-related/targeted intervention, which would be of interest (Figure 4).
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and personalized strategies are considered the future in the fight against today’s global diseases. This figure collects
different fields related to existing immunonutrition strategies and that could exploit the potential of a dual approach with
interventions targeting NOD1. Metabolic and immunological disorders (such as obesity or diabetes), content and function of
the intestinal microbiota, athletes or professional athletes (suffering from respiratory diseases, infections or gastrointestinal
disorders), critically ill patients, the elderly, mechanisms of aging/senescence, microRNAs, inhibitors immune system
and immune checkpoint inhibitors, immunoprofiling, biological or nonbiological study models (highlighting cell and
animal models), vaccination flow diagram and ongoing clinical trials on immunonutrition (using various combinations of
immunonutrients) are discussed here. NOD1 has almost undiscovered potential as a therapeutic target that should be used
against human disorders. New treatments can complement or improve existing therapeutic and nutritional approaches.

Thus, NOD1 has great therapeutic potential as a target in several human disorders.
The development of new treatments is essential, complementing existing therapeutic and
nutritional approaches or even favoring patients who do not respond adequately to existing
drugs [130].

5. Conclusions

In recent years, immunonutrition has become a broad and hopeful field with promis-
ing applications in many diseases. This is the art of modulating the immune system by
employing specific nutrient-based interventions. Imbalances in normal metabolism or
deficiencies in immunity can contribute to disease development and even to mortality.
Since NOD1, an immunity-related receptor, has been shown to be involved in several
different disorders and pathologies, research on the combination of immunonutrition,
NOD1-targeting, and other translational biomedical fields could benefit low-grade inflam-
mation chronic patients. However, despite the direct relationship of NOD1 with different
immunometabolic chronic diseases and cancer, it is still almost completely unknown to-
day in relation to its potential modulation through immunonutritional strategies as aids
to biomedical interventions. Further efforts should aim to better understand immunity-
mediated diseases while focusing on defining the most effective immunity-modulating
nutrition approaches (both individual and approaches in which different immunonutrients
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are combined) and even their use in conjunction with other types of treatments, surgeries,
or lifestyle factors. Given the breadth of the areas covered in this field, what is clear is that
deeper interdisciplinary research and collaboration between trained experts are essential.
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