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Abstract: Neonicotinoid insecticides are used worldwide and have been demonstrated as toxic
to beneficial insects such as honeybees. Their effectiveness is predominantly attributed to their
high affinity for insect neuronal nicotinic acetylcholine receptors (nAChRs). Mammalian neuronal
nAChRs are of major importance because cholinergic synaptic transmission plays a key role in rapid
neurotransmission, learning and memory processes, and neurodegenerative diseases. Because of
the low agonist effects of neonicotinoid insecticides on mammalian neuronal nAChRs, it has been
suggested that they are relatively safe for mammals, including humans. However, several lines
of evidence have demonstrated that neonicotinoid insecticides can modulate cholinergic functions
through neuronal nAChRs. Major studies on the influence of neonicotinoid insecticides on cholinergic
functions have been conducted using nicotine low-affinity homomericα7 and high-affinity heteromeric
α4β2 receptors, as they are the most abundant in the nervous system. It has been found that the
neonicotinoids thiamethoxam and clothianidin can activate the release of dopamine in rat striatum.
In some contexts, such as neurodegenerative diseases, they can disturb the neuronal distribution or
induce oxidative stress, leading to neurotoxicity. This review highlights recent studies on the mode of
action of neonicotinoid insecticides on mammalian neuronal nAChRs and cholinergic functions.
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1. Introduction

Neonicotinoid insecticides have contributed to improvements in global agricultural productivity
for decades by controlling insects and plant pathogens, providing higher crop yields and improved
product quality. Over the last ten years, the extensive use of neonicotinoid insecticides has been
criticized due to the risks associated with their toxicity to humans and other non-target species.
Neonicotinoid insecticides include several compounds, such as imidacloprid (IMI), acetamiprid (ACE),
clothianidin (CLT), and thiamethoxam (TMX), which act on neuronal nicotinic acetylcholine receptors
(nAChRs). They are considered as partial or full agonists of insect neuronal nAChRs and poor agonists
of mammalian receptors. Full agonists are compounds that, at saturation concentrations, activate the
channels to a near 100% open probability. Thus, ACh is a full agonist of nAChRs. Consequently, partial
agonists will evoke less total current than full agonists and occupy the same binding site. They can
also inhibit receptor activation by endogenous or exogenous full agonists. Thus, the same compound
can be a full agonist of one subtype of nAChRs, and a partial agonist or antagonist of another subtype.
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Moreover, nAChRs are considered as prototypical allosteric proteins that undergo conformational
changes upon the binding of a ligand [1–3]. Agonists bind to the ligand-binding or orthosteric site on
the ligand-binding domain. Allosteric modulators are pharmacological compounds that bind to the
receptor at a distinct site from the ligand-binding domain and change the free energy associated with
transitions between functional states. This leads to the activation (positive allosteric modulators) or
reduction of the ligand-evoked response (negative allosteric modulators) (Figure 1). The cholinergic
system in mammals has been studied extensively. It is known that it provides diffuse innervation to
the entire brain, driving and modulating a wide variety of behaviors. ACh is released from presynaptic
cholinergic axon terminals and binds to the extracellular ligand-binding domain of the nAChRs. Thus,
through neuronal nAChRs, ACh regulates processes such as cell excitability and neuronal integration.
These processes influence physiological functions, leading to the involvement of neuronal nAChRs in
many diseases such as Alzheimer’s and Parkinson’s disease [4–7]. Given the role of neuronal nAChRs
in both insects and mammals, few studies have described the involvement of neonicotinoid insecticides
on mammalian cholinergic functions through neuronal nAChRs. Therefore, in this work, we aim to
provide an overview of recent studies on the involvement of neonicotinoid insecticides on neuronal
cholinergic functions.
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2. Diversity of Mammalian Neuronal Nicotinic Acetylcholine Receptors

2.1. Multiple Receptor Subtypes and Different Pharmacological Properties

Mammalian neuronal nAChRs are of significant importance because cholinergic synaptic
transmission plays a key role in rapid neurotransmission, learning, and memory processes. Neuronal
nAChRs are composed of 17 homologous genes coding for nAChR subunits [8,9]. These subunits
can be divided into two subgroups: the muscle-type receptor composed of a heteromeric receptor
(α1βγ(ε)δ), and the neuronal-type receptor, which is more complex in terms of the number of subunits
and combinations. They incorporate different subunits and are composed of: (1) Homomeric receptors
which are comprised of one subunit, α7, α8, α9, or α10, which can form an α9α10 heteromeric
receptor; (2) heteromeric receptors, which are formed by subunits α2–α6 in combination with
β2–β4. Consequently, multiple receptor subtypes can be formed with different stoichiometry, subunit
combinations, and pharmacological properties [10]. Thus, when opened, neuronal nAChRs are
cation-selective channels that permit the flow of sodium (Na+), potassium (K+), and calcium (Ca2+)
ions across the membrane (Figure 1). A net influx of cations through the channel pore depolarizes
the cell membrane and increases neuronal excitability. The impact of neuronal nAChR activation
on cholinergic function depends on subunit composition because each nAChR subtype has unique
activation, agonist selectivity, channel conductance, and desensitization properties. The vast majority of
subunit combinations have not been studied, and a significant number of publications on neonicotinoid
modes of action refer to the low-affinity homomeric α7 and high-affinity heteromeric α4β2 receptors
because they are the most abundant in the nervous system [11]. For heteromeric receptors such as α4β2,
the ratio of subunits forming the receptors may have an influence on the pharmacological properties
of the receptors [12–17]. For example, receptors with the composition (α4β2)2α4 exhibit higher
single-channel conductance and a shorter mean open lifetime than receptors with the composition
(α4β2)2β2 [16]. Moreover, long-term exposure of α4β2 receptors to nicotine causes an increase in the
number of binding sites at the cell surface, known as up-regulation, whereas α7 desensitizes rapidly in
response to high agonist concentrations [18] and has a high relative permeability to calcium [19,20].
Indeed, it is known that nicotine has a low affinity for α7 receptors, and high doses of nicotine may be
required for the regulation of the α7 receptor. The different modulatory effect of nicotine on both α7
and α4β2 nAChRs suggests that different mechanisms may activate the up-regulation of α7 and α4β2.

2.2. Neonicotinoids Are Poor Activators of Mammalian Neuronal nAChRs

The discovery of neonicotinoid insecticides from a lead compound, leading to nithiazine,
then followed by the synthesis of IMI, has been described in various degrees [21–23]. Nicotine and
neonicotinoids have some structural similarities (especially IMI), and act on the same receptor subtype
but in a different way. Interactions between neuronal nAChRs and neonicotinoids are studied by
measuring inward currents caused by neonicotinoids. It has been recognized that neonicotinoids
activate insect neuronal nAChRs as agonists in different ways [24]. As one of the most widely used
neonicotinoid insecticides in the world, IMI is known as a partial agonist, while CLT and ACE
are “super” agonists. In contrast, TMX is a poor agonist, despite being able to activate synaptic
activity [25]. Unfortunately, there are few studies relating to the mode of action of neonicotinoid
insecticides on mammalian neuronal nAChRs. Using clonal rat pheochromocytoma (PC12) cells,
Nagata et al. demonstrated that IMI weakly activated nAChRs with conductance states identical to
those of ACh-generated currents [26]. Moreover, using a single-channel patch-clamp method, they
found that co-application of both IMI and ACh resulted in a decrease in the mean open time and
mean burst duration of the currents of main conductance states, compared with those induced by ACh
alone [26]. Ihara et al. found that IMI, nitenpyram (NTP), and CH-IMI (the nitromethylene analog
of IMI), all induced inward currents which were rapidly desensitized. However, IMI and NTP were
partial agonists on the α7, whereas CH-IMI and DN-IMI (the desnitro derivative of IMI) were full
agonists because their currents were closed to that of the ACh [27]. Similarly, on the α4β2 receptors,
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it was found that IMI, CH-IMI, and NTP were inactive as agonists, whereas DN-IMI—which lacks
the nitro group—was a full agonist [27]. The weak action of neonicotinoids on the α4β2 receptor
was attributed in part to the β2 subunit lacking basic residues in loop D. This led to the idea that
“insect-selective” residues confer neonicotinoid sensitivity by direct interactions or changes in the
α subunit conformations [27]. Overall, this poor agonist action of neonicotinoids on α7 and α4β2
nAChRs explains the lack of substantial data concerning the effect of these compounds on other
mammalian nAChRs, considering their diversity within the mammalian nervous system.

3. Detoxification Mechanisms in Mammals in Regards to Neonicotinoid Sensitivity

The higher sensitivity of insects to neonicotinoid insecticides relative to mammals may be due to
several factors. Firstly, it may relate to enzymatic detoxification mechanisms, which are important
considering that the metabolite will not affect the receptor target. In this case, it has been considered
that changes in xenobiotic-metabolic enzyme expression, and particularly the overexpression of
cytochrome P450, are associated with increased neonicotinoid resistance in insects [28–34]. Thus,
the toxicity of neonicotinoids in insects could be explained as a lack of, or decrease in, the physiological
activity of detoxifying enzymes [35,36]. This difference was found between the bees Apis mellifera
and Apis cerana, in which it was demonstrated that A. cerana was more sensitive to IMI and CLT
compared to A. mellifera, in part because glutathione-S-transferase activity was significantly higher in
A. mellifera [36]. Unfortunately, no study refers to the effectiveness of these enzymatic mechanisms
in mammals with regards to neonicotinoid resistance or sensitivity. Considerable efforts have been
made to identify neonicotinoid insecticide metabolism in mammals [37–43]. Human CYP450 enzymes,
and in particular, CYP3A4, 2C19, and 2B6, have been found to convert TMX to CLT. CYP3A4, 2C19,
and 2A6 metabolized CLT to desmethy l-CLT, and CYP2C19 converted TMX to desmethyl-TMX [42].
These enzymes were involved with considerable amounts of neonicotinoid substrates, which increased
or decreased in different parts of the mammalian body, such as the liver and brain. In other studies,
it was considered that because of this enzymatic activity, neonicotinoids such as TMX could be
hepatotoxic and hepatocarcinogenic [44–46]. Consequently, the complex activity of detoxifying
enzymes in mammals is no longer associated with their ability to provide resistance to neonicotinoids,
but with their capacity to increase toxicity. It was also proposed that insecticides are more effective at
the ambient temperature of insects (around 15−20 ◦C) than that of mammals (if we consider 36 ◦C as
a reference temperature). However, this hypothesis seems to have been challenged by findings that
neonicotinoids show significantly lower efficacy at low temperatures (between 14 and 22 ◦C) when
used to manage the Drosophila suzukii (Matsumura) [47]. Acute toxic assays on aquatic insects such as
the mayfly Isonychia bicolor demonstrated an increase in IMI uptake with increasing environmental
temperatures [48]. According to these studies, it appears that an increase in environmental temperature
was more effective as a factor inducing physiological variations, leading to neonicotinoid toxicity in
the insects. Indeed, Mao et al. proposed that the sensitivity of Nilaparvata lugens to NTP and other
insecticides increased significantly when the temperature changed from 18 to 36 ◦C. They also found
that this increase in sensitivity was correlated to a decrease in cytochrome P450 activity [49]. Their latter
observation appears more comprehensive considering that a great proportion of mammals, including
humans, have a temperature around 36 ◦C, and that a decrease in detoxifying enzyme activities will
result in the activation of the neonicotinoid targets. Thirdly, if we agree that most neonicotinoids
undergo metabolic modifications at multiple sites in both insects and mammals, we must presume that
the mechanisms by which neonicotinoids could be toxic to mammals are predominantly associated
with their neuronal targets, the nAChR subtypes. Thus, two hypotheses can be made: (i) neonicotinoids
will directly activate neuronal nAChRs as agonists, leading to excitation of the cholinergic system;
(ii) neonicotinoids are not able to activate (or poorly activate) mammalian neuronal nAChRs at a
binding site and will be considered as modulators. Thus, much of the remaining knowledge concerning
the toxic effect of neonicotinoids should be considered in regard to their modulatory activity on
mammalian cholinergic function and neuronal nAChRs.
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4. Alterations of Cholinergic Functions

4.1. Modulation of Mammalian Neuronal nAChR Function

The major problem found with neonicotinoid insecticides is to always consider them as agonists of
neuronal nAChRs (Figure 2). Indeed, despite neonicotinoids being poor activators of neuronal nAChRs,
several studies have demonstrated that they can interact with nAChR agonists [50–52]. In a previous
study, Matsuda et al. found that the responses of α4β2 to ACh were potentiated by IMI [53]. Toshima
et al. proposed that ACh-evoked currents through chicken α4β2 receptors can be potentiated by CLT
and IMI [52]. To address the mechanism of potentiation, they studied the effect that co-application
of IMI and CLT had on the concentration-response curve of ACh. In the presence of IMI and CLT,
the ACh concentration–response curve for α4β2 was shifted to the left, whereas thiacloprid (THC)
shifted the curve to the right, and was also able to inhibit ACh-evoked currents [52]. These results
demonstrated that IMI, CLT, and THC have differential action on mammalian neuronal nAChRs,
which may be due to their activity on a particular site in the nAChRs [54]. Thus, we propose that the
first effect of neonicotinoids on mammalian neuronal nAChRs is to disrupt nAChR responses to the
endogenous ligand, ACh. Exposure of HEK cells expressing human α4β2 receptors to CLT and IMI
showed inward currents of low amplitudes. However, IMI strongly reduced ACh responses, whereas
CLT enhanced the responses. This difference was associated with the subunit stoichiometry of α4β2
receptors containing three α subunits rather than two α subunits (as with IMI), and CLT inhibited
ACh-evoked currents [50]. One of the major questions has been to demonstrate whether a similar effect
would be seen with a homomeric receptor where the fifth position is occupied by the same subunit.
Recently, using α7 homomeric nAChRs, we demonstrated that the co-application of low concentrations
of CLT and acetamiprid (ACE) with ACh did not change ACh-evoked current amplitudes. However,
pretreatment before the application of ACh significantly increased ACh-evoked currents by almost
two-fold [51]. To confirm the modulatory effect of neonicotinoids, we used TMX, which is known
as ineffective against mammalian neuronal nAChRs. A low concentration of TMX decreased the
ACh-induced currents through the α7 receptor when it was co-applied or pretreated [51]. All these
results reinforce the idea that the mode of action of neonicotinoid insecticides is more attributable to
their modulatory effect on mammalian receptors than agonist efficacy. Indeed, through the modulatory
effect we are able to understand why they can disturb cholinergic synaptic transmission.

4.2. Are Neonicotinoid Insecticides Able to Interact with Mechanisms Involved in Neurodegenerative Diseases?

The involvement of pesticides in neurodegenerative diseases has been the subject of several
polemics, particularly over the past 10 years. This is due to the extensive use of pesticides in the
environment and growing evidence demonstrating that they can disturb the development of the
mammalian central nervous system [55–57]. Controversies have also been fueled by the fact that
epidemiological evidence is far from conclusive, as considerable heterogeneity has been observed
between the patients and chemicals involved. In addition, neurodegenerative diseases are complex
syndromes resulting from different genetic and environmental factors that give rise to various
degrees of cognitive deficits, motor deficits, and other functions. Nevertheless, oxidative stress
and apoptosis have been well investigated as neurotoxic mechanisms leading to the toxic effect
of several pesticides [58–60]. However, few studies have indicated that neonicotinoid exposure
could be associated with neurodegenerative disease. Recently, Dhouib et al. suggested that curcumin,
which has anti-inflammatory, antioxidant, and anti-tumor properties, protects rats against ACE-induced
cerebellum toxicity, such as an increase in AChE activities, a decline in cell viability, and oxidative
stress [61]. Moreover, Kagawa and Nagao found that mice embryos exposed to ACE from day 6 to day
13 developed hypoplasia of the cortical plate and decreased neurogenesis. Newborn ACE-exposed
mice showed an abnormal neuronal distribution in the neocortex, increased numbers of the microglial
marker Iba1, and the active microglia had a globular structure (amoeboid-type microglia) [57]. In some
contexts, in pathological states such as Parkinson’s disease, it has been proposed that inappropriate
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microglial activation contributes to neurodegeneration through the production of cellular oxidants
and cytokines [62,63]. The current treatment for Alzheimer’s disease (AD) is acetylcholinesterase
(AChE) inhibitors, which partially block the degradation of ACh in the synapse and enable more of
the neurotransmitter to reach and activate cholinergic receptors [64]. It was also found that nAChR
density decreased with disease progression, suggesting a link between beta-amyloid (Aβ) and nAChR
function [65]. Soluble Aβ species, particularly oligomeric Aβ1−42, interacts with several nAChR
subtypes [66]. In addition, AD is also associated with the deterioration of memory and cognitive
function. With a base chemical structure similar to nicotine, and because neuronal nAChRs are
considered to be affected in several neurodegenerative diseases [65,66], additional studies are needed to
further explore the potential involvement of neonicotinoid insecticides on neurodegenerative diseases
through neuronal nAChRs.
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Figure 2. Effects of neonicotinoids on ACh-evoked current amplitudes. Clothianidin (CLT) and
acetamiprid (ACE) enhance ACh-induced current amplitudes of the mammalian α7 neuronal nAChRs
and thiamethoxam (TMX) decreases ACh-induced current amplitudes.

4.3. Neonicotinoid Insecticides Affect Other Mammalian Neuronal Mechanisms

Mammalian neuronal nAChRs are involved in several functions, such as the release of dopamine in
the striatal region, glutamatergic synapse formation, and brain development [67–69]. The effect of IMI
on the properties of stellate cells of the ventral cochlear nucleus (VCN) demonstrated that it increased
neuronal excitability and caused a depolarizing shift in the membrane potential. The IMI effect was
blocked by the specific nicotinic receptor antagonists d-tubocurarine (d-TC) andα-bungarotoxin (α-Bgt).
The blocking of α-Bgt suggested that α7 homomeric receptors were involved in the spontaneous action
potential induced by IMI [56]. The modulatory effect of neonicotinoids on mammalian nervous systems
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was also studied through the activation of catecholamine release. It was found that in vivo, TMX and
its metabolite CLT induced the release of dopamine in the rat striatum. The CLT activated α4β2 and α7
to induce an in vivo striatal release of dopamine. Intrastriatal infusion of CLT increased extracellular
dopamine levels, which was blocked by pretreatment with nAChR antagonists, N-n-decylnicotinium
iodide (NDNI), dihydro-β-erythroidine (DHβE), and methyllycaconitine (MLA) [70]. Moreover, it
was found that IMI facilitated tyrosine hydroxylase (TH) transcription via the activation of α3β4
neuronal nAChRs and α7 receptors. Activation took place at concentrations that are known to
produce physiological responses such as catecholamine secretion through the nAChRs in adrenal
chromaffin cells. Thus, it was proposed that IMI facilitated the physiological functions of adrenal
glands in mammals [71]. In other studies, it was found that exposure to TMX altered behavioral and
biochemical processes related to the cholinergic systems in rats. Acetylcholinesterase (AChE) activity
was measured in different brain regions such as the hippocampus, striatum, and cortex. It was found
that TMX reduced spontaneous motor activity and decreased AChE activity in the hippocampus,
cortex, and striatum. The inhibition of AChE activity was long-standing and was accompanied by
deficits in behavioral performance [72]. Although the mechanisms leading to the effect of TMX on these
brain structures are not well understood, it was hypothesized that TMX activates neuronal nAChRs,
leading to an increase in serotonin release, which could explain the anxiogenic effect observed in
rats during the plus-maze test [72]. Moreover, all these studies raise the question of a link between
neonicotinoids and the blood–brain barrier (BBB) penetration. Indeed, no studies have highlighted a
direct adverse effect of neonicotinoids on the BBB, though some have demonstrated an increase of BBB
permeability after pyrethrinoid uptake [73,74]. The penetration of neonicotinoids into the mammalian
central nervous system has been attributed to their hydrophobicity, which is greater than nicotine [75].
Considering their potential toxic effect through the activation of neuronal nAChRs, studies on the
toxicological capacity of neonicotinoids to alter the BBB mechanisms are critical.

5. Conclusions

In summary, the enzymatic activity of CYP450 and other enzymes was not sufficient to demonstrate
that they can activate resistance in mammals in the same way as in insects. The most evident finding
is that neuronal nAChRs are major factors involved in neonicotinoid toxicity in mammalian central
nervous systems. We suggest here that neonicotinoid insecticides could differently activate or
modulate each neuronal nAChR. The main mechanisms in mammals seem to be a modulatory effect,
which will have a consequence on the activation of receptors and the modulation of synaptic activity.
Moreover, mammals express different nAChR subtypes in the peripheral and central nervous systems.
The modulatory effect of neonicotinoids found with α7 and α4β2 suggests that similar mechanisms
need to be explored in other mammalian neuronal nAChRs.
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