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Besides its interest for diagnosis, the finding of an elevated serum AMH level in PCOS has

open major pathophysiological issues. This review addresses the three most important

issues: 1- the role of AMH in the disturbed folliculogenesis of PCOS; 2- the role of AMH in

the gonadotropin dysregulation of PCOS and 3- the role of AMH in the trans-generational

transmission of PCOS. For each of those issues, the clinical and experimental evidences

currently available are discussed and pathophysiological hypothesis are proposed.
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INTRODUCTION

Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder in women of
childbearing age and the leading cause of hyperandrogenism (HA) and oligo-anovulation (OA)
causing infertility (1). PCOS is characterized by an increased number of ovarian follicles at all
growing stages (2–4). This increase is particularly seen in the pre-antral and small antral follicles.
Interestingly, it is precisely those follicles that primarily produce AMH (5, 6). Release of AMH
from the granulosa cells (GCs) of antral follicles leads to measurable serum levels, and these
concentrations have shown to be proportional to the number of developing follicles in the ovaries.
The development of sensitive assays has enabled measuring AMH in serum and its level was found
2–4 fold higher in women with PCOS than in healthy women, as detailed in other articles of this
series. This elevated serum AMH level was initially considered a reflection of the increased stock of
pre-antral and small antral follicles within polycystic ovaries (PCO) (7, 8). In addition, it could also
result from an increased production of AMH per follicle (9), due to an intrinsic property of GCs in
PCO that will be discussed below.

The elevated serum AMH level in PCOS quickly interested PCOS specialists who saw it as a way
of circumventing the heterogeneity of the ultrasound description of polycystic ovarian morphology
(PCOM) that is used in the definition of PCOS. Indeed, the antral follicular count (AFC) being very
dependent on the material used, some authors investigated the diagnostic value of the serum AMH
assay as a surrogate for follicle number per ovary (FNPO) [reviewed in (10)]. Finally, marking
the excess of antral follicles in women with polycystic ovary syndrome (PCOS), AMH assay may
soon replace and/or complete the ultrasound ovarian morphology criterion in the diagnosis of this
syndrome (11).
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Besides its interest for diagnosis, the finding of an elevated
serum AMH level in PCOS has open major pathophysiological
issues. First, attention has been drawn to its positive association
with hyperandrogenism (HA) (7, 8), whom mechanisms are
discussed in this review. Then, studies have shown correlation
with the PCOS phenotypes, as defined by the Rotterdam
criteria (phenotype A: amenorrhea or oligomenorrhea + HA +

PCOM; phenotype B: amenorrhea or oligomenorrhea + HA;
phenotype C: HA + PCOM; and phenotype D: amenorrhea
or oligomenorrhea + PCOM). The highest serum AMH levels
are found in phenotype A (12). Conversely, mean AMH serum
levels were found to be lower in hyperandrogenic eumenorrheic
patients (phenotype C) compared to those with amenorrhea or
oligomenorrhea (13), even if they were not hyperandrogenic
(phenotype D) (14). This could mean that the AMH excess
is the hallmark of a GCs deregulation that plays a major role
in the anovulation of PCOS, besides other contributors such
as hyperandrogenism and/or excessive LH secretion and/or
hyperinsulinism (15). We will discuss this important issue.

Besides the primary autocrine role of AMH in the
deregulation of GCs of PCO, the recent discovery of the
AMH receptor in a significant subset of GnRH neurons suggests
possible extragonadal effects of AMH on the hypothalamic-
pituitary-gonadal axis (16) that might be exacerbated in PCOS.
Finally, recent data suggest that AMH could be involved in the
epigenetic re-programming that is now believed to be the main
mechanism leading to PCOS at puberty and adulthood (17). The
goal of this review is also to discuss this exciting issue.

ROLE OF AMH IN THE DISTURBED
FOLLICULOGENESIS OF PCOS

Is AMH Overexpressed at the Follicle
Level?
The hypothesis of a role for AMH in follicular deregulation of
PCOS assumes that the expression of this hormone is exaggerated
within each follicle and/or that its signaling pathways are
amplified. This is difficult to demonstrate in vivo because the
excess of growing ovarian follicles (up to the stage of small
antral follicles) in women with PCOS (2) is a confounding factor.
Indeed, this alone could explain the rise in AMH levels because
it is those follicles that physiologically secrete AMH (18). In
addition, a close correlation has also been shown between plasma
AMH levels and the excess of 2–5mm of antral follicles on
ultrasound (8). Thus, it is accepted that the increase in granulosa
“mass” secondary to the excess of growing follicles explains at
least in part the excess plasma AMH level in women with PCOS
(10, 19, 20).

Another explanation, not excluding the first, could be an
excess secretion of AMH intrinsic to the growing follicles of
women with PCOS (9, 20, 21). Some authors have reported
a significant increase in the AMH/AFC ratio in women with
PCOS compared with women with asymptomatic ultrasound
PCO and non-PCOS controls (6, 22). This suggests a probable
over-expression of AMH by the GCs from antral follicles in
PCOS women.

In agreement, Pellatt et al. (23) demonstrated in vitro in
GCs cultures from oophorectomy specimens that the AMH
concentration in the culture media was 4 times higher in normo-
ovulatory PCOS women and 75 times higher in anovulatory
PCOS women compared with GCs from control women. In vivo,
Das et al. (24) highlighted that the AMH concentration in
follicular fluid of 4 to 8mm antral follicles, was 5 times
higher, outside of any ovarian stimulation setting. Catteau-
Jonard et al. (25) demonstrated increased transcription of the
AMH gene and its receptor by quantitative RT-PCR on partially
luteinized GCs collected during oocyte puncture for in vitro
fertilization in women with PCOS, compared with control
women. This increased transcriptional activity was seen in both
selected intermediate-sized (8–13mmmean diameter) and larger
dominant follicles (17–22mm mean diameter). All these data
suggest increased expression of AMH by the GCs of women with
PCOS, probably secondary to intrinsic dysfunction of these cells.

Nevertheless, all teams do not validate this hypothesis. Owens
et al. (26) found no difference in the transcription of the
AMH gene or its receptor in their study which compared the
expression of 13 genes by quantitative RT-PCR by GCs from
small, unstimulated antral follicles (on ovarian cortex sampled
for fertility preservation) and on partially luteinized GCs (in
patients benefiting from in vitro fertilization) in women with
PCOS vs. control women. On the other hand, Dilaver et al. (27)
found no basal increase in the expression of AMH transcripts in
cultured GCs from PCO compared with normal ovaries. These
results should nevertheless be put into perspective, given the low
level of AMH expression in cultured human GCs and the small
number of cases studied.

Another explanation at the molecular level could be an
increased stability of the messenger RNAs resulting from the
transcription of the AMH gene in the GCs of PCOS women.
Thus, even if the transcription of the AMH gene is not increased,
an exaggerated stability of the messenger RNAs could lead to
a more marked translational activity and thus to an increase
in AMH secretion. The degree of polyadenylation of the 3′-
untranslated regions (3′-UTR) of mRNAs coding for AMH could
be one of the explanations. However, this hypothesis has not been
the subject of any specific study to date.

Finally, the role of certain microRNA which are known to be
inhibitors of the translation of messenger RNAs, could also be
mentioned. Nevertheless, the only study available to date has not
been able to confirm this hypothesis.

If It Is Real, What Is the Explanation for the
Excess Production of AMH by GCs From
PCO?
At the molecular level, no abnormalities in the AMH gene that
could lead to excess transcription have been reported in PCOS
women (28). A whole series of studies point to the responsibility
of hyperandrogenism, but controversy persists as to the reality of
this effect and its mechanisms, which may be direct or indirect.

In vivo data in PCOS patients are contradictory. A possible
direct stimulatory effect of androgens on the expression of AMH
by GCs was first raised when a positive correlation between
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serum AMH and androgen concentrations was reported in
several series of PCOS women (7, 8, 29–31). However, many
confounding factors may play a role, in particular the positive
effect of androgens on the number of growing follicles (32)
and thus on the “granulosa mass.” Caanen et al. (33) observed
that administration of androgens as part of female-to-male
transitions induced a significant decrease in AMH levels, but the
protocol included the use of a GnRH agonist, which might have
confused the results by lowering serum FSH level (see below).
Finally, the decrease in serum AMH levels in PCOS patients
receiving high-dose cyproterone acetate, a progestin with a
potent anti-gonadotropic and peripheral anti-androgenic action,
was no greater than under other anti-gonadotropic drugs, such as
estrogen-progestin contraceptives (34, 35). But here again, serum
FSH level is low in these situations.

Similarly, in vitro experimental data are contradictory. An
androgen-inhibitory effect of androgens on the secretion of
AMH by Sertoli cells in men has been clearly demonstrated for
many years (36). Crisosto et al. (37) demonstrated that high-
dose testosterone was responsible for decreased levels of AMH
expression in GCs from small bovine follicles. On the contrary,
Zhang et al. (38) reported that testosterone caused an increase
in AMH mRNA levels in GCs from mouse antral follicles. In
women, some authors have not demonstrated any effect of 5α
Dyhydrotestosterone (DHT) on the expression of AMH in GCs
from control patients, whereas an increase was observed only in
GCs from PCOS patients (39). Dilaver et al. (27) also observed
this dose-dependent effect of DHT, while that of testosterone
was either positive or null according to its concentration in the
GCs culture medium. It should be noted that the contradictory
results between these different studies on the effects of androgens
on the expression of the AMH gene could be explained by the
great variability of the models used (different animal species, cell
type, analysis method). Moreover, the effect of androgens is to be
seen in the complex interactions they have with other important
actors at the GCs level, such as FSH and Estradiol (E2), which
vary according to the follicular stage and which are not always
taken into account in experimental studies (Figure 1) (19).

Several studies suggest an indirect effect of androgens, via
an increase in the number of FSH receptors (FSHR) and/or
estradiol receptors alpha (ERα). Many studies converge toward
the promoting action of androgens on the transcription and
translation of FSHR through genomic and non-genomic effects
and this effect is likely enhanced in PCO [reviewed in (19)].
Consequently, the stimulating effect of FSH on AMH expression
that occurs in small growing follicles from normal ovaries would
be amplified in PCO (40). This can occur as long as follicles do
not express aromatase as E2 inhibits AMH expression through
its receptor ERβ (41, 42) (Figure 1).

This last phenomenon might be defective in GCs from PCO.
Dilaver et al. (27) reported that excess androgens increase the
ratio ERα/ERβ, resulting in increased AMH expression. The
importance of the relative expression levels of ERα and ERβ

has been shown earlier (43). Pierre et al. (39) recently reported
a significant positive correlation between the ratio of ERα/ERβ

transcripts and the concentration of AMH and an increase
in the levels of ERα transcripts in cultured GCs from PCOS

women. However, small growing follicles produce very little
E2 and this effect of androgens through activation of ERα

might not be relevant in vivo. Conversely, at the time of large
antral follicle selection for dominance and when activation of
ERβ is determinant, this effect of androgens maintaining AMH
expression might be part of the mechanisms leading to the
follicular arrest of PCOS (see below).

Are the AMH Signaling Pathways Normal in
the PCO GCs?
In addition to increased expression of AMH, the expression
of AMH type 2 receptors (AMHR2) is amplified in PCO GCs
(25, 39). Activation of AMHR2 results in a significant increase
in phosphorylation of SMAD 1,5,8 in the mouse (44) and of
SMAD 5 in luteinized human GCs (45). Intriguingly, Dilaver
et al. (27) recently demonstrated in cultured GCs from PCOs a
dose-dependent decrease in phosphorylation of SMAD 1,5,8 (P-
SMAD 1,5,8) in the presence of AMH, while paradoxically the
levels of transcripts of P-SMAD 1,5,8 was increased by about
50% in controls (but without reaching statistical significance).
Obviously, if the implication of a deregulation of the AMH
signaling pathways in PCOS seems to be an interesting issue,
other subsequent studies are needed, especially concerning the
involvement of inhibitory SMADs.

What Are the Consequences of the Excess
AMH on Ovarian Follicles, According to
Their Stages?
Excess AMH Slows Initial Follicular Growth
This hypothesis is based on the seminal experiment of Durlinger
et al. (46). The addition of AMH in cell culture media containing
follicles from knockout mice for the AMH gene slowed follicular
growth, even in the presence of FSH, suggesting an inhibitory
effect of AMH on FSH-dependent proliferation of GCs.

In a situation of high AMH such as PCOS, a slowing of
the initial “FSH-sensitive” follicular growth could thus occur
and contribute to the accumulation of the number of growing
follicles within the ovaries in these patients. However, few data
specific to the human species have been found to confirm this
pathophysiological hypothesis (3).

Excess AMH Decreases Apoptosis of GCs in Small

Follicles
Some authors have suggested that AMH has an anti-atretic effect
on growing follicles during initial follicular recruitment (27, 47).
Some known pro-apoptotic agents, such as vitamin D and leptin,
may act by decreasing the expression of AMHR2 and thus the
anti-apoptosis effect of AMH on GCs (47).

The data available in the literature for PCOS women
are relatively small. Webber et al. (48) demonstrated in
cell culture models a lower apoptosis rate of GCs from
pre-antral follicles in women with PCOS compared to
controls. By immunocytochemistry, GCs from PCO are
less and more frequently stained for the markers of apoptosis
and anti-apoptosis than in controls, respectively (24, 49).
High levels of AMH could be directly involved in this
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FIGURE 1 | Interaction between androgens, FSH, AMH, and E2 during folliculogenesis. From Dewailly et al. (19), with permission. Relationships between androgens,

FSH and AMH during the gonadotropin- independent follicular growth phase (green triangle) and between FSH, AMH and estradiol during the gonadotropin-

dependent follicular growth phase (red triangle). “+,” “–,” or “?” indicate a positive, negative or uncertain effect, respectively, from one of the factors on the other.

During the gonadotropin-independent follicular growth phase, the inhibitory effect of AMH mainly influences the promoting effect of FSH on follicular growth (arrow 2).

According to our theory, FSH, whose receptors are enhanced by androgens (arrow 1), would stimulate the AMH production during this phase (arrow 2 rev), in the

absence of estradiol. A direct effect from androgens on AMH production (arrow 3) is unlikely (see text for details). During the gonadotropin-dependent follicular growth

phase, AMH is also involved in a triangular relationship with FSH and estradiol. During this phase, the inhibitory effect of AMH influences mainly the cell differentiation

functions induced by FSH (arrow 4), in particular the induction of aromatase (arrow 5). This inhibitory effect will gradually subside, which will allow induction of

aromatase by FSH, with consequent synthesis of estradiol which will in turn accelerates the extinction of AMH secretion in large antral follicles (arrow 6).

phenomenon, which would result in a “stock piling” effect
(4) contributing to the excess number of growing follicles in
the PCOs.

Finally, as menopause approaches, women with PCOS have
significantly higher serum AMH levels than non-PCOS women
in whom these levels are low or undetectable (50). This may
explain why women with PCOS appear to reach menopause at
a slightly later age than non-PCOS women (50).

Excess AMH Causes Follicular Arrest in Large Antral

Follicles
This phenomenon results from complex interaction between
AMH, aromatase, ERs and less likely LH (Figure 1).

AMH has been shown to significantly decrease not only
FSHR expression but also ovarian aromatase expression [see
(19)]. Physiologically, this protects small follicles from premature
aromatase expression. When this protective effect of AMH
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exceeds its physiological role, because of its excess and/or
because it lasts longer than it should, it could lead to a
defect in the selection of the dominant follicle, causing what
is called “follicular arrest.” The fact that AMH inhibits the
FSH-dependent factors necessary for follicle dominance adds
considerable importance to the elevated serum expression of
AMH in PCOS and makes AMH an assumed central player
in “follicular arrest.” In agreement, it has been shown that the
emergence of a dominant follicle in anovulatory women with
PCOS on recombinant FSH is preceded by a significant reduction
in serum AMH level (51).

In addition, several authors have demonstrated premature
expression of the LH receptor (LHR) in GCs of PCOS women.
This has been suggested to be the cause of the arrest of
follicular growth found in PCOS women with anovulation (52,
53). However, this hypothesis seems unlikely because other
authors have more recently demonstrated a negative correlation
between the concentration of AMH in the follicular fluid and the
expression of the LHR in GCs (54).

The AMH Excess in Follicles Varies According to the

PCOS Phenotype
This overexpression of AMH per follicle could vary depending
on the PCOS phenotype. Thus, for some authors, in a population
of PCOS women, the AMH/AFC ratio was significantly higher
in patients with anovulation than in those with an ovulatory
phenotype (phenotype C or asymptomatic ultrasound PCO)
(22, 55). In contrast, other authors have shown higher AMH
levels in hyperandrogenic PCOS women, regardless of ovulatory
status (12, 29, 31). The question of variation in AMH expression
according to the PCOS phenotype is in fact very complex because
principal component analysis has shown that the markers of
hyperandrogenism and oligoanovulation are closely related (30).
However, when both hyperandrogenism and anovulation are
statistically confronted with excess serum AMH, the association
is significant with the latter, whereas the former would simply be
a confounding factor (23).

To summarize, AMH excess in GCs from PCO would be
an indirect consequence of hyperandrogenism and would be
involved in the follicle excess of PCO and in the follicular arrest
in anovulatory patients.

ROLE OF AMH IN THE GONADOTROPIN
DYSREGULATION OF PCOS

A high LH level is found in ∼50% of women with PCOS, with
a higher prevalence in women without metabolic impairment
(56). It is secondary to the acceleration of the frequency of
GnRH secretion which, for some authors, is thought to be
the consequence of a negative feedback failure due to prenatal
hypothalamic exposure to androgens (57). Conversely, mean
FSH levels are lower than controls in many published series,
with no precise explanation provided to date. Both phenomena
lead to an increase in the LH/FSH ratio, which was used as a
diagnostic criterion in the past, but was abandoned because it

was too insensitive. AMH could be involved in this disturbance
of gonadotropic function.

There Is a Positive Link Between AMH
and LH
In women with PCOS, serum levels of AMH and LH are
positively correlated (7). This correlation has been shown to be
independent of serum androgen and FSH levels (30, 51).

The causal relationship in this relationship has been the
subject of debate. For some, the cause would be the high levels
of LH that could stimulate AMH secretion and expression
as shown by authors in vitro from luteinized GCs (23, 58).
However, in vivo, GCs express LHR late, whereas AMH
production begins in primary follicles and peaks before LHR
expression (5). Alternatively, recent experimental data suggest
that AMH is more likely to have extra-gonadal effects and
in particular be capable of increasing the activity of GnRH
neurons. The authors have shown that nearly 50% of GnRH
neurons (murine and adult human) have specific receptors for
AMH type 2 (AMHR2) (16). The combination of several in
vitro and in vivo experiments showed that AMH increased the
pulsatile secretion of GnRH-dependent LH through a central
action. Indeed, electrophysiological experiments have revealed
that exogenous AMH increased the neuronal activity of GnRH
neurons; however, this could be an indirect action, as AMHR2
is very widely expressed in the hypothalamic regions, so a
synergistic action of other cell types contributing to the increase
in GnRH secretion cannot be excluded [for review see (59)].
Similarly, the authors demonstrated that in vivo administration
of AMH (intracerebroventricularly) was accompanied by a dose-
dependent increase in LH secretion and pulsatility. In the end, the
increase in AMH concentration would lead to a chain reaction:
hypothalamic neurons would start to secrete more GnRH, which
would then increase the production and pulsatility of LH by the
anterior pituitary gland.

AMH also appears to be able to exert its action at the
pituitary level and regulate the activity of gonadotropic cells. It
has recently been shown that the expression of the human and
mouse AMHR2 gene in gonadotropic cells is regulated by GnRH
(60). Indeed, using LβT2 cells, these authors showed that GnRH
secreted at a high frequency (1 pulse/30min) increased AMHR2
expression by gonadotropic cells while a lower frequency (1
pulse/2 h) was without effect. However, the implication of the
regulation of pituitary AMHR2 expression as a function of GnRH
pulsatility remains to be elucidated in humans and especially
in PCOS.

These results raise the hypothesis that the extra-gonadal action
of AMH could either be at the origin of, or contribute to,
the vicious circle of neuroendocrine and gonadal dysregulation
encountered in PCOS.

The Negative Link Between AMH and FSH:
A Complex Issue
Low to normal serum FSH levels have long been reported in
PCOS (61), even after adjustment for BMI and the number of
2–9mm follicles (13). Several studies have reported a negative
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relationship between serum FSH and AMH levels (8, 51) but
no clear explanation has been provided so far. It is unlikely
that this reflects a negative effect of FSH on AMH production.
In fact, the opposite is suggested by situations of congenital
gonadotropic insufficiency where AMH level is decreased and
increases under exogenous FSH (62). These contradictory data
illustrate the complex relationships between AMH and FSH that
may operate at the ovarian and/or pituitary-hypothalamic levels
and which vary according to disease state. In the case of PCOS,
we hypothesize that by accelerating the pulse frequency of GnRH
(see above), an excessive AMH level would increase pituitary
secretion of LH to the detriment of FSH (63). It is clear that more
attention needs be paid to this issue.

To summarize, new experimental data suggests that AMH is
involved in the neuro-endocrine deregulation of PCOS but no
human data is available so far to confirm this hypothesis.

IS EXCESS AMH INVOLVED IN THE
TRANS-GENERATIONAL TRANSMISSION
OF PCOS?

It was in the early 2000s that the hypothesis of prenatal
programming of PCOS in relation to gestational
hyperandrogenism was first suggested (64). Following this
discovery, numerous studies confirmed in various animal
models that high testosterone levels during gestation could lead
to the appearance of a PCOS phenotype in the offspring (mouse,
ewe and non-human primate models) [for review see (57, 65)]. In
women with PCOS, the hypothesis of androgen-related prenatal
programming is supported by a whole series of studies [see (17)
for review], but the origin of this gestational hyperandrogenism
remains unknown so far.

Recent studies suggest that AMH may be involved in
this phenomenon. Circulating AMH levels are higher in
pregnant women with PCOS compared to those with normal
fertility (66, 67) and are correlated with androgen levels (67).
These results therefore suggest that AMH at relatively high
concentration during pregnancy could itself be the cause of
prenatal programming of PCOS. This has recently been tested
experimentally (66). The authors demonstrated that injection of
the bioactive form of AMH (AMHc) into late gestation mice
was responsible for the appearance of a hyperandrogenic PCOS
phenotype in the offspring in adulthood. In this model, called
PAMH, high AMH concentrations during gestation resulted in
increased pulsatility of GnRH and LH, which was responsible for
gestational hyperandrogenism. Excess maternal LH alone or in
combination with AMHwould also lead to a decrease in placental
aromatase, increasing maternal bioavailable testosterone and
causing fetal exposure to androgen excess. This would induce
a cascade of events in the offspring leading to an increase in
hypothalamic neuronal excitability. In adult offspring, mice show
an increase in excitatory afferents responsible for an increase in
the excitability of GnRH neurons. The hyperactivity of GnRH

neurons then stimulates ovarian steroidogenesis and participates
in the vicious circle observed in PCOS by reducing the negative
feedback of E2 and progesterone on LH. Prenatal treatment with
a GnRH antagonist in PAMHmice prevents the occurrence of the
disorders previously observed in the offspring (66). The authors
thus demonstrated the predominant role of GnRH, via AMH,
in the in utero programming phenomenon responsible for the
neuroendocrine abnormalities characteristic of PCOS appearing
in the offspring.

Finally, it should be noted that this new PAMH mouse model
suggests that the maternal hyperandrogenisation observed in
PCOS is the result of a central action of AMH on GnRH
(and LH) contributing to an increase in ovarian steroidogenesis
and an inhibition of placental aromatase expression, leading to
an increase in testosterone bioavailability (66). In agreement,
continuous administration of a P450 Aromatase Inhibitor
induces Polycystic Ovary Syndrome with a metabolic and
endocrine phenotype in female rats at adult age (68). In women,
inhibition of placental aromatase expression may be the main
mechanism in the in utero programming of PCOS as serum
maternal androgen and LH levels are not as high as in PAMH
mice. A decrease in placental aromatase has effectively been
observed in womenwith PCOSwho have given birth (69). Studies
conducted in mice therefore offer interesting new perspectives
that will have to be confirmed in the future by clinical studies
in women, since the mouse model is poly-ovulatory and is not
perfectly superimposable on the human condition.

To summarize, maternal AMH excess might be one of the
causes of in utero programming of PCOS, at least in a subset
of patients.

CONCLUSION

There is still much knowledge to be acquired to fully understand
the pathophysiological role played by the AMH in the PCOS.
Clearly, the autocrine action of excess AMH within the
GCs is probably the main element of its involvement in
the folliculogenesis and anovulation disorder. However, the
recent discovery of its endocrine action of retrocontrol on the
hypothalamus and the placenta opens up avenues of research
likely to lead to new curative or even preventive treatments.
For instance, when they are available, antagonists of the
AMHR2 might prove to be able to lessen the LH and follicle
excess and thus to improve the emergence of a dominant
follicle and increase the chances of pregnancy without any
ovarian stimulation.
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