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Abstract

Several taxa of insects evolved a tympanate ear at different body positions, whereby the ear is composed of

common parts: a scolopidial sense organ, a tracheal air space, and a tympanal membrane. Here, we analyzed

the anatomy and physiology of the ear at the ventral prothorax of the sarcophagid fly, Emblemasoma auditrix

(Soper). We used micro-computed tomography to analyze the ear and its tracheal air space in relation to the

body morphology. Both tympana are separated by a small cuticular bridge, face in the same frontal direction,

and are backed by a single tracheal enlargement. This enlargement is connected to the anterior spiracles at the

dorsofrontal thorax and is continuous with the tracheal network in the thorax and in the abdomen. Analyses of

responses of auditory afferents and interneurons show that the ear is broadly tuned, with a sensitivity peak at

5 kHz. Single-cell recordings of auditory interneurons indicate a frequency- and intensity-dependent tuning,

whereby some neurons react best to 9 kHz, the peak frequency of the host’s calling song. The results are com-

pared to the convergently evolved ear in Tachinidae (Diptera).
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In insects, several taxa independently evolved auditory organs

mainly for intraspecific communication, predator detection, and

host location (Strauß and Lakes-Harlan 2014). Consequently, ear

anatomy is of great diversity between taxa (Yager 1999, Yack

2004). Nevertheless, a typical tympanal insect ear consists of three

basic structures, a tympanal membrane able to vibrate in response

to sound pressure changes, a tracheal air space backing the tympa-

num and scolopidial sensory units to register the vibrations of the

membrane.

Two taxa of Diptera are known to possess a tympanal ear, the

Ormiini (Tachinidae) and Emblemasomatini (Sarcophagidae), both

evolved independently (Lakes-Harlan et al. 1999, Robert et al.

1999). The ear of Diptera is located at the ventral prothorax and

both tympanal membranes face forward (Lakes-Harlan and Heller

1992; Robert et al. 1992, 1996; Lakes-Harlan et al. 1999, 2007;

Robert and Willi 2000). In the Ormiini, the ear is a relatively large

bulging structure at the ventral prothorax, with one tracheal air

space backing both membranes (Robert et al. 1994, Robert and

Willi 2000, Lakes-Harlan et al. 2007). About 200 sensory units con-

nect to each of the tympanal membranes. The tuning of the hearing

thresholds of the different species is adapted to their host’s acoustic

communication signals (Homotrixa alleni to Sciarasaga quadrata:

Stumpner et al. 2007; Emblemasoma sp. to Tibicen purinosa: Farris

et al. 2008; Ormia ochracea to various Grylline crickets emitting

more continuous trills: Rosen et al. 2009; Review: Lakes-Harlan

and Lehmann 2015). At least some auditory interneurons of

Therobia leonidei and H. alleni are tuned to the frequency spectra of

their hosts, and phasic interneurons might also be adapted to the

temporal parameters of the host song (Stumpner and Lakes-Harlan

1996, Stumpner et al. 2007). In some cases, the auditory tuning is

also discussed as potential predator avoidance mechanism although

it is only documented for O. ochracea (Rosen et al. 2009).

In recent years, many behavioral experiments have been per-

formed with a species of sarcophagid parasitoids, Emblemasoma

auditrix (Soper). E. auditrix is a parasitoid of the cicada Okanagana

rimosa (Say) and occurs in the Northeast of the United States and

the Southeast of Canada during early summer. Gravid female E.

auditrix acoustically locate the sound-producing males of the host

cicada O. rimosa and infest them with a larva (Lakes-Harlan et al.

2000, Lakes-Harlan and Köhler 2003, Schniederkötter and Lakes-
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Harlan 2004). The larva feeds inside the cicada and eventually kills

it before emerging to pupate in the soil (Schniederkötter and Lakes-

Harlan 2004). Other species of Emblemasoma have different host

species, but all hosts are cicadas (Farris et al. 2008, Stucky 2015). In

contrast to the behavior, the ear and characteristics of the auditory

system of hearing sarcophagids are less well described. The ear is a

flat inflation of the prosternum and faces the rear of the head

(Robert et al. 1999). At both membranes, a scolopidial sense organ

inserts with about 35 uniformly sized mononematic scolopidia, each

with one sensory neuron (Lakes-Harlan et al. 1999). The tympanal

ear of Emblemasomatini and Orminii represent an example of con-

vergent evolution from a precursor structure, the vibration-sensitive

chordotonal organ in nonhearing flies (Edgecomb et al. 1995,

Lakes-Harlan et al. 1999) and possibly an advancement of the mem-

branous prosternal organ in the tsetse fly Glossina morsitans (Tuck

et al. 2009). Physiologically, the hearing system of E. auditrix seems

to be adapted to its host calling song (CS; Lakes-Harlan and

Lehmann 2015), but anatomical and physiological data at large are

missing. Here, we analyze the auditory organ of the E. auditrix espe-

cially in respect to the tracheal system and present first results on

the tuning of auditory afferents and suprathreshold responses of

auditory interneurons.

Materials and Methods

Animals
Female E. auditrix were collected by phonotactic attraction to a

broadcasted CS of the host. The CS of O. rimosa consists of chirps

with 8–10 kHz peak frequency, about 6-ms duration and a repeti-

tion rate of about 83 chirps per second (Stölting et al. 2004). A re-

corded CS was stored on CD. A Discman (Sony D-131, Tokyo,

Japan) was connected to an amplifier (Denon Power Amplifier

DCA-450, Nettetal, Germany) and a piezo loudspeaker (HT-Horn,

Conrad Electronic, Hirschau, Germany). The CS was broadcasted

with 90 dB SPL (rel. 20 mPa) at 1-m distance, measured with a

sound-level meter (Bruel & Kjael 2210, Bremen, Germany) and mi-

crophone (Bruel & Kjael 4133). Phonotactically attracted flies were

captured at the loudspeaker in habitats around the University of

Michigan Biological Station (UMBS) at Pellston, Michigan, and

kept in small cages for up to 14 days under a photoperiod of 14:10

(LD) h (lights on at 07:00 a.m.) at 20–24�C. They were provided

with water and sugar ad libitum. Flies were transported to Justus-

Liebig-University Gießen, Germany, for anatomy and to the Georg-

August University of Göttingen, Germany, for physiology.

Anatomy
Scanning Electron Microscopy

The anterior ventral part of the thorax was dehydrated via ascend-

ing alcohol series (50, 70, 90, 96 and 2*100%, remaining in each

concentration for at least 1h), followed by critical point drying

(Balzers, CPD 030, Hudson, NH). The specimen was attached to

tape on an aluminium tub and sputter coated with gold (BAL-TEC,

SCD 050, Liechtenstein). The specimen was viewed and photo-

graphed under a scanning electron microscope (Leo/Zeiss 438 VP,

Oberkochen, Germany) equipped with a CCD camera (1,024*768

pixels).

Micro/Nano-Computed Tomography

To achieve an optimal voxel resolution of the internal thoracal

structures without truncation artefacts of the computed tomo-

graphic (CT) images, flies (N¼3) were freshly killed by freezing and

wrapped in Parafilm wax foil (Sigma Aldrich, Munich, Germany)

and fixed on the tip of the micro-, respectively, nano-CT specimen

holder. The holder was mounted on the rotation stage of the CT sys-

tem. The flies were scanned using a SkyScan 1173 micro-CT System

(Bruker MicroCT, Kontich, Belgium). The system is equipped with a

high-energy X-ray tube (30–130 kVp), a CsI-Scintillator and a

2,240�2,240 flat panel X-ray detector. The best achievable voxel

size of the system is 5.6-mm isotropic voxel side length. For this

study, the tube potential was set to 35 kVp with a tube current of

190 mA and an X-ray exposure time of 1.6 s/frame. Flies were

scanned over 240� with rotation steps of 0.25�. A fourfold frame

averaging was performed aiming an image noise reduction.

For a higher resolution of the tympanalorgan in E. auditrix, the

thorax was rescanned (N¼1) in a nanofocussed CT-System (Nano-

CT SkyScan 2011, Bruker MicroCT). The System is equipped with

a nanofocussed transmission X-ray tube (Tohken, Japan) a

Gd2O2S:Tb Scintillator, an image amplifier and a 1,280�1,024

pixel CCD detector. The best achievable voxel size of the system is

150-nm isotropic voxel side length. For this study, tube potential

was set to 60 kVp tube voltage with a tube current of 140 mA and an

X-ray exposure time of 2 s/frame. The fly was scanned over 185.2�

(¼180� þ fan opening angle) with rotation steps of 0.20�. A fourfold

frame averaging was performed aiming an image noise reduction.

Aiming to avoid truncation artifacts with an impaired image quality,

we adjusted the geometric magnification of the nano-CT to the tho-

racic diameter of the flies. This resulted in a spatial resolution of

4-mm isotropic voxel side length.

The reconstruction of cross-sectional images was performed us-

ing a Feldkamp cone beam algorithm (Feldkamp et al. 1984) with a

symmetrical boxcar smoothing kernel. The resulting isotropic voxel

side length was 6.05 lm (SkyScan 1173), respectively 4 lm (Nano-

CT SkyScan 2011), for further information on the micro/nano-CT

technique see Kampschulte et al. 2016.

Image postprocessing techniques (N¼1) were used for the visu-

alization of internal structures and external surfaces and comprised

cross-sectional (2D) and volume compositing (3D) and maximum

intensity projection image postprocessing techniques (Analyze 12.0,

AnalyzeDirect Inc., Overland Park, KS). Furthermore, overlay tech-

niques of outer morphology and segmented internal structures were

used for a depiction of anatomical details. Therefore, soft tissue

and aerated internal structures were segmented manually or based

on gray-scale thresholds.

Biometric Measurements

A sample of ethanol-fixed specimens (N¼25) was used for measure-

ments of the width and the area of the tympanal membranes, the

length and width of spiracles and the femur length of the left first

leg. In addition, the distance between head and the probasisternum

has been measured from lateral. All specimens were photographed

with a calibrated ocular in a dissection microscope (Leica MS 5) and

a microscope camera (Leica DFC 320, Wetzlar, Germany). The area

of the tympanal membrane was outlined by hand (three times each)

with a graphic pad (intuos3, PTZ-930, Wacom Co. Ltd., Krefeld,

Germany). All measurements were done with the image editing

application Fiji (Schindelin et al. 2012).

Histology

The dissected thorax was fixated with 4 % paraformaldehyde

in phosphate buffer and embedded in Agar 100 epoxy resin

(Plano GmbH, Wetzlar, Germany). These specimens were sectioned

5–14-mm thick and counterstained with methylene blue. For further

details see Mücke and Lakes-Harlan (1995).
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Physiology
All experiments took place in a setup for electrophysiological mea-

surements in the laboratory at Georg-August-University of

Göttingen, Germany, similar to that used for experiments on tachi-

nid flies (Stumpner and Lakes-Harlan 1996, Stumpner et al. 2007).

Animals were fixed with wax dorsal side up to a plastic holder.

Thereafter, thoracic cuticle was removed dorsally, and the central

nervous system was exposed. The large flight muscles were removed

by tissue coagulation to a hot needle. Care was taken not to damage

the thoracic abdominal ganglion (TAG) that was kept moist with sa-

line (7.48 g NaCl, 1.39 g KH2PO4, 1 g Na2HPO4, 0.061 g CaCl2*

2H2O, and 0.03 g MgCl2*6H2O dissolved in 1-liter distilled water).

Acoustic stimuli were computer-generated sine wave pulses of

50-ms duration with 2-ms rise and decay time. For threshold tests,

5-dB increments were used; for intensity scans, 50, 70, and 90 dB

SPL were tested. For threshold tests, the frequency steps were 1 kHz

for frequencies below 10 kHz, and 2 kHz for frequencies above

10 kHz; for intensity scans, the tested frequencies were 3, 5, 8, 12,

16, 26, and 34 kHz. In some cases, additional parameter combina-

tions were tested (as described under Results). The programs for sig-

nal generation and data evaluation were custom written with the

software LabView (National Instruments Corporation, Austin, TX).

Signals were converted with a DAQ-board (AT-Mio 16E1, National

Instruments Corporation) at 500-kHz sampling rate. Sound pressure

level was measured with a sound-level meter (Bruel & Kjael 2210)

and a calibrated Bruel & Kjael 4133 microphone, rel. 20 mPa. The

microphone was placed at the position of the fly for measurements

of sound intensity.

Summed action potentials of the sense organ were recorded by

positioning a sharpened tungsten electrode within or close to the au-

ditory nerve. The recordings were amplified 1,000� (custom-build

amplifier), displayed on an oscilloscope and headphones, and stored

on DAT tape (Sony PCR 204). For the determination of the thresh-

old, the gliding length of the recording trace (time window 5 ms) at

intensities below and above threshold was calculated (NEUROLAB,

Hedwig and Knepper 1992). The threshold was defined as sound

pressure level that elicited higher values in three out of five stimu-

lus presentations. For single-cell recordings, a glass microelectrode

(1.0/0.5 outer diameter/inner diameter) was inserted into the pro-

thoracic neuromere of the TAG close to its midline. The recordings

were amplified by an SED-05L amplifier (NPI-Instruments, Tamm,

Germany). Data were recorded on computer with LabView soft-

ware, and data analysis was done by custom-written scripts in

LabView. Intracellular recordings proved to be difficult in E. audi-

trix (in comparison to tachinid flies) resulting in rather short record-

ing times. Only in a few cases, neurons could also be marked with

dye. In these cases, neurons were iontophoretically stained with 5%

Lucifer-Yellow in 1 M lithium chloride by hyperpolarising currents

with 0.3 nA. The marking was amplified by standard immunohisto-

chemistry, using anti-Lucifer Yellow antisera (1:300, Molecular

Probes; Stumpner et al. 2007).

Data analysis and statistics were done with Excel (Microsoft

Inc., Redmont, WA) and GraphPad Prism 6.01 for Windows

(GraphPad Software Inc., La Jolla, CA).

Results

Anatomy
The ear of E. auditrix is located at the ventro-anterior

prothorax (Figs. 1 and 2). The two tympanal membranes face

forward and are connected with the rigid prosternal bridge at

the midline. Medioventrally, the probasisternum borders the

tympanal membranes. Ventrolaterally, the tympanal membranes ad-

join the coxal membranes. The major part of the ear is over-

shadowed by the head with a mean gap width between head and

probasisternum of 0.38 mm (SD 0.095, N¼23). Interiorly, the tym-

panal membranes are backed by a single undivided tracheal space

(Figs. 1 and 3), the prosternal air sac. Inside the ear, a pair of scolo-

pidial sense organs span between the tympanal pit, a thickened cu-

ticular part mediolateral on the membrane and the posterior

prosternal apodeme at the back of the air chamber, flanking the

thoracicoabdominal ganglion. The sensory organ consists of about

35 uniformly sized mononematic scolopidial units (Lakes-Harlan

et al. 1999) each with one sensory cell (Figs. 1 and 3B).

The prosternal air sac and the connecting trachea have been

studied further by means of micro-CT and digital reconstruction

(Fig. 4A and B). The trachea supply the frontoventral tissues in the

thorax and originate at the lateral anterior spiracles of the mesotho-

racic segment. The dorsoanterior part, the parenteric air sac, extends

into the neck and forms the cervical trachea, which is the air supply

of the head. Ventrally, the two leg tracheae originate at the proster-

nal air sac. Posteriorly, a pair of tracheae extends into the scutellar

sac and the sternopleural sac of the thorax. The volume of the pros-

ternal air sac and the trachea leading to the spiracles (red volume

Fig. 4B; Supp Movie 1 [online only]) occupies about 4.1% of the

whole thorax volume. Structures emerging from the prosternal air

sac are traced just enough to document the position and dimensions.

In summary, the prosternal air sac is an enlargement within the tra-

cheal network for air supplies in various tissues.

Fig. 1. Schematic drawings of the ear and the scolopidial organ. The ear is lo-

cated behind the head and close to the forelegs coxae (the neck is stretched

for visualization of the ear). The ear has been opened to allow a view into the

air filled cavity, the prosternal air sac, with the bilaterally arranged sensory

organs (so). The scolopidial sense organ is attached to the tympanal mem-

brane (tm) and a cuticular apodeme (ap). Below, the cellular arrangement

of the scolopidial organ (gc, glial cell; rc, receptor cell; de, dendrite;

sc, scolopidia; ac, attachment cell). Upper scale bar ¼ 1 mm, lower scale

bar ¼ 10mm.

Journal of Insect Science, 2016, Vol. 16, No. 1 3

Deleted Text: . 
Deleted Text: dorsally 
Deleted Text: which 
Deleted Text: . 
Deleted Text: 2H<sub>2</sub>O 
Deleted Text: 1&nbsp;
Deleted Text: l 
Deleted Text: 50&nbsp;
Deleted Text: 2&nbsp;
Deleted Text: 5 
Deleted Text: , 
Deleted Text: 70 
Deleted Text: : 
Deleted Text: 26 
Deleted Text: Texas
Deleted Text: ; 
Deleted Text: 500&nbsp;
Deleted Text: sound 
Deleted Text: , Bremen, Germany
Deleted Text:  
Deleted Text: -
Deleted Text: x
Deleted Text: headphones 
Deleted Text: which 
Deleted Text: single 
Deleted Text: recordings 
Deleted Text:  
Deleted Text: thoracic abdominal ganglion (
Deleted Text: )
Deleted Text: software 
Deleted Text: custom 
Deleted Text: &nbsp;
Deleted Text: Lithumchloride 
Deleted Text: ); for details see (
Deleted Text: , USA
Deleted Text: , USA
Deleted Text: . 
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: Lakes-Harlan, St&ouml;lting and Stumpner 
Deleted Text:  
Deleted Text: -
Deleted Text: -
Deleted Text: Ventrally 
Deleted Text: .
Deleted Text: Video 
Deleted Text: S


Fig. 2. Morphology of E. auditrix and the tympanate ear. (A) Lateral view of the whole reconstructed fly (volume composition from micro-CT) to demonstrate the

location and size of the ear (arrow) in relation to body size. (B, C) Frontal view of the thorax and the tympanal membranes, the head was removed to reveal

the whole ear (scanning electron micrographs). c, coxa; n, neck; pbs, probasisternum; ps, prosternum; tm, tympanal membrane; asterisk, tympanal pit. The red

line in C indicates the approximate cutting level shown in Figure 3. The scale bars ¼ 1 mm refer to the plane of the tympanum.

Fig. 3. Anatomy of the tympanate ear. (A) Maximum intensity projection of the anterior thorax from micro-CT (dorsal view). Note that the tympanal membranes

(tm) are aligned in a plane and backed by the prosternal air sac (PA). One of the bilateral symmetric sensory organs is indicated by an arrow head. *The connec-

tion of the prosternal air sac to the leg trachea. (B) Near horizontal section at level of the sensory organs (histological section counterstained with methylene

blue). The bilateral sensory organs sectioned at different levels (arrowheads), showing the attachment to membrane (tm) and apodeme (ap). TAG, thoracicoabdo-

minal ganglion. Scale bar ¼ 500 mm.

Fig. 4. Digital reconstruction of the anterior part of the tracheal space and micro-CT sections. (A) Digital volume composition (from micro-CT) of the thorax (gray)

with tracheal space (red) and sensory organ (blue). Head and legs are removed digitally. Scale bar ¼ 1 mm. (B) Digital volume composition of tracheal space with

the sensory organs (blue). aSp, anterior spiracle; CvTra, cervical trachea; LgTra, leg trachea; ParSc, parenteric air sac; PA, prosternal air sac; SclSc, scutellar sac;

SplSc, sternopleural sac. Scale bar ¼ 0.5 mm.
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The anterior spiracle is located laterally on the mesothoracic seg-

ment and left and right spiracles do not differ in size (paired t-test,

P¼0.0919, t¼1.756, df¼24, N¼25; Table 1). It is oval shaped

and covered with long interlaced setae; the valve structures could

not be detected in the scans (Fig. 5).

The ear width correlates positively with the femur length (Fig. 6;

Pearson correlation r2¼0.3889, P¼0.0011, N¼24), as well as the

spiracle length correlating to the femur length (Pearson correlation,

left: r2¼0.3632, P¼0.0018; right: r2¼0.3416, P¼0.0027,

N¼24). The tympanal membranes are slightly asymmetric with an

approximately 4 % larger area of the right tympanum (paired t-test

P�0.0171, t¼2.569, df¼23, N¼24; Table 1).

Physiology
Responses of auditory sensory cells were extracellularly recorded

with a tungsten electrode from the tympanal nerve (n¼4 animals).

The hearing sensitivity is broadly tuned with a threshold of about

65 dB SPL at 5 kHz and another sensitivity peak with 68 dB SPL at

14 kHz (Fig. 7).

Individual auditory interneurons have been recorded in the gan-

glion near the prothoracic neuromere. These recordings proved to

be quite difficult in E. auditrix, and most neurons could only be

tested for a short time. Thus, it was not possible to fully characterize

the neurons physiologically and anatomically, as many other inver-

tebrate neurons, including auditory neurons from tachinid flies

(Stumpner and Lakes-Harlan 1996, Stumpner et al. 2007).

Nevertheless, some important characteristics of auditory interneu-

rons could be extracted from the recordings (n¼10). Most tests

have been made with a series of sound pulses of constant intensity

and different frequencies. The resulting iso-intensity curves show

that most recorded interneurons are rather broadly tuned in a high-

intensity range and more narrowly tuned at lower sound pressure

levels (Fig. 8A and B). A narrow tuning is typically seen in the fre-

quency range from 5 to 10 kHz. The reaction of some neurons also

peak at around 9 kHz, the peak frequency of the host CS. The neu-

rons differ largely in their spike rate, from a few action potentials

per 50 ms stimulus to more than 20 spikes. Five neurons could at

least partly be anatomically characterized. An ascending neuron

with striking response to the peak frequency of the hosts CS is de-

picted in Figure 8C and D. The neuron responded strongly to 9 kHz

at 90 dB SPL, whereas other frequencies and other sound pressure

levels were only weakly responded to. The anatomy (Fig. 8D) shows

dense neuronal arborizations on both sides of the CNS, especially in

the median ventral association centre (mVAC) of all thoracic neuro-

meres (the position of the soma has not been unequivocally identi-

fied, but is likely in the T3 neuromere). Other ascending

interneurons have their soma in different thoracic and abdominal

neuromeres and project into the ventrolateral protocerebrum (data

not shown). The neurons respond either phasically or tonically to au-

ditory stimuli, and most neurons have monotonic intensity–response

curves (Fig. 9). These intensity–response curves for two tested fre-

quencies show different types of neurons: some react more strongly

to 9 kHz (Fig. 9A), others have a lower threshold at 5 kHz (Fig. 9B

and D), and one neuron showing similar responses at both frequen-

cies (Fig. 9C).

Discussion

The parasitoid fly E. auditrix uses its auditory system to locate the

male cicada Okanagana rimosa by its CS. Although aspects of

the behavior and the evolutionary novelty of the hearing sense have

already been described (Köhler and Lakes-Harlan 2001, Lakes-

Harlan and Köhler 2003, Schniederkötter and Lakes-Harlan 2004,

de Vries and Lakes-Harlan 2005, Tron et al. 2015); here, the anat-

omy of the ear and the auditory physiology are discussed in order to

understand the properties of the hearing sense of E. auditrix.

Anatomy
The ear of E. auditrix is located at the ventral prothorax directly be-

low the cervical sclerites and the two tympanal membranes face for-

ward (Lakes-Harlan et al. 1999), as it is the case for all known

tympanate Diptera (Lakes-Harlan and Heller 1992, Edgecomb et al.

1995, Lakes-Harlan et al. 2007, Tuck et al. 2009). The tympanal

membranes have an average area of 0.32 mm2 (mean of left and

right tympana) and are within the range of other flies, like O. ochra-

cea (0.29 mm2, Robert et al. 1994 or G. morsitans (0.53 mm2, Tuck

et al. 2009). In E. auditrix, we found a positive correlation of the

Fig. 5. Structure of the anterior spiracle. (A) Digital surface reconstruction of

the spiracle (*) and the neighboring cuticle c, coxa. (B, C) micro-CT sections

showing the spiracle entrance (*) into the parenteric air sac (ParSc).

(B) Transversal section, scale bar ¼ 200 lm. (C) Horizontal section showing

the bilateral symmetry of the trachea, spiracles and the direct connection to

the cervical trachea (CvTra), scale bar ¼ 500 mm.

Table 1. Biometric measurements of female E. auditrix (done on

alcohol preserved specimen).

Parameter No. of values Mean (SD)

Femur length (mm) 24 2.6310 (0.1663)

Ear width (mm) 25 1.9800 (0.1299)

Area left tympanum (mm2) 24 0.31 (0.05)

Area right tympanum (mm2) 24 0.32 (0.06)

Spiracle length left (mm) 25 0.59 (0.08)

Spiracle length right (mm) 25 0.57 (0.08)
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size of the ear to body size, but it is unknown whether the size influ-

ences physiological properties of the auditory system. In the

Australian bushcricket Requena verticalis, the hearing threshold for

the intraspecific call’s carrier frequency correlates positively with

body size (Bailey 1998). Interspecific the picture is somewhat divers,

as a comparative study with 17 katydid species found no correlation

of body size and hearing sensitivity for high frequencies, tested with

bat signals (Römer et al. 2008), whereas a study with 44 noctuid

moth species found a correlation between size and threshold

(Surlykke et al. 1999). The asymmetry of the ear in respect to the

size of the tympanal membranes is described here for the first time.

Typically, the right ear is larger by 4%. Because the asymmetry

in E. auditrix has been found in the preserved specimens, so far no

functional tests have been made and it will be interesting to analyze

physiologically whether sensitivity or tuning is different between left

and right ear and whether the asymmetry might influence orienta-

tion behavior. An asymmetry in an auditory system has also been re-

ported for the spiracle of a bush cricket with about 8% difference

(Bailey and Yang 2002). However, this asymmetry had no influence

on the auditory behavior. Furthermore, it should be considered that

the overlap of the head and the narrow distance (0.37 mm) to the

tympani may result in head-related transfer functions comparable to

the vertebrate hearing system (Blauert 1996). It may seem unlikely

considered the wavelength of 3.8 cm at the carrier frequency of the

attractive signal. But in laser-Doppler vibrometric measurements,

a massive change in direction-dependent resonance of the tympa-

num can be seen if the head is removed (RLH unpublished data A).

For the tachinid ear, it has been shown that the ear functions

as mechanically coupled pressure receiver (Robert et al. 1998),

and that the spiracle seems not to function as direction filter

for sound waves, like in bush crickets and crickets (Römer 2014).

In E. auditrix, the bilateral symmetrical spiracles can be closed by a

valve-like structure, although the valve is not obvious from the CT

scans. The spiracles seem not to have a function in auditory informa-

tion processing, like enhancing directionality, because blocking

of one spiracle does not alter the phonotaxis paths in E. auditrix

(N.T. and R.L.H, unpublished observation B). This lack of function

is somewhat surprising as sound waves might enter the tracheal

space through the spiracles. Further studies will reveal the role of

the spiracle in respiration and perhaps audition.

The tympanal membranes are backed by the undivided proster-

nal air sac, which originates from the anterior thoracic spiracles.

This air sac supplies the frontoventral tissues in the prothorax and

continues further into the cervical trachea, the frontal leg trachea,

the sternopleural sac and the scuttelar sac. Therefore, the auditory

air chamber is continuous with the rest of the tracheal space. The

prosternal air sac is also found in flies without a tympanal ear

(Edgecomb et al. 1995, Lakes-Harlan et al. 1999) and interestingly

the volume occupied of the air sac and the directly connected tra-

chea (4.1 % of total thorax volume) is not bigger than in an uniden-

tified species of nonhearing Sarcophagidae used in pilot micro-CT

scans (5% of total thorax volume; N.T., unpublished data C). A

prominent enlarged prosternal air sac is a characteristic of the tym-

panate tachinids, like Th. leonidei (Lakes-Harlan and Heller 1992),

O. ochracea (Robert et al. 1994), and H. alleni (Lakes-Harlan et al.

2007). Nevertheless, not all Dipterans possess a prosternal air sac,

in Acalyptratae, as Eurostaso lidaginis (Edgecomb et al. 1995),

Phormia regina (Lakes-Harlan et al. 2007), and Drosophila

(Demerec 1994), for example, the dorsoventral trachea are con-

nected via a transversal trachea instead (Edgecomb et al. 1995).

The sensory organ extends in the frontal air sac, like in nonhear-

ing Diptera. Nonhearing Diptera possess a prosternal chordotonal

organ, the precursor organ to the hearing sense organ, which func-

tions as a vibration sensor (Edgecomb et al. 1995, Lakes-Harlan

et al. 1999, Lakes-Harlan et al. 2007, Stölting et al. 2007). The tse-

tse fly G. morsitans also possesses a prosternal membrane and is,

therefore, considered as a possible intermediate form (Tuck et al.

2009). In number and arrangement, the sensory cells in E. auditrix

Fig. 6. Allometric data of E. auditrix; correlation of body size and the size of the tympanate ear. (A) Correlation of ear width to femur length with linear regression

(Pearson correlation: r2¼ 0.3889, P¼ 0.0011; best fit slope¼0.4976 6 0.1330, equation, Y¼ 0.4976*Xþ 0.6710). (B) Correlation of spiracle length to femur length

with linear regression (Pearson correlation: r2left¼ 0.3632, P¼ 0.0018, r2right¼ 0.3416, P¼0.0027; best fit slope left¼ 0.2769 6 0.07816, equation,

Y¼ 0.2769*Xþ0.1403, best fit slope right¼0.2718 6 0.08044, equation, Y¼0.2718*Xþ0.1496).

Fig. 7. Hearing threshold of E. auditrix. Sound evoked responses of the tym-

panal nerve had been recorded extracellularly and the threshold has been de-

termined in four females of E. auditrix (thin black lines). Mean and SD in red.
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resemble those in nonhearing flies (Lakes-Harlan et al. 1999). By

contrast, hearing Tachinidae have much higher numbers of sensory

units (Robert et al. 1996, Lakes-Harlan et al. 2007), and the sensory

organ is attached to the ceiling of the prosternal air sac by a

veil-like, continuous thin membrane (Robert et al. 1994, Lakes-

Harlan et al. 2007). Tachinids are more opportunistic in their host

preference and are attracted by a range of cricket or bush cricket

CSs (for review, Lehmann 2003), whereas E. auditrix usually is

Fig. 8. Physiology and anatomy of auditory interneurons. (A, B) Iso-intensity response curves of eight different auditory neurons in eight different animals (same

color refers to the same neuron; black, two curves recorded only for 70 dB SPL in two animals). The curves indicate narrow tuning at low sound pressure level

and a broader tuning at higher sound pressure level. Each stimulus was presented only once. (C, D) Physiology and arborization in the TAG of an ascending inter-

neuron. (C) Iso-intensity response curves. The neuron (also red in A, B) responded strongly only to stimuli with 9–12 kHz carrier frequency at a sound pressure

level of 90 dB SPL (mean, SD, data from three measurements each). (D) Structure of the neuron as revealed from Lucifer Yellow stainings during the recording in

the thoracic abdominal ganglion (overlay of three histological sections immunolabeled with anti-Lucifer Yellow). Note the dense arborizations on both sides of

the TAG, especially in the median ventral association center (mVAC) of the respective thoracic neuromere; the precise soma position is unknown, but likely in the

T3 neuromere; the ascending axon is not shown; DLV, dorsolateral tract that contains the main axon of the neuron; a, anterior; scale ¼ 100 mm.

Fig. 9. Intensity response curves of four auditory interneurons. Neurons have been tested with 5 kHz (best hearing frequency) and 9 or 10 kHz stimuli, respectively

(peak range of the host calling song). The neuron reacts preferentially to 9 kHz (A) two neurons in which 5 kHz has a lower threshold than 10 kHz (B), (D) and a neu-

ron with identical curves for both frequencies (C). Mean, SD, data from three measurements each.
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attracted to just one species CS (Lakes-Harlan et al. 2000, de Vries

and Lakes-Harlan 2005) and another unidentified Emblemasoma

species (Farris et al. 2008). This behavioral difference could be re-

flected in the higher number of sensory units and a broader tuning,

which is found in tachinids (Stumpner and Lakes-Harlan 1996,

Oshinsky and Hoy 2002, Stumpner et al. 2007) may be supported

by a more elaborate structure.

The connection of the air sac with the spiracles and the tracheal

system of the body raise the question, how respiration might influ-

ence the hearing physiology. So far, we have no indications about

the influences, but it has been shown in orthopterans, that respira-

tion changes the auditory responses (Meyer and Elsner 1995, Meyer

and Hedwig 1995).

Physiology
Data on the physiology of the auditory system of parasitoid flies are

limited. Most data are available from species of tachinids, in con-

trast to the group of Emblemasomatini. The peripheral auditory sys-

tem of both taxa is clearly convergently evolved (Lakes-Harlan et al.

1999), including a similar central projection of the sensory cells. It

remains to be shown whether the central auditory system of hearing

flies also contains homologous elements. Here, we first discuss the

peripheral hearing threshold, and second, data on the auditory inter-

neurons of E. auditrix.

Hearing Threshold
Previously, a hearing threshold of E. auditrix has been published

in which the summated response from ascending interneurons

has been evaluated (Lakes-Harlan et al. 1999). In the present study,

we have been able to record from the primary sensory neurons.

The threshold is in the same range as that from the interneurons al-

though the minimum in the low frequency range is less pronounced.

The seemingly less sensitivity of the afferents might be explained

by difficulties in recording from thin receptor units. The recordings

from the interneurons indicate that the afferent system is some-

what more sensitive than reflected in this threshold. Whether

any of the about 35 sensory cells are differently tuned, like the

afferents in O. ochracea (Oshinsky and Hoy 2002) remains to be

shown.

The adaptive value of the 5 kHz minimum is not known because

no respective signal has been found up to now (Lakes-Harlan et al.

2014). Other fly species have a matching of the hearing threshold

curve to the host CS (Lakes-Harlan and Lehmann 2015).

Interestingly, E. auditrix seems to be specifically adapted for one

host species, O. rimosa (Lakes-Harlan et al. 2000). Other species

of the genus seem to have a broader range of hosts (Farris et al.

2008) and therefore can be expected to be less specifically tuned.

In respect to tuning, one has to keep in mind that the CS of many

cicada species peak in about the same range. Hence, the species spe-

cificity is more likely to be coded in the temporal pattern of the CS

as shown in corresponding behavioral experiments with E. auditrix

(Lakes-Harlan et al. 2000, Köhler and Lakes-Harlan 2001).

Nevertheless, at least some auditory interneurons are tuned to

the frequency peak of the CS, indicating that afferent tuning might

not be as important as tuning of higher neuronal networks.

Auditory Interneurons
The recordings from auditory interneurons have been relatively dif-

ficult in comparison to those from tachinid flies. Therefore, only a

few auditory interneurons could be characterized (n¼10) although

anatomical identification is somewhat incomplete (even with

amplification of the tracer Lucifer Yellow by immunohistochemis-

try). Nevertheless, anatomical data allow to draw some conclusions

of the auditory information processing in E. auditrix. Two ascend-

ing interneurons have been found with axonal projection in the ven-

trolateral protocerebrum (data not shown) and broad frequency

tuning. At least one interneuron might represent a homologous neu-

ron to the described AN1 in Th. leonidei (Stumpner and Lakes-

Harlan 1996), but more data are needed. Other interneurons have

distributed neuronal arborisations on both sides of the TAG and

within the mVAC of all thoracic neuromeres. Such neurons could in-

tegrate the information from both ears and trigger respective behav-

ioral responses. The bilateral dense arborizations might also indicate

a processing of directional information, like in the omega neuron of

crickets and bushcrickets (Rheinlaender and Römer 1980,

Schildberger and Hörner 1988, Pollack 2000). These recorded neu-

rons were tuned to the peak frequency of the CS in contrast to the

previously mentioned ascending interneurons and might represent

neurons directly involved in host detection and distance determina-

tion. This tuning of auditory interneurons suggests a filter mecha-

nism in the neuronal network.

Several interneurons could be characterized by their response to

different frequencies at fixed sound pressure levels (with or without

anatomical identification). These interneurons mostly showed a nar-

rower frequency tuning at lower intensity (70 dB SPL) than at higher

intensity (90 dB SPL). So far no clear indication for a discrimination

of narrow frequency bands has been found, perhaps except for the

carrier frequency of the CS. Corresponding to the intensity depen-

dency of the interneuronal response an intensity-dependent change

in phonotactic behavior had been reported (Köhler and Lakes-

Harlan 2001).

Taken the discussion about the importance of detection of tem-

poral parameters, auditory interneurons need to be characterized for

their response patterns. Our data indicate that the interneurons in

the auditory system of E. auditrix have a variety of response pat-

terns, from phasic to tonic response characteristics. Phasic (on and

off), phasic–tonic, and tonic neurons also exist in Th. leonidei

(Stumpner and Lakes-Harlan 1996) and in H. alleni (Stumpner et al.

2007). Such neurons may well transmit the temporal parameters of

the hosts CSs in the brain for species recognition. It will be interest-

ing although difficult to analyze the network in parasitoids with one

or multiple hosts and to unravel their recognition mechanisms.

Supplementary Data

Supplementary data are available at Journal of Insect Science online.
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Römer, H. 2014. Directional hearing: from biophysical binaural cues to direc-

tional hearing outdoors. J. Comp. Physiol. A 201: 87–97.
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