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T

 

he discovery of CD5

 

1

 

 B cells by Hayakawa et al. (1)
initiated a 13 year-long discussion about the origin

and functional properties of these cells. The CD5

 

1

 

 B cells
(B-1a) and their phenotypic CD5

 

2

 

 “twins” (B-1b cells) dif-
fer from conventional peripheral B cells (B-2) by anatomi-
cal location, developmental origin, surface marker expres-
sion, antibody repertoire and growth properties

 

 

 

(2–4). B-1
cells form a dominant population of B lineage cells in the
peritoneal cavity, but are rare in the spleen and lymph
nodes of adult mice (3–6). The progenitors of B-1a cells are
abundant in the fetal omentum and liver but in contrast to
the progenitors of conventional B-2 cells, are missing in the
bone marrow of adult mice (3, 7–9). The progenitors of
B-1b cells are present in the fetal omentum and liver as
well as in the bone marrow of adult mice (10, 11). How-
ever, a supply of B-1b cells from the bone marrow appears
to be restricted by a negative feedback mechanism accord-
ing to which the entrance of newly generated cells into the
adult peripheral pool of B-1 cells is prevented by the pres-
ence of the mature B-1 population (12). In the absence of a
continuous supply of bone marrow–derived B-1 cells, the
size of the B-1 cell population is kept constant due to the
self-renewal capacity of B-1 cells (3, 13). Due to their abil-
ity to produce large quantities of multireactive IgM, IgG3
and IgA, B-1 cells are considered carriers of “natural im-
munity” (7). It seems that the maintenance of B-1 cell pop-
ulation at a stable level might be necessary to control the
level of antibody production by these cells. Thus the anti–
IL-10 antibody-induced ablation of B-1 cells is accompa-
nied by a drastic reduction of serum immunoglobulin titers
(14). On the other hand, the expansion of autoreactive B-1
cells is associated with the development of autoimmunity
in mice and man (15).

The unusual properties of B-1 cells suggest two major
questions: (

 

a

 

) what signals control the proliferation and sur-
vival of B-1 cells? (

 

b

 

) what factors control antibody produc-
tion by B-1 cells?

Under conditions which induce proliferation of B-2
cells, cross-linking of surface IgM on B-1 cells leads not to
proliferation, but to death by apoptosis (16–18). These re-
sults suggest the existence of mechanisms selectively re-
stricting the antigen receptor-mediated proliferation of B-1
cells. This idea is supported by the recent results of Bikah et al.
(19) which demonstrate the negative role of CD5 in anti-
gen receptor-mediated proliferation of B-1 cells. In these
experiments the intraperitoneal injection of wild-type mice
with high doses of anti-IgM induced the apoptosis of B-1
cells, while the same treatment of CD5-deficient mice re-

sulted in the proliferation of B-1 cells. The modulatory role
of CD5 in IgM-mediated activation of B-1 cells is not com-
pletely unexpected in view of the negative role of CD5 in
control of T cell receptor mediated signaling in developing
thymocytes (20). The CD5-mediated negative regulation of
TCR signaling may occur due to the recruitment of ty-
rosine phosphatase SHP-1 by CD5 to the TCR complex
(21). SHP-1 is also known as a negative regulator of B cell
receptor (BCR)-mediated signaling in B-2 cells (22). Fur-
thermore, the negative role of SHP-1 in B-1 cell activation
has been supported by the observation of B-1 cell accumu-
lation and appearance of circulating autoantibodies in 

 

moth-
eaten

 

 mice carrying the mutated SHP-1 gene (23, 24). Given
that the association of CD5 with BCR was found in hu-
man B lymphoma cells (25), it seems likely that one of the
mechanisms of the negative regulation of BCR-mediated
signaling could well lie in the recruitment of tyrosine phos-
phatase SHP-1 by CD5 to BCR complex. Since B-1b lym-
phocytes do not express CD5, the function of CD5 in these
cells might be substituted by another negative regulator of
B cell signaling such as CD22 protein (26, 27). Indeed an
increased antigen receptor-mediated signaling in the ab-
sence of CD22 was found to be accompanied by an en-
largement of the population of B-1 cells and the appear-
ance of autoantibodies in the serum of mutant mice (28).

If antigen receptor-mediated signals do not induce growth
of B-1 cells, alternative mechanisms must contribute to their
growth. In this issue Karras et al. explains growth proper-
ties of B-1 cells as a consequence of constitutive activation
of STAT3 protein (29). The term STAT stands for signal
transducers and activators of transcription and defines a family
of structurally related cytoplasmic proteins that are phos-
phorylated and rapidly translocated to the nucleus after re-
ceptor engagement (30). Therefore, the continuous pres-
ence of phosphorylated STAT3 protein in nuclear extracts
of non-manipulated B-1 cells was taken by the authors as
evidence of the constitutive activation of this protein. In
lymphocytes the activation of STATs is traditionally associ-
ated with cytokine receptor signaling (31). STAT3 can also
be activated by anti-IgM antibodies in B-2 cells (29). In B-1
cells, however, the pattern of STAT3 phosphorylation argues
against STAT3 activation either by cytokine or by antigen
stimulation. Therefore, it may well be that the constitutive
STAT3 activation in B-1 cells may substitute for the anti-
gen receptor-mediated proliferative signal. STAT3 expres-
sion has been associated with the neoplastic transformation
of cells induced by Abl, Src and HTLV-1 viruses (33–35)
and therefore might contribute to the growth factor–inde-
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pendent proliferation of these cells. In a similar way, the
presence of constitutively active STAT3 in B-1 cells may ab-
rogate the dependence of proliferation of these cells on an-
tigen receptor signaling.

An apparent independence of B-1 cell proliferation from
antigen receptor-mediated signaling raises questions about
the role of the antigen receptor in B-1 cell function. B-1
cells are virtually absent in the peritoneal cavity of mice de-
ficient for CD19 or CD21 proteins (32, 33), both of which
are known to amplify IgM-mediated signaling (34, 35). Fur-
thermore, a negligibly low level of antigen receptor-medi-
ated activation of B cells in Xid- or Btk-deficient mice as
well as in PKC

 

b

 

-deficient mice is associated with the vir-
tual absence of B-1 cells in the peritoneal cavity of these
mice (36, 37, 38).

A potential model to account for the antigen receptor–
dependent maintenance of B-1 cells is that CD5 and/or
CD22-associated SHP-1 keep the threshold of the antigen
receptor–mediated activation at a level insufficient to in-
duce the proliferation of B-1 cells, but sufficient to provide
the signals that promote the survival of B-1 cells. The ex-
pression of CD19 and CD21 might be essential for the am-
plification of the survival signal, which is transmitted to the
nucleus through Btk/PKC

 

b

 

-containing signal transducing
chain. The likelihood of the existence of such a signaling
pathway for survival is supported by the physical interac-
tion between Btk and PKC proteins (39) and the similarity
of immunodeficiencies observed in Btk- and PKC

 

b

 

-defi-
cient mice (38). Notably, both Btk and PKC are known to
be involved in the regulation of survival of B cells (40, 41).
The situation where antigen receptor–mediated stimulation
fails to induce proliferation of B-1 cells, but necessary to
support survival of these cells, looks paradoxically static and
contradicts the existing explanation for continuous B-1 cell
renewal. It seems, however, that constitutive expression of
STAT3 in B-1 cell could take these cells out of limbo and
allow their untriggered growth.

Another important aspect of B-1 lymphocyte function is
the control of antibody production by these cells. Antibody
production by B-1 cells could be induced by some multi-
valent T cell–independent antigens, especially in connec-
tion with the production of autoreactive and anti-bacterial
specificities (42–46). However, the exact origin of naturally
occurring antigens which stimulate the differentiation of B-1
cells into antibody-producing cells remains elusive. In this
issue Murakami et al. (47) demonstrates the critical role of
the microbial microenvironment in the activation of anti-
body production by B-1 cells. Using transgenic mice carry-
ing immunoglobulin genes encoding the anti–red blood
cells autoantibody (anti-RBC Ab) they demonstrated a
correlation between the microbial colonization of gut and
the activation of autoreactive B-1 cells. Thus, the anti-
RBC Ab transgenic mice which were kept under either
germ-free or specific pathogen-free conditions did not de-
velop the autoreactive antibody-induced hemolytic ane-
mia, whereas the colonization of gut of mice with various
microorganisms in a conventional breeding environment
resulted in a rapid onset of the disease in 

 

z

 

50% of animals.
The activation of autoreactive cells in the anti-RBC trans-
genic mice might be induced by bacteria-derived antigens
that cross-react with surface anti-RBC–specific immuno-
globulins. However, given the known ability of peritoneal
B-1 cells to be activated by LPS in vivo (17, 48), it seems
likely that the antibody production by B-1 cells in anti-
RBC mice is induced polyclonally by bacteria-derived LPS
and that the “autoreactive” quality of the receptor was rel-
evant to the induction of disease but not to the induction
of the antibody response itself.

The emerging picture of B-1 cell activation is far from
completion. It remains to be understood how the cross-talk
among various signaling pathways keeps the potentially
dangerous B-1 cells under control at a place where these
cells should be, in the peritoneum.
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