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Abstract

Background and Aims: In Europeans, variants in the hy-
droxysteroid 17-beta dehydrogenase 13 (HSD17B13) gene 
impact liver histology in metabolic-associated fatty liver dis-
ease (MAFLD). The impact of these variants in ethnic Chi-
nese is unknown. The aim of this study was to investigate 
the potential associations in Chinese patients. Methods: In 
total, 427 Han Chinese with biopsy-confirmed MAFLD were 
enrolled. Two single nucleotide polymorphisms in HSD17B13 
were genotyped: rs72613567 and rs6531975. Logistic re-
gression was used to test the association between the single 
nucleotide polymorphisms and liver histology. Results: In 
our cohort, the minor allele TA of the rs72613567 variant 
was related to an increased risk of fibrosis [odds ratio (OR): 
2.93 (1.20–7.17), p=0.019 for the additive model; OR: 3.32 

(1.39–7.91), p=0.007 for the recessive model], representing 
an inverse association as compared to the results from Eu-
ropean cohorts. In contrast, we observed a protective effect 
on fibrosis for the minor A allele carriers of the HSD17B13 
rs6531975 variant [OR: 0.48 (0.24–0.98), p=0.043 for the 
additive model; OR: 0.62 (0.40–0.94), p=0.025 for the dom-
inant model]. HSD17B13 variants were only associated with 
fibrosis but no other histological features. Furthermore, HS-
D17B13 rs6531975 modulated the effect of PNPLA3 rs738409 
on hepatic steatosis. Conclusions: HSD17B13 rs72613567 
is a risk variant for fibrosis in a Han Chinese MAFLD popula-
tion but with a different direction for allelic association to that 
seen in Europeans. These data exemplify the need for study-
ing diverse populations in genetic studies in order to fine map 
genome-wide association studies signals.
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Introduction

Metabolic-associated fatty liver disease (MAFLD) is rec-
ognized as a leading cause of liver-related morbidity and 
mortality.1,2 In China, the MAFLD burden is increasing, with 
prevalence rising from 18% to 29% in the last decade.3 
MAFLD comprises a spectrum of disease, ranging from 
simple steatosis or metabolic-associated fatty liver (MAFL) 
to the presence of steatohepatitis with varying degrees of 
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fibrosis and cirrhosis.4 MAFLD arises from “multiple hits”, 
with genes acting as important modifiers of the clinical phe-
notype.5 Our understanding of the underpinnings of MAFLD 
has been enhanced by numerous genetic association stud-
ies, and all of the polymorphisms identified to date explain 
only 10–20% of disease heritability.6,7

It is broadly acknowledged that there is overrepresentation 
of subjects of European ancestry in human genetics research, 
with ∼79% of all genome-wide association studies (GWAS) 
participants being of European descent. This overrepresenta-
tion hinders a complete understanding of the human genetic 
architecture. Moreover, it can also have a negative impact, 
including prediction accuracies between 1.6-4.9-fold lower 
for other ethnicities than Europeans.8 Hence, increasing the 
representation of diverse populations and studying other eth-
nicities has become a research priority.

Several variants in the hydroxysteroid 17-beta dehydroge-
nase 13 (HSD17B13) gene encoding a hepatic lipid droplet 
protein have been identified to impact the histological features 
of MAFLD. However, the impact of HSD17B13 gene variants 
on MAFLD histology among those of Chinese ancestry is un-
known. Notably, allele frequencies, haplotype patterns and the 
effect size of polymorphisms vary considerably across popula-
tions and ethnicities.6 As HSD17B13 has been proposed as a 
therapeutic target for MAFLD, it is pivotal to explore whether 
the effect of this variant observed in Caucasian populations 
extends to other populations, as also to the effect size.

It is known that the genetic association of variants in HS-
D17B13 with the histological features of MAFLD is complex, 
with different potentially causative single nucleotide poly-
morphisms (SNPs) and various SNPs associated with differ-
ent phenotypic patterns. For example, alleles of rs6834314 
and rs72613567 associate with decreased injury and with 
increased hepatic fat.9 However, there are other studies that 
show no association of rs72613567 with steatosis.10,11 Non-
coding SNPs (e.g., rs6531975) not in linkage disequilibrium 
with rs72613567 have also been associated with decreased 
hepatic fat.9 Adding to this complexity, a recent study of 
487 patients suggested that those harboring the ‘protec-
tive’ TA-allele of rs72613567 have a numerically increased 
risk for mortality, liver-related death and hepatic decom-
pensation.12 Likewise, while some reports have suggested 
that there is a potential interaction between HSD17B13 and 
variants in the patatin-like phospholipase domain contain-
ing protein 3 (PNPLA3) gene in MAFLD, subsequent reports 
have cited a failure to discern an association.13,14

Given these controversies, the aims of this study were 1) 
to explore the role of variants in the HSD17B13 gene in a 
cohort of Han Chinese with biopsy-confirmed MAFLD, 2) to 
clarify the role of the variants on the various morphological 
features of MAFLD, and 3) to discern if there is any interac-
tion between the variants and variants in PNPLA3.

Methods

Study population

We recruited 427 consecutive Han Chinese patients with bi-
opsy-confirmed MAFLD from the PERSONS cohort (2017.01–
2019.05). The definition of MAFLD was based on the criteria 
proposed by an international expert panel.15 The study cohort 
included patients from a previously published study as well 
as additional subjects.16 To ascertain the effects of the HS-
D17B13 variant on liver disease solely due to MAFLD, patients 
with other causes of liver disease (including alcohol use dis-
order or viral hepatitis) were excluded. Briefly, all consecutive 
patients, aged ≥18, with biopsy-proven MAFLD, and without 
alternative causes of liver disease were recruited to the study.

The study protocol was approved by the ethics commit-

tee of the First Affiliated Hospital of Wenzhou Medical Uni-
versity (2016-246, 1 December 2016) and registered in 
the Chinese Clinical Trial Registry (ChiCTR-EOC-17013562). 
Written informed consent was obtained from each subject 
before their participation in the study. Patient identifiers were 
anonymized and replaced by the health examination number.

Clinical and biochemical data

Clinical and biochemical data were collected from all patients 
within 24 hours of liver biopsy. Body mass index (BMI) was 
calculated as weight (kg) divided by the square of height 
(m). Insulin resistance (IR) was estimated according by the 
homoeostasis model assessment (commonly referred to as 
HOMA).17 Diagnosis of diabetes was based on criteria of the 
American Diabetes Association.18

Assessment of liver histology

Liver biopsies were performed using a 16-gauge needle un-
der ultrasound guidance. The histology was reviewed by a 
single liver pathologist (X.D. Wang) who was blinded to the 
clinical and biochemical data. Histologic scoring was based 
on the Activity Score.19 Steatohepatitis was diagnosed as 
a score ≥4 and a score of at least one for each feature 
of steatosis, ballooning, and lobular inflammation. Severe 
steatosis, severe ballooning and severe lobular inflamma-
tion were defined if their scores were ≥2.

Genetic analysis

Genotyping for the HSD17B13 (rs72613567 and rs6531975) 
and PNPLA3 (rs738409) variants were performed using 
the MassARRAY (Agena Biosciences, San Diego, CA, USA) 
or TaqMan assay (Bio-Rad, Hercules, CA, USA) platforms, 
according to the manufacturer’s protocol. For the purpose 
of genotyping, each sample used approximately 20 ng of 
genomic DNA. Locus-specific PCR and detection primers 
were designed using Assay Design Suite v3.1.

Statistical analysis

Statistical analyses were performed using R software (v3.5.2; 
R Foundation for Statistical Computing, Vienna, Austria) 
and SPSS 19.0 (SPSS Inc., Armonk, NY, USA). Continuous 
variables were expressed as mean±standard deviation and 
compared using the one-way analysis of variance test. Cat-
egorical variables were expressed as frequency (%) and 
compared using the chi-square test. The Hardy-Weinberg 
equilibrium was assessed using the chi-square test. Multi-
variate logistic regression models were undertaken to test 
the association between the aforementioned SNPs and liver 
histology features. A p-value <0.05 was considered to be 
statistically significant.

Results

Patient characteristics

The study comprised 427 consecutive biopsy-confirmed 
MAFLD patients; their clinical, biochemical, and histological 
features are depicted in Supplementary Table 1. The aver-
age age was 41 years, with 73.8% being male. About 287 
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(67.2%) had fibrosis (≥F1), 226 (52.9%) had severe stea-
tosis (S2-S3), 157 (36.8%) had severe ballooning (B2) and 
84 (19.7%) had severe inflammation (A2-A3).

Genotype distribution, Hardy-Weinberg equilibrium 
calculations

Two SNPs in HSD17B13 were genotyped: rs72613567 and 
rs6531975. The genotype distributions of rs72613567 and 
rs6531975 in HSD17B13 were in Hardy-Weinberg equilib-
rium (all, p>0.05). The minor allele frequency (MAF) for 
rs72613567 and rs6531975 was 0.32 and 0.30 in our co-
hort, respectively. Each of these MAFs is close to the MAF 
in general East Asian population in the 1000 Genomes Pro-
ject.20 The overall genotype distribution of rs72613567 T/T, 
T/TA and TA/TA was 47.3%, 42.0% and 10.7%, while the 
distribution of rs6531975 G/G, G/A and A/A was 49.8%, 
40.5% and 9.8%, respectively.

Clinical and laboratory characteristics stratified by 
HSD17B13 variants

The baseline characteristics of study participants accord-

ing to rs72613567 genotypes is presented in Table 1. There 
were significant differences in levels of fasting glucose, tri-
glycerides and high-density lipoprotein cholesterol among 
rs72613567 genotypes (all, p<0.05). Table 2 shows the 
baseline characteristics of study participants according to 
rs6531975 genotypes. No significant differences were ob-
served among the rs6531975 genotypes.

HSD17B13 variants and hepatic steatosis

The proportion of severe steatosis in rs72613567 T/T, T/TA 
and TA/TA was 103 (52.0%), 91 (51.7%)and 27 (60.0%) 
respectively, while the proportion of severe steatosis in 
rs6531975 G/G, G/A and A/A was 113 (54.1%), 84 (49.4%) 
and 24 (58.5%) respectively (Table 3). No association be-
tween HSD17B13 variants and severe steatosis was ob-
served in multivariate logistic regression model (Table 4).

HSD17B13 variants and hepatocyte ballooning and 
lobular inflammation

The proportion of severe ballooning in rs72613567 T/T, T/
TA and TA/TA was 73 (36.9%), 58 (33.0%)and 21 (46.7%) 

Table 1.  Baseline characteristics of biopsy-confirmed MAFLD patients according to rs72613567 genotypes

T/T (n=198) T/TA (n=176) TA/TA (n=45) p-value

Age in years 40.2±11.9 41.4±11.5 43.1±14.8 0.299

Male sex, % 150 (75.8%) 126 (71.6%) 33 (73.3%) 0.657

Diabetes, % 63 (31.8%) 54 (30.7%) 18 (40.0%) 0.484

Hypertension, % 74 (37.4%) 59 (33.5%) 22 (48.9%) 0.161

Waist circumference in cm 92.2±9.0 90.6±8.7 91.7±6.8 0.212

BMI in kg/m2 27.0±3.5 26.5±3.3 26.3±2.9 0.255

HOMA-IR score 5.3±8.4 5.1±6.6 6.5±7.5 0.541

Platelet count as 109/L 242.2±61.0 246.7±56.2 253.1±84.6 0.520

Hemoglobin A1c, % 6.0±1.3 6.2±1.5 6.3±1.5 0.427

Fasting glucose in mmol/L 5.7±1.5 5.5±1.2 6.2±2.4 0.012

Total cholesterol in mmol/L 5.2±1.3 4.9±1.1 5.0±1.0 0.100

Triglycerides in mmol/L 2.4±1.7 2.0±1.1 2.3±1.3 0.044

HDL-cholesterol in mmol/L 1.0±0.2 1.0±0.2 1.1±0.4 0.019

LDL-cholesterol in mmol/L 3.1±1.0 3.0±0.9 2.9±0.8 0.331

Albumin in g/L 46.4±4.2 46.4±3.4 46.2±3.6 0.957

ALT in U/L 83.4±79.9 67.9±56.9 70.6±46.6 0.079

AST in U/L 50.4±35.7 45.2±35.0 40.8±20.6 0.139

GGT in U/L 75.8±83.7 68.7±108.9 84.6±98.2 0.567

Creatinine in µmol/L 67.1±14.3 66.1±12.9 70.6±17.4 0.159

Uric acid in µmol/L 395.7±102.9 385.8±108.1 398.2±120.3 0.615

PNPLA3 rs738409 0.256

  C/C 56 (28.7%) 51 (29.7%) 16 (35.6%)

  C/G 101 (51.8%) 73 (42.4%) 19 (42.2%)

  G/G 38 (19.5%) 48 (27.9%) 10 (22.2%)

Categorical values are shown as n (%). Continuous variables are shown as mean±standard deviation.
Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
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respectively, while the proportion of severe ballooning in 
rs6531975 G/G, G/A and A/A was 79 (37.8%), 63 (37.1%) 
and 11 (26.8%) respectively. The proportion of severe 
inflammation in rs72613567 T/T, T/TA and TA/TA was 35 
(17.7%), 35 (19.9%) and 12 (26.7%) respectively, while 
the proportion of severe inflammation in rs6531975 G/G, 
G/A and A/A was 40 (19.1%), 35 (20.6%) and 8 (19.5%) 
respectively (Table 3). Both severe ballooning and inflam-
mation were unrelated to HSD17B13 variants in multivari-
ate analysis (Table 4).

HSD17B13 variants and fibrosis

The prevalence of having fibrosis in rs72613567 T/T, T/TA 
and TA/TA was 135 (68.2%), 111 (63.1%) and 38 (84.4%) 
respectively. A higher prevalence of fibrosis was observed in 
patients with the TA/TA genotype in rs72613567 (p<0.05) 
(Table 3). In rs6531975 genotypes, the prevalence of hav-
ing fibrosis in G/G, G/A and A/A was 150 (71.8%), 109 
(64.1%) and 23 (56.1%) respectively. The A allele carriers 
of rs6531975 showed a nonsignificant trend for a reduced 
prevalence of having fibrosis (p=0.082) (Table 3).

To further understand the association between HSD17B13 
variants and liver histology in Chinese patients with MAFLD, 
multivariate logistic regression modeling was undertaken. 
As shown in Table 4, rs72613567 TA/TA increased the risk 

of fibrosis with an odds ratio (OR) of 2.93 [TA/TA vs. T/T, 
95% confidence interval (CI): 1.20–7.17, p=0.019] for the 
additive model and an OR of 3.32 (TA/TA vs. T/T+T/TA, 
95% CI: 1.39–7.91, p=0.007) for the recessive model after 
adjusting for age, sex, BMI, presence of diabetes, fasting 
glucose, triglycerides and high-density lipoprotein choles-
terol. In contrast, the rs6531975 A allele appeared to have 
a protective impact on fibrosis, with an OR of 0.48 (A/A vs. 
G/G, 95% CI: 0.24–0.98, p=0.043) for the additive model 
and an OR of 0.62 (G/A+A/A vs. G/G, 95% CI: 0.40–0.94, 
p=0.025) for the dominant model after adjusting for age, 
sex, BMI and presence of diabetes.

Interaction of PNPLA3 and HSD17B13 variants

Next, we conducted interaction analysis for HSD17B13 
(rs72613567 and rs6531975) and PNPLA3 (rs738409) vari-
ants for their impact on liver histology. For fibrosis, no in-
teraction effects were observed between the two genes. In 
contrast, there was an interaction between rs6531975 and 
rs738409 with regard to hepatic steatosis (Fig. 1). For the 
rs738409 risk allele carriers (CG+GG), the proportion of se-
vere steatosis was lower in patients with the rs6531975 A 
allele (G/A+A/A) compared to those with rs6531975 G/G 
(Fig. 1A). Using the latter as reference, the rs6531975 A 
allele (G/A+A/A) attenuated the risk effect of the rs738409 

Table 2.  Baseline characteristics of biopsy-confirmed MAFLD patients according to rs6531975 genotypes

G/G (n=209) G/A (n=170) A/A (n=41) p-value

Age in years 41.8±12.3 40.6±11.2 38.9±13.8 0.300

Male sex, % 160 (76.6%) 122 (71.8%) 27 (65.9%) 0.287

Diabetes, % 61 (29.2%) 60 (35.3%) 12 (29.3%) 0.420

Hypertension, % 74 (35.4%) 67 (39.4%) 14 (34.1%) 0.672

Waist circumference in cm 91.6±7.9 91.2±9.3 90.8±9.8 0.824

BMI in kg/m2 26.5±3.1 26.8±3.6 26.7±3.5 0.690

HOMA-IR score 5.8±8.0 5.2±8.8 4.3±3.5 0.472

Platelet count as 109/L 246.0±62.3 243.9±60.9 257.4±65.1 0.457

Hemoglobin A1c, % 6.1±1.4 6.1±1.4 5.9±1.3 0.537

Fasting glucose in mmol/L 5.7±1.6 5.7±1.5 5.4±1.1 0.440

Total cholesterol in mmol/L 5.0±1.1 5.1±1.1 5.3±1.6 0.324

Triglycerides in mmol/L 2.2±1.4 2.4±1.6 2.1±1.0 0.284

HDL-cholesterol in mmol/L 1.0±0.2 1.0±0.2 1.0±0.2 0.665

LDL-cholesterol in mmol/L 3.0±0.9 3.0±0.9 3.4±1.2 0.061

Albumin in g/L 46.1±3.6 46.5±4.3 46.7±3.1 0.412

ALT in U/L 70.3±53.4 81.2±93.1 84.3±73.5 0.275

AST in U/L 44.1±30.1 50.2±40.8 51.0±35.7 0.193

GGT in U/L 72.6±103.3 76.7±96.9 60.9±41.7 0.636

Creatinine in µmol/L 68.0±13.0 66.4±15.2 63.5±13.7 0.137

Uric acid in µmol/L 390.8±100.9 391.6±112.9 412.2±115.7 0.489

PNPLA3 rs738409 0.684

  C/C 62 (30.1%) 48 (29.1%) 14 (34.1%)

  C/G 93 (45.1%) 83 (50.3%) 16 (39.0%)

  G/G 51 (24.8%) 34 (20.6%) 11 (26.8%)

Categorical values are shown as n (%). Continuous variables are shown as mean±standard deviation.
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G allele (C/G+G/G) on steatosis, with an OR of 0.57 (95% 
CI: 0.34–0.96, p=0.034) after adjusting for age, sex, BMI 
and presence of diabetes (Fig. 1B). The interaction between 
rs72613567 and rs738409 on liver steatosis was also per-
formed (Fig. 2); however, no effect was observed.

Discussion

We characterized the impact of HSD17B13 gene variants 
on histological features in a cohort of Han Chinese with 

MAFLD. This study has three key findings. First, we con-
firmed the HSD17B13 region as a susceptibility locus for 
MAFLD-related fibrosis but extended these findings toward 
the identification of an inverse allelic direction of associa-
tion as compared to that reported in Europeans. Second, 
the HSD17B13 variants are only associated with fibrosis 
and not any other histological feature. Third, the HSD17B13 
variants modulate the effect of PNPLA3 rs738409 on hepatic 
steatosis but no other histological features.

The association between HSD17B13 variants and liver 
histological features seems to be complex, with multiple 

Fig. 1.  Interaction of HSD17B13 rs6531975 and PNPLA3 rs738409 on liver steatosis. (A) Prevalence of mild steatosis and severe steatosis according to 
rs6531975 and rs738409 genotypes. (B) Interaction effect of rs6531975 and rs738409 on steatosis after adjusting for age, sex, BMI and presence of diabetes. Patients 
with the rs6531975 A allele (G/A+A/A) attenuated the risk effect of the rs738409 G allele (C/G+G/G) on steatosis, with an OR of 0.57 (95% CI: 0.34-0.96, p=0.034).
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suggested functional variants. Notably, in our cohort, the 
minor allele TA of the rs72613567 variant was related to an 
increased risk of fibrosis, representing an inverse associa-
tion as compared to the results in European cohorts. Hence, 
if there is a shared causal variant across European and Chi-
nese populations, it is unlikely to be rs72613567. In this 
regard, we observed a protective effect in the minor A allele 
carriers of the HSD17B13 rs6531975 variant, but this is not 
in strong linkage disequilibrium with rs72613567. Thus, fur-
ther fine-mapping studies in Han Chinese populations and 
comparison to other populations would be helpful to identify 
shared causal variants across different ethnicities.

The differential effect size and allele direction of vari-
ants discovered by GWAS between ethnicities is not uncom-

mon. In one Chinese MAFLD cohort, researchers found that 
the neurocan (known as NCAN) rs2228603 T variant as-
sociated with a higher level of high-density lipoprotein,21 
while it was positively related to liver steatosis in the USA 
population.22 Similarly, toll-like receptor 3 (known as TLR3) 
rs377529023,24 and interferon lambda-3 (known as IFNL3) 
rs1297986025,26 variants in Chinese hepatocellular carci-
noma populations showed opposite effects to those in non-
Asian populations. Inconsistent results have also been ob-
served in other Asian populations, such as among Japanese. 
For example, tolloid-like 1 (known as TLL1) rs1704720027 
and MHC class I polypeptide-related chain A (known as 
MICA) rs259654228 variants were suggested to have pro-
tective impacts on fibrosis and hepatocellular carcinoma in 

Fig. 2.  Interaction of HSD17B13 rs72613567 and PNPLA3 rs738409 on liver steatosis. (A) Prevalence of mild steatosis and severe steatosis according to 
rs72613567 and rs738409 genotypes. (B) Interaction effect of rs72613567 and rs738409 on steatosis after adjusting for age, sex, BMI and presence of diabetes. No 
interaction effect was observed between rs72613567 and rs738409.
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Caucasians. The associations were inverse to those of a Jap-
anese cohort.29,30 Besides, there are several MAFLD-related 
SNPs in Europeans for which there has been no associa-
tion in Chinese populations.31–33 Along the same line, lower 
genetic prediction accuracies (between 1.6-4.9-fold lower) 
were observed in other ethnicities compared to Europeans.8 
Hence, increasing the representation of diverse populations 
and studying other ethnicities has recently become a re-
search priority to enhance understanding of the human ge-
netic architecture and its translational implications.

The ethnic differences in the characteristics of patients 
with MAFLD might also contribute to the observed differ-
ences in the genetic findings. There is growing evidence, for 
example, that the MAFLD disease course in Asian popula-
tions is different to that in Caucasians. As an example, for 
the same BMI, there is a higher prevalence of MAFLD in 
Asians. Published reports also indicate that lean MAFLD ac-
counts for 36.9% of cases in China,3 but only 17.3% of the 
total disease burden in the USA.34 Differences in metabolic 
adaptation have been reported between lean and non-lean 
MAFLD patients, suggesting that lean fatty liver disease 
likely has a distinct pathophysiology.35

Another intriguing aspect of this study is the lack of as-
sociation found between HSD17B13 variants and other his-
tological features. To date, the nature of the association 
between the rs72613567 allelic variant and the histological 
features of MAFLD, particularly steatosis, is unclear. Abul-
Husn and colleagues10 suggested a lack of association be-
tween the rs72613567 TA variant and steatosis in human 
liver, consistent with the study of Pirola et al.11 However, 
a study by Ma et al.9 found a significant association with 
hepatic steatosis. Similarly, in animal and in vitro stud-
ies, inconsistent results have been reported for an effect 
of HSD17B13 on hepatic lipid accumulation. Abul-Husn 
et al.10 showed no differences in lipid accumulation ac-
cording HSD17B13 isoforms. Similarly Ma et al.9 reported 
that HSD17B13 overexpression or knockout in HepG2 cells 
did not affect lipid content. On the other hand, Marion et 
al.36 noted hepatic steatosis in HSD17B13 knockout mice, 
whilst Su et al.37 observed steatosis in mice that overex-
pressed HSD17B13. Collectively, these results imply that 
HSD17B13 variants could have a direct impact on fibrosis 
rather than effects on steatosis. These findings may be 
associated with retinol metabolism, since retinol plays a 
crucial role in the activation and transformation of hepatic 
stellate cells to matrix secreting myofibroblasts and the 
development of hepatic fibrosis.38 Since HSD17B13 par-
ticipates in the rate limiting step of retinol metabolism,9 
the mutant in HSD17B13 might conceivably influence the 
process of fibrosis.

The interaction between HSD17B13 and PNPLA3 variants 
in MAFLD is also a subject of controversy.14,39 In this work, 
we noted an interaction between these variants with regard 
to steatosis, but not with other histological features. As HS-
D17B13 has been suggested as a potential therapeutic tar-
get for MAFLD and considering the growing concerns about 
the failure of phase 2 and 3 clinical trials in this disease40,41 
that was at least partially attributed to clinical heterogene-
ity, our study highlights the importance of first understand-
ing the functional basis of the various proposed genomic 
and other targets before therapeutic development.40,42 Col-
lectively, our data support such an approach. The data from 
HSD17B13-knockout mice, in fact, suggest that HSD17B13 
triggers steatosis and inflammation,36 which is opposite to 
what has been reported in humans.

The present study has limitations. First, the sample size 
is modest. In case the observed opposite finding is due to 
the sample size, we performed a post-hoc power analysis. 
The power calculated for the model was 72%. It is close to 
but less than 80%. Considering the low proportion of the 
rs72613567 TA variant in the general population, we think 

it is acceptable. In addition, lack of a validation cohort from 
populations in other parts of China or those of Chinese an-
cestry living outside mainland China is another limitation.

In conclusion, the HSD17B13 rs72613567 variant ap-
pears to be a risk variant for hepatic fibrosis in a Han Chi-
nese MAFLD population, with a different direction for allelic 
association to that seen in Europeans.
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