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ABSTRACT

Whole-exome and whole-genome sequencing have
revealed millions of somatic mutations associated
with different human cancers, and the vast ma-
jority of them are located outside of coding se-
quences, making it challenging to directly interpret
their functional effects. With the rapid advances in
high-throughput sequencing technologies, genome-
scale long-range chromatin interactions were de-
tected, and distal target genes of regulatory elements
were determined using three-dimensional (3D) chro-
matin looping. Herein, we present OncoBase (http://
www.oncobase.biols.ac.cn/), an integrated database
for annotating 81 385 242 somatic mutations in 68
cancer types from more than 120 cancer projects by
exploring their roles in distal interactions between
target genes and regulatory elements. OncoBase in-
tegrates local chromatin signatures, 3D chromatin in-
teractions in different cell types and reconstruction
of enhancer-target networks using state-of-the-art al-
gorithms. It employs informative visualization tools
to display the integrated local and 3D chromatin sig-
natures and effects of somatic mutations on regu-
latory elements. Enhancer-promoter interactions es-
timated from chromatin interactions are integrated
into a network diffusion system that quantitatively
prioritizes somatic mutations and target genes from

a large pool. Thus, OncoBase is a useful resource
for the functional annotation of regulatory noncoding
regions and systematically benchmarking the regu-
latory effects of embedded noncoding somatic mu-
tations in human carcinogenesis.

INTRODUCTION

Noncoding variants are capable of causing common dis-
eases and account for the vast majority of heritability (1).
To date, a majority of studies have focused exclusively on
the effects of missense variants in coding regions (2–4) that
comprise <2% of the human genome (5). Mapping variants
to the whole genome indicate that disease-associated sin-
gle nucleotide polymorphisms (SNPs) are strongly enriched
in regulatory elements, especially those activated in rele-
vant cell types (6). Moreover, numerous studies have shown
that associated variants for a particular trait/disease are
significantly enriched in certain regulatory regions of rel-
evant tissues/cell types (7). Importantly, the noncoding re-
gions possess many functional elements based on one di-
mensional (1D) epigenomic features and three-dimensional
(3D) spatial long-range interactions that could help to build
accurate enhancer-promoter regulatory pairs; therefore, in-
tegrating noncoding variants with 1D coordinated epige-
netic profiles and 3D long-range interactions in specific
tissue/cell types will provide a promising direction to fine-
map causal regulatory variants and understand underlying
regulatory mechanisms in human diseases.
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Recent discoveries, including the identification of recur-
rent somatic mutations in the TERT promoter in multiple
cancer types (8–11), have supported the idea that somatic
mutations in noncoding regions also play vital roles in tu-
mor development (12,13). More than 98% of somatic mu-
tations in most cancers are located in non-coding regions,
and some have been identified as putative driver mutations
(14). Several databases and computational tools have been
developed for annotating noncoding SNPs based on their
local genomic 1D features (15–19) and/or their 3D chro-
matin interactions (20–24), but few tools for annotating
noncoding somatic mutations have been designed specif-
ically for human cancers. Moreover, most regulatory ele-
ments are widely dispersed across the genome (21), and reg-
ulatory somatic mutations are highly outnumbered by neu-
tral passenger mutations due to intratumoral heterogeneity
(25,26). Therefore, it is challenging to interpret the effects
of noncoding somatic mutations in regulating their target
genes in human cancers.

Fortunately, ENCODE (27), Roadmap Epigenomics (28)
projects and studies on individual groups (29–31) have
revealed the landscape of 1D regulatory elements across
the human genome. The rapid development of chromo-
some conformation capture (3C)-based technologies, such
as ChIA-PET (32,33), 5C (34) and Hi-C (35–37), has pro-
vided increased datasets on the 3D architecture of the hu-
man genome. Studies based on these technologies have un-
covered models on how regulatory elements regulate the
expression of distal target genes (36,38,39). Regulatory el-
ements, such as enhancers, insulators and protein-binding
sites, are anchored to the promoter regions of genes via
chromatin looping to orchestrate gene transcription. Chro-
matin loops identified by Hi-C frequently link enhancers
to promoters and are conserved across human cell lines
(36) and tissues (38). In addition, enhancer-like elements
frequently contact transcriptionally active genes, while po-
tential long-range silencers interact with transcriptionally
inactive genes. Furthermore, the interacting loci are en-
riched for disease-associated variants, suggesting that distal
somatic mutations may disrupt the regulation of relevant
genes (39). Recent studies have made strong cases for using
3D genome information to interpret noncoding, disease-
associated variants (39–43). A system-level understanding
of how cancer mutations affect signaling networks is piv-
otal for interpreting the complex genotype-to-phenotype
relationship in terms of tumor behavior and patient out-
comes (44). This sophisticated, functional understanding of
somatic mutations is key for distinguishing driver mutations
from non-pathogenic passengers (26,45). Therefore, it is es-
sential to link noncoding regulatory somatic mutations to
target genes by integrating 3D chromatin interactions and
1D chromatin signatures.

A large number of tumor somatic mutations have been
identified by TCGA (46), ICGC (47), COSMIC (48) and
ClinVar (49,50) but the potential functions of most of these
noncoding somatic mutations remain unknown. In this
study, we built the platform OncoBase to decipher tumOr
NonCoding sOmatic mutations by Base-pAir reSolution
Estimation (Figure 1). OncoBase provides comprehensive
annotations and predictions of regulatory somatic muta-
tions by employing state-of-the-art methods for target pre-

dictions, gene or mutation prioritizations and functional
predictions. OncoBase integrates genotype data, phenotype
data, 3D chromatin interactions, and important genomic
features, including chromatin states, histone modifications,
gain/loss of TFBS motifs, and multiple concepts of QTLs
(eQTL, dsQTLs, hQTLs and mQTLs), across a broad range
of cell types. OncoBase provides a series of informative ta-
bles, publishable figures and a network diffusion scoring
system to help researchers discover the regulatory roles of
noncoding somatic mutations in human cancers based on
their 1D and 3D genomic features.

MATERIALS AND METHODS

Somatic mutations and tumor types

To curate as many somatic mutations as possible, we col-
lected somatic mutations from four databases (Table 1), in-
cluding 1 823 191 somatic mutations in 36 cancer types from
TCGA (46), 77 460 941 somatic mutations in 57 cancer
types from ICGC (47), 20 909 477 somatic mutations from
COSMIC (48), and 345 756 clinical variants from ClinVar
(49,50). In total, we collected 81 385 242 somatic mutations
in more than 120 types of cancer projects. These somatic
variants including noncoding somatic mutations and cod-
ing somatic mutations were annotated by ANNOVAR (51).

One-dimensional chromatin features

A variety of local chromatin signatures were used to an-
notate the regulatory functions of somatic mutations, in-
cluding predicted chromatin states, histone modifications,
DNase I hypersensitivity sites (DHSs) and transcription
factor binding sites (TFBSs). Chromatin states were pre-
dicted using the core 25-state ChromHMM model (52,53)
trained on the imputed data for 12 marks, H3K4me1,
H3K4me2, H3K4me3, H3K9ac, H3K27ac, H4K20me1,
H3K79me2, H3K36me3, H3K9me3, H3K27me3, H2A.Z
and DNase I hypersensitive sites (DHSs), across all 127 ref-
erence epigenomes. Regulatory somatic mutations were as-
signed to corresponding enhancers or promoters with chro-
matin states by intersecting intervals by coordinate. The
binding sites of 153 transcription factors in 91 human cell
lines and DHSs in 125 cell lines were obtained from EN-
CODE and intersected with somatic mutations for anno-
tation. In addition, 1034 epigenetic profiles of 29 main
human tissues or cells were implemented to allow for a
well-organized visualization by using the JBrowse Genome
Browser.

Prediction of the effects of somatic mutations on transcrip-
tion factor binding

First, 2 817 position weight matrices (PWMs) of transcrip-
tion factors from the HOCOMOCO (54), FactorBook (55),
Homer (56) and ENCODE motif (57) were collected by mo-
tifbreakR (58) were used for further prediction of the ef-
fects of somatic mutations. In contrast to 3DSNP (21), we
employed motifbreakR (58) to measure the effects of so-
matic mutations on TF binding motifs by using a highly ef-
ficient information content-based algorithm to discriminate
between truly disruptive versus neutral variants. In contrast
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Figure 1. Workflow of OncoBase construction.

Table 1. Summary of data sources of OncoBase

Type Source
Cell-
types/tissues

Number of
regions/sites

Record of
mutation

#Unique
mutation

Somatic mutation ICGC 57 - 77 460 941 81 385 242
TCGA 36 - 1 823 191
COSMIC - - 20 909 477

Mutation ClinVar - - 345 756 345 756
Regulatory elements ENCODE 16 3 824 829 21 640 293 57 344 038

RoadMap 111
Cistrome 352 133 638 513 44 139 519
GTRD 1 355 38 291 345 28 171 788

Mutation Target Pairs EpiTensor 127 394 060 7 371 607 49 110 107
JEME 127 288 882 6 793 562
GeneHancer - 233 757 9 065 807
4DGenome 53 1 151 004 45 199 484

Enhancer/promoter EnhancerAtlas 71 577 992 22 452 362 30 145 302
dbSUPER 99 65 213 11 435 320
SEA 15 2 283 548 744
UCNEbase - 4 315 35 389
HoneyBadger
(enhancer)

127 1 598 323 7 023 417

HoneyBadger
(promoter)

127 56 893 1 063 507

QTL GTEx eQTL 48 341 316 86 548 3 190 193
PancanQTL 33 1 412 029 647 927
Other eQTL 9 2 612 515 536 714
mQTL 5 14 217 993 3 135 075
dsQTL 1 214 522 59 782
hQTLs(distal) 1 9 972 244
hQTLs(local) 1 37 287 13 070

Motif motifbreak - - 74 141 414 74 141 414
Expression TCGA 36 - - -

GTEx 48 - - -
Conservation UCSC - - - -
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to the TFM-Scan software employed by 3DSNP (21), mo-
tifbreakR scores and reports the reference and alternate al-
leles of the sequence and the effect (strong, weak or neutral)
according to P-values for PWM match.

Sequence conservation of regulatory somatic mutations

The conservation of somatic mutations was measured
by the PhyloP scores obtained from the UCSC Genome
Browser (59). The PhyloP scores were calculated from mul-
tiple alignments of 100 vertebrate genomes. The absolute
values of the PhyloP scores represent -log(P-values) under
a null hypothesis of neutral evolution, and sites predicted
to be conserved are assigned positive scores, while sites pre-
dicted to be fast-evolving are assigned negative scores.

Reconstruction of high-resolution 3D chromatin interactions

Hi-C sequencing datasets were chosen as the main sources
for deciphering 3D chromatin interactions in OncoBase be-
cause Hi-C measures all pair-wise interaction frequencies
across the entire genome, and detection is not dependent
on any specific transcription factor. As the linear increase in
resolution requires a quadratic increase in the total number
of sequencing reads as well as sequencing cost, most avail-
able Hi-C datasets have a relatively low resolution, such as
25 or 40 kb. These low-resolution Hi-C datasets can be used
to define large-scale genomic patterns, such as A/B com-
partments or topologically associating domains (TADs),
but cannot be used to identify more refined structures, such
as enhancer–promoter interactions or sub-domains (60).
Therefore, it is urgent to reconstruct chromatin interactions
at the gene level with less than a 1 kb resolution. Here, we
employed a novel algorithm named EpiTensor (61) to re-
construct chromatin interactions to investigate the regula-
tory roles of somatic mutations located in interacting loci.
EpiTensor can capture spatial associations between distal
loci at a 200 bp resolution by using tensor decomposition
analysis of TADs and multi-dimensional epigenomes. To
obtain higher resolution chromatin interactions of the hu-
man genome in different cell lines or tissues, we collected
80 TADs and 127 epigenomes of different cell lines or tis-
sues from the 3DIV database (24) and RoadMap epige-
nomics project (28), respectively. The spatial and epige-
nomic datasets were then used to reconstruct chromatin in-
teractions by EpiTensor. Finally, high-resolution interac-
tions were constructed and classified into three types of
TSS to enhancer, TSS to TSS, and enhancer to enhancer
in 127 cell lines or tissues. Furthermore, high-resolution in-
teractions were marked by 25 chromatin states predicted
by ChromHMM to determine whether they are active, in-
active or poised. In addition, we also collected 1 981 153
chromatin interacting pairs from the 4DGeneome (62) to
expand the annotation of chromatin interactions from 53
tissues or cells by 3C, 4C, 5C, ChIA-PET and IM-PET.

Tissue/cell type-specific enhancers/promoters and super-
enhancers

Thanks to the rapid development of high-
throughput sequencing technology, genome annotation

consortia––e.g. ENCODE (27) and NIH Epigenome
Roadmap (28)––have generated massive amounts of dif-
ferent types of sequencing data, making it possible to
identify enhancers on a genome-wide scale. The current
release of OncoBase enables the availability of a total of
30 145 302 total putative enhancers/promoters related
to somatic mutations collected from 5major databases
of enhancers/promoters or super-enhancers: 577 992
enhancers in 71 tissues or cell types from EnhancerAtlas
(63), 65 213 super-enhancers in 99 tissues or cell types from
dbSUPER (64), 2283 super-enhancers in 15tissues or cell
types from SEA (65), 4 315 ultra-conserved non-coding
elements (UCNEs) that typically function as enhancers
in various developmental contexts (66) from UCNEbase
(67), and 1 598 323 enhancers and 56 893 promoters from
HoneyBadger of Reg2Map project.

Targets of tissue/cell type-specific enhancers and super-
enhancers

Although the databases mentioned here have been set up
for enhancers in the human genome, they provide only lim-
ited, basic information about enhancers, such as their coor-
dinates, cell or tissue types, and nearby genes; therefore, we
employed EpiTensor to obtain 25 222 085 high-resolution
(∼200 bp) chromatin interactions, including 2 847 794, 5
691 699, and 16 682 592 interactions for promoter to pro-
moter, enhancer to promoter and enhancer to enhancer, re-
spectively. Moreover, we curated predictions of target genes
by other two algorithms: 9 879 737 enhancer-target net-
works in 935 samples by JEME (68) and 284 834 links of
enhancers to genes by GeneHancer (69). In total, we de-
posited 35 386 656 enhancer-target pairs, including 19 472
521 enhancer-promoter pairs, from more than 1000 human
samples.

Interactive circular visualization of various biological data

The high-resolution chromatin interactions, clusters of
transcription factor binding, somatic mutations, enhancers
or super-enhancers and their predicted targets were illus-
trated in a circular ideogram layout by BioCircos (70),
which is a useful tool implemented to circular visualization
of various biological data, such as genomic features, genetic
variations, gene expression and biomolecular interactions.

Expression of quantitative trait loci

The effects of genetic variants on gene regulation could be
interpreted by correlations between genotype and tissue-
specific gene expression levels. Expression quantitative trait
loci (eQTLs) are genomic loci that regulate gene expression
levels and play a crucial role in deciphering gene regulation
and spatio-temporal specificity (71). We collected a total of
341 316 significant SNP-gene pairs (FDR ≤ 0.05) in 48 hu-
man tissues from the GTEx project version 7 (72). Nom-
inal eQTL P-values and the effect sizes were obtained for
each SNP-gene pair to measure the significance of eQTLs.
Nominal eQTL P-values were generated using a two-tailed
t test to test the alternative hypothesis that the beta de-
viates from the null hypothesis of β = 0. The effect size
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of the eQTLs is defined as the slope (‘β’) of the linear
regression and is computed as the effect of the alterna-
tive allele (ALT) relative to the reference allele (REF) in
the human genome. Most importantly, we collected 1 412
029 significant cis-eQTLs- and trans-eQTLs-gene pairs in
33 cancer types from PancanQTL database (73). In addi-
tion, Oncobase also included eQTLs from experimentally
supported eQTL databases (74,75) and the eQTL browser
(http://eqtl.uchicagoedu/cgi-bin/gbrowse/eqtl/) (76) to pro-
vide association labels for somatic mutations. Tissue and
developmental-stage information were labeled according to
the cell type from which eQTL was identified. The statistical
test to measure significance is similar to that used for GTEx
eQTLs.

Methylation, DNase I sensitivity and histone markers quan-
titative trait loci

The effects of genetic variants on DNA methylation,
DNase I sensitivity and histone modifications could also
aid in deciphering the function of regulatory somatic muta-
tions in epigenetic regulation and molecular processes. Ge-
nomic loci that affect DNA methylation, DNase I sensitiv-
ity and histone modifications are called mQTLs, dsQTLs
and hQTLs, respectively. DNA methylation contains sig-
nificant heritable components that are highly stable across
the lifespan and may have a causal role in complex traits
(77). We used 14 217 993 mQTL-CpG pairs of human
blood at five different life stage from mQTLdb (FDR<0.05)
(77) to annotate regulatory somatic mutations. As DNase I
sensitivity QTLs are a major determinant of human ex-
pression variation, we collected 214 522 dsQTL-peak pairs
(FDR<0.1) in lymphoblastoid cell lines (LCLs) to anno-
tate regulatory somatic mutations (78). In addition, we an-
notated the regulatory somatic mutations by using 47 259
hQTL-peak pairs (FDR<0.1) for three histone markers in
LCLs, as hQTLs enable the identification of putative tar-
get genes of disease-associated variants from genome-wide
association studies (79). The statistical test to measure sig-
nificance is similar to that used for GTEx eQTLs.

Gene expression in human cancers and normal tissues

The gene expression profiles in human cancers were ob-
tained from the TCGA data portal (https://gdc-portal.nci.
nih.gov/) (46), which contains 20 531 genes for each sam-
ple. In total, we collected expression data from 13 250 tu-
mor samples in 36 cancer types from TCGA. For each can-
cer type, weighted gene co-expression network analysis was
performed as described below. As the normal control, we
collected gene expression data for 53 normal human tissues
from the genotype-tissue expression project (GTEx) (72).
Both the gene expression of human cancers and normal tis-
sues were displayed in bar plot figures from the searching
results.

Weighted gene co-expression network analysis of 36 tumor
types

Co-expression analysis is a powerful method for the identi-
fication of genes involved in the same molecular processes

and regulating relationships. Weighted gene co-expression
network analysis (WGCNA) (80) was performed to under-
stand the co-expression relationships between genes for 36
tumor types by using the pipeline we previously employed
(81). Genes with a null expression <80% in all samples
in each tumor type were selected for WGCNA analysis. A
step-by-step network construction workflow was employed
with a soft-thresholding power value of 10 for each tumor
type. A kME >0.1 was assigned to an eigengene module
for co-expression networks in each tumor type. The co-
expression networks were present as an interactive networks
and ranked by Google PageRank algorithm. The size of the
circle of each gene is positively correlated with the PageR-
ank score.

Network diffusion system to prioritize mutations and target
genes

Google PageRank, a network-based diffusion algorithm,
has emerged as the leading method to rank web content,
ecological species and biology scientists (80). PageRank
computes the ranking of nodes in graph G based on the
structures of incoming connections. It was originally de-
signed as an algorithm to rank web pages. But, here PageR-
ank expresses each gene or mutation as a single item node,
and an item containing one or more connections pointing
to another item B indicates that item A approves the impor-
tance of item B and casts a vote for item B. This relationship
can be abstracted as a directed edge in a graph structure.
From the point of view of energy passing, each node will dis-
tribute its own weight to the nodes to which it points. After
several rounds of iterations, diffusion system will complete
its convergence and obtain each respective PageRank score.
In mathematical terms, the general form of PageRank is ex-
pressed as follows:

PR (u) = (1 − d) + d ×
∑

v∈B(u)

PR (v)

PR(u) represents the PageRank score of node u and B(u)
represents the set of nodes that point to u. The parameter d
is used to solve the situation in which no node points to u.
If it is not set, then the converging value will be 0 at the end.
Here, we set d = 0.85 for its best practice (82).

Here, the regulatory networks were considered as a graph
structure by PageRank. For example, if there are 10 connec-
tions in item A, 9-point to item B, and 1 points to item C,
then A should assign more weight to B than A. Therefore,
a slightly improved version of the PageRank form is as fol-
lows:

PR (u) = (1 − d) + d ×
∑

v∈B(u)

PR (v) × weightv→u

Weightv→u is used to measure the weight of the edge. For
the edge derived from chromatin interaction determined
by EpiTensor, we assigned the weight value as 1 while we
used the enhancer–target scores ([0, 1]) as the weight value
from the interaction connections predicted by JEME. Fi-
nally, we provided an interactive view of periodization of
genes related to certain somatic mutation in two layers’
network ranked by score of PageRank in section ‘Regula-
tory Network’. PageRank ranking were applied to all genes

http://eqtl.uchicagoedu/cgi-bin/gbrowse/eqtl/
https://gdc-portal.nci.nih.gov/
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Figure 2. Distribution of mutations in OncoBase. (A). Total mutations located in eight elements annotated by software ANNOVAR. (B, C). Distribution
of mutations located in 3D interaction regions and 1D regulatory regions.

regulated by certain somatic mutation and all of other so-
matic mutations regulating these genes. The network view
only shows the first layer networks and the somatic muta-
tions or genes related to second layer networks are showed
in a table.

DATABASE FEATURES AND APPLICATIONS

Architecture and statistics

The user-friendly web interface OncoBase (http:
//www.oncobase.biols.ac.cn/ or http://159.226.67.237/
sun/oncobase) was developed by combining jQuery with
the PHP-based web framework CodeIgniter, supported
by versatile browsing and searching functionalities similar
to our previous databases and webservers (71,81,83–87).
Annotation information was stored in either the MySQL
database or flat files. Academic users can access genetic
data or extended analysis results freely via the web interface
with no requirement permissions. OncoBase stored 81 385
242 somatic mutations and 345 756 clinical mutations
collected from database ICGC or TCGA or COSMIC,
and ClinVar, respectively. More than 90% mutations were
located in intergenic or intronic regions (Figure 2A), and
the majority of mutations were located in intergenic and
intronic regions of both three dimension (3D) spatial

long-range interactions regions and one dimension (1D)
epigenomic regulatory regions (Figure 2B, C).

Website interface

The data retrieved in OncoBase can be searched in three for-
mats: ‘gene symbols’, ‘somatic mutations’, ‘dbSNP ID’ and
‘regulatory regions’ (Figure 3). A ‘gene symbols’ search is
very useful in terms of searching for gene expression and
epigenetic regulation of genes of interest in human cancers
and candidate regulatory regions or somatic mutations that
are based on genes. ‘Somatic mutation’ retrieval is appro-
priate for analyzing the results of genetic studies for hu-
man cancers and is especially useful for the results of high-
throughput studies. ‘Somatic mutation’ retrieval gives sup-
port for further functional studies to identify regulatory so-
matic mutations and sheds light on the underlying molecu-
lar mechanisms of human carcinogenesis. In addition, On-
coBase allows ‘regulatory region’ retrieval, which could elu-
cidate the potential roles of regulatory regions by providing
genomic regions to search somatic mutations that were de-
posited in the curated database. Furthermore, the JBrowse
Genome Browser (http://jbrowse.org) was applied to estab-
lish a well-organized ‘JBrowse’ page for visualizing genome-
wide signals of epigenetic data sets from 127 Roadmap
epigenomes, including signals of fold change compared with

http://www.oncobase.biols.ac.cn/
http://159.226.67.237/sun/oncobase
http://jbrowse.org
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Figure 3. Web interface of OncoBase.

input for H2A ChIP-seq, DNase-seq and 30 kinds of his-
tone modifications measured by ChIP-seq. Users can select
and browse sequencing signals from any epigenetic type and
any cell or tissue across a specific genomic region or muta-
tion of interest. Genetic mutations located in the regulatory
region may provide a clue that this mutation may affect the
local epigenetic status and result in dysregulation of gene
expression.

Case study

To illustrate the usage of OncoBase, we search the database
with a well-studied 3′ UTR’s somatic mutation at the chro-
mosome 1p33 locus, rs977747 (‘chr1:47684677-47684677:T-
G’), associated with T-cell acute lymphoblastic leukemia
(T-ALL) (88). From the ‘BioCircos View’ summary sec-
tion, we can see that somatic mutation rs977747 is lo-
cated in an endogenous super-enhancer ‘chr1:47675704-
47707659’ upstream of the TAL1 oncogene (Figure 4A).

In the ‘Mutation Target Pair’ information section, we can
see five potential target genes of rs977747 based on the
targets of enhancers: CMPK1, TAL1, STIL, PDZK1IP1
and CYP4A22 (Figure 4B). The prioritization of the tar-
get genes was performed by Google PageRank and showed
in ‘Regulatory Network’ section, which displays the size
of genes based on the significance in the regulatory net-
work centered on a functional mutation. According to the
annotation of ‘TF binding’ section, ESR1 binds to this
position in invasive ductal breast carcinoma. More inter-
estingly, we find that somatic mutation rs977747 is also
an mQTL in the blood of different developmental stages
showed in ‘Quantitative Trait Locus’ section. It suggests
that rs977747 may regulate gene expression through af-
fecting DNA methylation. In addition, somatic mutation
rs977747 is also eQTL in blood and cerebellum with the
target genes CMPK1 and STIL, respectively. Thus, this
case study redisplayed a genetic mechanism responsible
for the generation of oncogenic super-enhancers in ma-
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lignant cells (88) and provided additional insight into the
molecular functions of the noncoding somatic mutation
rs977747. In addition, we also present a recurrent mutation
(chr19:49990694:49990694:G-A) in the promoter of gene
RPL13A and RPL13AP5 in melanoma. In according with
the article reported, this mutation overlapped with ETS
family protein (ELF1, ELK1, ETS1 and GABPA) from
ENCODE data in our ‘TF Binding’ part. Further, the ‘Mo-
tif Break’ prediction results show this mutation can strong
affect the binding of that family protein. In addition, ‘Mu-
tation Target Pair’ show this mutation may interact with

several genes such as RPL13A, ALDH16A1, RCN3 and
FLT3LG in long-range distance (Figure 4C, D) (89). These
information provide a hypothesis: this G/A mutation may
affect TFs binding and result in differential gene expression
of its target genes. Users can validate their own hypothesis
by molecular and functional experiments with lots of valu-
able clues provided by our platform.

DISCUSSION AND PERSPECTIVES

The expansion of functional data sets across a wide range
of cell types will improve the functional predictions of
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noncoding variants for tissue-specific phenotypes (90). 3D
chromatin interactions are crucial for deciphering the roles
of regulatory elements and embedded variants (21). Re-
cently, several data-driven methods (15,18,21–23,81,91) and
sequence-based tools (92–97) have been developed to de-
code noncoding germline mutations from the GWASdb
(65) or dbSNP (98) databases, but none of these databases
were designed to investigate functional somatic mutations
in noncoding elements for human cancers. And the scien-
tific evidence on noncoding mutations being driver events
in cancer remains limited. Compared with previous tools,
the principal advantages of OncoBase for the annotation of
regulatory somatic mutations are as follows:

1. Collected all of the somatic mutations identified by
TCGA, ICGC and other somatic or clinical mutations
deposited in COSMIC and ClinVar. These somatic muta-
tions comprise noncoding variants as well as coding vari-
ants with comprehensive annotations by ANNOVAR.

2. Constructed more than 49 million enhancer–target inter-
actions by multiple predictions from multiple resources.

3. Incorporated 127 tissue/cell type-specific epigenomes
data from the ENCODE and Roadmap epigenomics
project.

4. Integrated the motifs of 2817 transcriptional regulators
from four public resources and predicted the effects of
mutations on binding motifs.

5. Uniformly processed Hi-C sequencing data and recon-
structed 25 million chromatin interactions at a high reso-
lution across 127 tissues/cell types.

6. Provided comprehensive functional annotations and pre-
dictions of regulatory somatic mutations.

7. Equipped a highly interactive visualization function for
mutation-target interactions.

8. Included multiple concepts of QTLs, including eQTLs,
mQTLs, dsQTLs and hQTLs.

9. Prioritized regulatory mutations and target genes by net-
work diffusion.

10. Established weighted gene co-expression networks for 36
tumor types.

It is still a challenge to identify noncoding driver muta-
tions though several studies pointed out dysregulation of
enhancer-promoter interaction due to somatic mutations
could constitute a general mechanism of carcinogenesis
(88,99–101). The widespread implementation of noncod-
ing variant annotation methods will help predict the effects
of genomic variation, elucidate the mechanisms and path-
ways of human cancers, and understand the full complex-
ity of the human genome. With the discovery of clustered
regularly interspaced short palindromic repeat (CRISPR)
editing, the functions of noncoding variants can now be
investigated more easily with these experiment-based sys-
tems (102). Currently, owe to the limited number of 1D
and 3D sequencing data sets, the 1D epigenomic profiles
were mainly collected from healthy cell lines/tissues. Those
data sets can easily provide loss of long-range interaction
resulted from somatic mutation. Whereas, more long-range
interaction data sets in cancer cells are required to iden-
tify gain of long-range interaction. In addition, genome se-
quencing may be changing after many times of passage in

the laboratory and long-range interaction may also change.
Taken together, more 1D and 3D sequencing data sets are
required to provide more accurate regulatory role predic-
tion in long distance. In the future, OncoBase will be fre-
quently updated with new Hi-C datasets and extended to
other functional somatic mutations validated by experimen-
tal methods, such as CRISPR editing. We are dedicated to
maintaining and improving OncoBase since it is a valuable
resource for the research community. Finally, incorporation
of 3D chromatin interactions will likely improve our abil-
ity to assign regulatory somatic mutations to their target
genes, thus providing additional improvements to our abil-
ity to discern their functions and place them in their biolog-
ical context, a necessary step for critical pharmacogenetic
advancement.
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