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Abstract

Glioma detection and segmentation is a challenging task for radiologists and clinicians. The

research reported in this paper seeks to develop a better clinical decision support algorithm

for clinicians diagnosis. This paper presents a probabilistic method for detection and seg-

mentation between abnormal tissue regions and brain tumour (tumour core and edema)

portions from Magnetic Resonance Imaging (MRI). A framework is constructed to learn

structure of undirected graphical models that can represent the spatial relationships among

variables and apply it to glioma segmentation. Compared with the pixel of image, the super-

pixel is more consistent with human visual cognition and contains less redundancy, thus,

the superpixels are considered as the basic unit of structure learning and glioma segmenta-

tion scheme. ℓ1-regularization techniques are applied to learn the appropriate structure for

modeling graphical models. Conditional Random Fields (CRF) are used to model the spatial

interactions among image superpixel regions and their measurements. A number of fea-

tures including statistics features, the combined features from the local binary pattern as

well as gray level run length, curve features, and fractal features were extracted from each

superpixel. The features are then passed by ℓ1-regularization to ensure a robust classifica-

tion. The proposed method is compared with support vector machine and Fuzzy c-means to

classify each superpixel into normal and abnormal tissue. The proposed system is tested for

the presence of low grade as well as high grade glioma tumors on images collected from

BRATS2013, BRATS2015 data set and Henan Provincial People’s Hospital (HNPPH) data

set. The experiments performed provides similarity between segmented and truth image up

to 91.5% by correlation method.

1 Introduction

Brain tumors are abnormal and uncontrolled growth of cells in the body. Primary brain

tumors do not spread to other body sites, and can be malignant or benign. The majority of

PLOS ONE | https://doi.org/10.1371/journal.pone.0200745 August 21, 2018 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Zhao Z, Yang G, Lin Y, Pang H, Wang M

(2018) Automated glioma detection and

segmentation using graphical models. PLoS ONE

13(8): e0200745. https://doi.org/10.1371/journal.

pone.0200745

Editor: Jie Tian, Institute of Automation Chinese

Academy of Sciences, CHINA

Received: January 15, 2018

Accepted: July 1, 2018

Published: August 21, 2018

Copyright: © 2018 Zhao et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The Henan Provincial

People’s Hospital data set is published publicly and

freely at http://radiomics.ha.edu.cn/file/

GliomaLesion_HPPC_V1.0.rar, and entitled

“GliomaHPPC V1.0”. No permission is required to

obtain the data set in the test phase. Data

maintenance and construction are performed by

the Medical Imaging Data Analysis team of the

Collaborative Innovation Center for Internet

Healthcare. To access the data set after the official

release, researchers need to provide their name,

institution research area, email address, and other

information to download the data, as according to

https://doi.org/10.1371/journal.pone.0200745
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200745&domain=pdf&date_stamp=2018-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200745&domain=pdf&date_stamp=2018-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200745&domain=pdf&date_stamp=2018-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200745&domain=pdf&date_stamp=2018-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200745&domain=pdf&date_stamp=2018-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200745&domain=pdf&date_stamp=2018-08-21
https://doi.org/10.1371/journal.pone.0200745
https://doi.org/10.1371/journal.pone.0200745
http://creativecommons.org/licenses/by/4.0/
http://radiomics.ha.edu.cn/file/GliomaLesion_HPPC_V1.0.rar
http://radiomics.ha.edu.cn/file/GliomaLesion_HPPC_V1.0.rar


primary brain tumours originate from glial cells (termed glioma) and are classified by their

histopathological appearances using the World Health Organization (WHO) [1] system into

low-grade glioma (LGG) (grades I and II) and high-grade glioma (grade III anaplastic glioma

and grade IV glioblastoma) [2]. Tumors are classified based on the four properties for intra-

tumoral regions, namely “edema,” “non enhancing (solid) core,” “necrotic (or fluid-filled)

core,” and “active core.” Human experts indicate each segmentation map into three classes,

namely the “whole” tumor (including all four tumor classes), the tumor “core” (including all

tumor classes except “edema”), and the “active” tumor (containing the “active core” only) [3].

A Magnetic Resonance Imaging (MRI) provides information about the human soft tissue anat-

omy and helps to diagnosis of brain tumor. The combination of different sequences of MRI

techniques, such as T1-weighted (T1-w) MRI and T2-weighted (T2-w) MRI, are used for

monitoring and evaluating the brain tumors. Images from conventional T1-w and T2-w MRI,

being characterized by a high contrast and spatial resolution [4].

Many segmentation techniques are available in the existing literatures. The region grow-

ing method is most commonly used and it is the simplest technique of region based segmen-

tation. This method is utilized to obtain bonded region of pixels which are similar to the

original image [5]. A single click ensemble segmentation (SCES) approach based on an exist-

ing “Click & Grow” algorithm [6], this method makes multiple seed points are automatically

generated by the manual seed. Fuzzy-c means is a clustering method based on object func-

tion minimization that segments the data set into two or more clusters, each pixel is allocated

a membership function value to the available classes based on its attributes [7]. Several modi-

fications and extensions on fuzzy c-means are reported in the literature [8, 9]. The hybrid

method are fast, robust, accurate which combines the advantages of two or more methods

for brain tumour segmentation. In [10], Haralick features, high-order derivative maps, and

Tamura features were extracted from each volumes of interest. Then the support vector

machine and random forest are used to construct classifier. In [11], content-based active

contour model is implemented and high-dimensional features are reduced using genetic

algorithm (GA). GA with support vector machine (SVM) and artificial neural network are

implemented for brain tumour classification and compared, but the complexity increases

due to hybridization.

A desirable image segmentation framework may be the one that is able to flexibly incorpo-

rate various types of information and constraints, and solve image segmentation by using the

Graphical Models [12, 13]. Markov random fields (MRF) is an undirected graphical model,

which is often used for image segmentation [14]. Graph cuts [15] algorithm is a popular seg-

mentation based on MRF. This algorithm on graphs is used to exact or approximate energy

minimization in image segmentation. Hamamci et al. [16] proposed a variation of the original

graph-cut method using cellular automata for solving the shortest-path problem iteratively.

Zhu et al. [17] also combined EM segmentation with MRF regularization, but added a post-

processing pipeline including thresholding and morphological operations. Subbanna et al.

[18] presented a new iterative, multi-stage graphical model, which was designed to leverage

the strengths of both a local, voxel-based MRF and a contextual, regional (non-lattice based)

MRF, in order to penalize implausible regional labels and label combinations, while also attain-

ing accurate boundaries.

The Conditional Random Fields (CRF) is firstly proposed by Lafferty et al [19]. It is another

type of undirected graphical model that has become increasingly popular. In researches for

image segmentation, it is important to estimate the posteriori probability distribution over

label random variables given the observed image. Since the segmentation problem can be

described as a CRF model. Previous researches has shown that CRF models are effective

in image segmentation. Kumar et al. [20] present a Discriminative Random Fields (DRFs)
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that classify image regions by integrating spatial interactions among labels and the observed

images. Lee et al. [21] used conditional random fields for spatial regularization after previous

voxelwise SVM classification from multiple modalities. Zhang et al. [22] develop a unified

graphical model in which they combined CRF and Byesian network. The combination state-

ment is powerful enough to capture more complex and heterogeneous relationships among

image entities. The CRF discribe the spatial relationship among image regions and measure-

ment. The multi-layer BN capture causal dependencies among various image entities. Bauer

et al. [23] segment tumor and healthy tissues including sub-compartments based on SVM clas-

sification with integrated hierarchical CRF regularization. They also made use of prior knowl-

edge about tissue adjacency probabilities.

Most methods based on undirected graphical models for image segmentation rely on the

assumption that the graph structure is known. This assumption however does not necessarily

exist in natural image data. So learning structure of graph from observed image is still an

important issue. Structure learning has motivated a number of methods for learning sparse

graphical models.

The proposed method is compared with support vector machine and fuzzy c-means to

classify each superpixel into normal and abnormal tissue. The proposed system is tested

for the presence of low grade as well as high grade glioma tumors on images collected from

BRATS2013, BRATS2015 data set and Henan Provincial People’s Hospital (HNPPH) data set.

The experiments performed provides similarity between segmented and truth image up to

91.5% by correlation method.

The remainder of this paper is organized as follows. In section 2, we introduce the method

with detailed description. The experiments and analysis are given in section 3. Section 4 dis-

cuss some existing problems. Finally, we come to a conclusion in section 5.

2 Image segmentation based on graphical models

Due to both its importance and difficulty, the problem of structure learning for undirected

graphical models has attracted considerable attention. Structure learning has motivated many

approaches for learning sparse graphical models. These methods differ in the use of optimiza-

tion algorithms and the provision of theoretical guarantees [24–26].

For reduction of computational consumption, we consider using the superpixels based

method in here. Superpixel is an irregular block of pixels that are adjacent to each other and

have similar visual characteristics such as color, brightness, texture, and so on. Most of these

small areas retain the effective information for further segmentation of the image and preserve

the boundary information of the objects in the image well. Therefore, we consruct the graphi-

cal models with superpixel regions as nodes.

In this paper, image segmentation can be thought of as a labeling problem under a probabil-

ity maximization framework in graphical models. An important step therefore is to find the

most likely configuration, or marginalization tasks that calculate the normalization constants

or marginal probabilities. To do this, we propose a method for jointly learning the structure

and parameters of undirected graphical models, formulating these tasks as a convex optimiza-

tion problem. Instead of assuming a fixed underlying model, we select neighbours through a

method based on regularized objective function, in which the neighborhood of any given node

is estimated by performing function optimization subject to a ℓ1-constraint [27]. We consider

ℓ1-regularization for each set of features associated with an edge, and formalize an efficient

optimal method to find the globally optimal penalized maximum likelihood solution. After

determining the structure of the graphical model, we construct CRF model through combining

the superpixel region nodes and the image observation. The image segmentation based on
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CRF can be thought of as an optimization problem too. The flowchart of the proposed method

is shown in Fig 1.

2.1 Structure learning

Many segmentations of images are required to estimate the parameters of the model of image

labels, that is, the graph structure is known in advance. However, we are interested in both

learning the graph structure and estimating the posterior distribution over labels. This is the

key idea underlying the undirected graphical models which provide a powerful framework

for statistical modeling. Undirected graphical models encode the conditional independency

among the random variables through a sparse graph, and model the posterior distribution as a

Gibbs field. Thus, both structure learning and posterior estimation play the important roles in

image processing based on graphical models.

Superpixel image segmentation refers to the process of subdividing an image sub-region

(also called superpixels). Compared with the pixel of image, the superpixel is more consistent

with human visual cognition and contains less redundancy. Moreover, compact consistent

superpixel segmentation can be used as a spatial feature for visual feature extraction. In addi-

tion, the superpixel undirected graphical models alleviate the computational burden that is a

common problem in the models based on graphical model. Since the simple linear iterative

clustering (SLIC) [28] is an popular method to generate an over-segmentation. The improved

SLIC is used to achieve our goals, this improvement of SLIC algorithm to refine “Compact-

ness” adaptively after the first iteration, thus the Superpixel block is more closely related to the

tumor and edema region. Superpixel image segmentation is shown in Fig 2.

As shown in Fig 2, the image is first over-segmented into superpixel regions. Each super-

pixel region can be regarded as one node in the graphical models.

Structure learning is the problem of predicting a binary vector, each element of which indi-

cates the presence or absence of a certain edge in a graph. Exploiting graph structure can sig-

nificantly boost image processing performance. A Markov random field (MRF) is specified by

an undirected graph. Its structure essentially reflects a priori knowledge, that is, which depen-

dencies between variables need to be considered, while others can be ignored. Hence, it is also

important to identify the structure of graph from image data. In the undirected graphical mod-

els based on the over-segmented image, we consider the superpixel as region node i that corre-

spond to each superpixel (small image region) in the over-segmentation of original image. The

absence of edge in the graph structure is a coding of the independence of random variables.

For convenience of computation, we only thought of the pairwise relationships among the

region nodes. If there is a link between two superpixel regions, it means that there is an inter-

action between them, which is represented by the edge potential. In here, we consider the gen-

eralization of the Ising model [12] to represent probabilistic distribution of the pairwise MRF,

the joint distribution take the following form

Pðy; yÞ ¼
1

ZðyÞ
exp

X

i2V

yiyi þ
X

i2V

X

j6¼i

yijyiyj

 !

; ð1Þ

where in this case the θi is weight coefficient of node i, the zero weight θij is equivalent to

removing the edge from the node i and j and vice verse. Z(θ) is the normalizing constant, and

its form is as follows,

ZðyÞ ¼
Xp

yi
0¼1

exp
X

i2V

yiyi
0 þ
X

i2V

X

j6¼i

yijyi
0yj

 !

;
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Fig 1. The flowchart of the proposed method.

https://doi.org/10.1371/journal.pone.0200745.g001
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where θi is the parameter associated with state s for node i, and θij is the edge parameter associ-

ated with state s for node i and j. Unlike the node potential, setting the specific variable to be

zero in edge potential can influence the structure learning.

One important problem for such models is to estimate the underlying graph from n inde-

pendent and identically distributed samples y = (y(1), y(2), . . ., y(n)) drawn from the distribution

specified by some MRF. The structure learning of undirected graphical models usually use log-

linear model which formalize a convex optimization problem in the parameter space. The opti-

mization is performed effectively and is guaranteed to converge to global optimum. According

to Eq (1), the symmetric negative pseudo-likelihood function for a set of n samples of p-vectors

ym is given by

Xn

m¼1

X

i2V

� logpðyijyj6¼i; yÞ: ð2Þ

In order to estimate the parameter θ = {θi, θij}, we consider the conditional distribution of

yi given the other variables yj. A calculation shows that under the model Eq (1), ϕi(yi, θi) and

ϕij(yi, yj, θij), this conditional distribution takes the following form

pðyijyj6¼i; yÞ ¼

exp ½2yiðyi þ
X

j6¼i

yijyjÞ�Þ

exp ½2yiðyi þ
X

j6¼i

yijyjÞ� þ 1
; ð3Þ

the variable yi can be considered as the response variable in a logistic regression, in which all of

the other variable yj are the covariates.

The structure of graph can be got through shrinking the weight coefficients of edge poten-

tials. ℓ1-regularized likelihood encourage sparsity [27]. As a result, structure learning is to find

the high probability fields in the sample space, to represent the fields with potential functions,

Fig 2. Superpixel image segmentation. (a) original image. (b) result of superpixel segmentation.

https://doi.org/10.1371/journal.pone.0200745.g002
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and study its corresponding weights. Given an optimization algorithm with initial feature set,

model selection is to choose an edge potential function with nonzero weights.

Similar to the [29], we consider the problem of structure learning with the objective func-

tion as the ℓ1-norm constrained convex optimization. which formed as a sum of two convex

terms: one is assumed to be differentiable and convex, another is convex and possibly non-dif-

ferentiable. Thus, we can thought of optimizing the following objective function to estimate

parameters and select neighborhood.

Xn

m¼1

X

i2V

� logpðyijyj6¼i; yÞ þ l
m
kyijk1; ð4Þ

where λm is a tuning parameter. The neighborhood estimate (parameterized by λ) is defined

by the nonzero coefficient estimates of the ℓ1-regularized regression.

Lassplore method [30] applying Nesterov’s method [29] for smooth convex optimization,

and using the adaptive line-search to tune the step size adaptively and meanwhile guarantees

the optimal convergence rate. Compare to the other methods, this method has advantages for

estimating log-liner models. Thus, it is used to solve the non-smooth optimization problem in

here.

2.2 Image segmentation

Each superpixel region can be regarded as one node in the CRF model. Based on the image

observation, superpixel regions and the graph structure learned earlier, the CRF model is then

constructed. Image segmentation based on CRF can be considered to predict a label of a super-

pixel node. The solution is to model the conditional probabilistic distribution, that is, to con-

struct optimization function. In this way, the problem of image segmentation is convert into

the optimization of objective function.

2.2.1 Conditional random fields construction. Let y = {y1, y2, . . ., yp} be the label ran-

dom variables corresponding to all superpixels, where p is the total number of superpixels in

an image. x = {x1, x2, . . ., xp} are the corresponding local feature vector extracted from the

observed image. In image segmentation, each output variable yi is the label of the region

node at position i, and each input variable xi contains various features about the region node

at position i, such as color, brightness, texture and so on. After determining the structure of

the graphical model, we must consider to predict a label vector y of random variables given

an observed feature vector x.

One natural way of solving this problem is to model the conditional probabilistic distribu-

tion P(y|x) directly, which is all that is needed for labelling. This is a CRF. CRF is a kind of

undirected graphical model that defines a log-linear distribution over label vectors given a

observation image. A CRF can be thought of undirected graphical model, or Markov random

field. Globally conditioned on observation x, that is,

pðyijx; yj; j 6¼ iÞ ¼ Pðyijx; yj; j 2 N iÞ; ð5Þ

where N i represents the neighborhood of i.
Compared with the MRF model, the CRF model weakens the conditional independence

assumption of the observation. The image segmentation based on CRF can be considered as

a labeling problem. We thus wish to generate a random variables y = {y1, y2, . . ., yp} which rep-

resents label configuration of superpixel given an observed image x, that is, to assign a label to

a superpixel. As can be seen from the result of structure learning in the previous section, the

number of neighbors is different for different region nodes. This means that the interactions

between nodes is stronger or weaker. According to the Hammersley-Clifford theorem, the

Glioma segmentation using GM
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CRF directly model the posterior distribution P(y|x) as a Gibbs field [31]. Thus, we assume

that P(y|x) be the conditional probability of the set of superpixel label assignments y given the

observed image:

PðyjxÞ ¼
1

Z
expf

X

i2V

½ciðx; yiÞ þ
X

i2V

X

j2N i

cijðx; yi; yjÞ�g; ð6Þ

where ψi(x, yi) is node potential function, and ψij(x, yi, yj) is edge potential function. Z is parti-

tion function. Our CRF model is a superpixel based model. We can infer the label for each

superpixel from image measurements by using the CRF model Eq (6).

Similar definitions of the unary potentials of ϕi in the previous section. The following form

of superpixel node potential function can be given,

ciðx; yi; yi; tiÞ ¼
Xk� 1

s¼1

f½yi þ tiφiðxÞ�yig;

where θi is a set of bias parameters, and τi is a set of parameters associated with state s for

region node i. φi(x) is a function that maps the observations x on a feature vector. δ(�) denotes

an indicator function that returns a value of 1 if its argument is true and 0 otherwise. In a simi-

lar fashion, we can write edge potential function cijðy0i; y
0
j; tijÞ as

cijðx; yi; yj; yij; tijÞ ¼
Xk

s¼1

f½yij þ tijφijðxÞ�yiyjg;

where θij is a set of bias parameters, and τij is a set of parameters associated with state s for edge

between i and j. φij(x) is a edge feature vector that can be used to model the relations between

pairs of sites.

2.2.2 Features description. Our image features φi(x) consists of four classes of features,

namely statistical features, texture features, curvature features, and fractal features. The expla-

nation of the features used for the image segmentation applications is given in this section.

First-order intensity statistics [32] are referred as pixel intensity-based features. They

express the distribution of grey levels within the selected region of interest (ROIs) which are

the superpixels in our work.

Since brain tissues have complex structures, the intensity features are not sufficient for

accurate segmentation of tumour, we use texture features to improve the accuracy of tumor

segmentation. Gupta et al. proposed a combined strategy called Run Length of Centralized

Patterns (RLCP) [33]. In this method, local binary pattern (LBP) [34] code is indexed and gray

level run length (GLRL) [35] matrix in principal directions are formed to count occurrences of

runs length for each gray level.

Image curvature is a shape-based feature which is computed by the gradients along x and y

directions of an image, namely fx, fy, fxx and fyy are the second derivatives of the image intensity

I(x, y), the two-dimensional curvature of the image is calculated as [36]:

Curv ¼
fxxf 2

y þ fyyf 2
y � 2fxxfxfy

ðf 2
x þ f 2

y Þ
3
2

: ð7Þ

The curvature feature for each superpixel is the average of the curvature values for all the

pixels in the superpixel. Fig 3 shows the gradients mapping and curvature mapping for original

image.

Due to the heterogeneity of glioma, tumor tissue has irregularity and complex structure in

medical imaging, with the characteristics of fractal features [37] there is a good distinction

Glioma segmentation using GM
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between tumor area and normal tissue under certain scale. In this study, four thresholds binary

images is obtained from quantitatively image by Otsu algorithm [38], and each binary image

provides area, mean intensity and fractal dimension features. Fractal dimension features ia

obtained by box-counting algorithm in [39].

2.2.3 Parameter optimization. Let ω = {ωi, ωij}, ωi = {θi, τi}, ωij = {θij, τij}, fi(x) = {1, φi(x)},

and gij(x) = {1, φij(x)}. In order to estimate the parameter ω, we consider the conditional distri-

bution of yi given the other variables yj. A calculation shows that under the model Eq (6), ψi

and ψij, this conditional distribution takes the following form

pðyijx; yj2N i
;oÞ ¼

expf2yi½o
T
i fiðxÞ þ

P
j2N i

oT
ij gijðxÞyj�g

P
y0i
expf2y0i½oT

i fiðxÞ þ
P

j2N i
oT

ij gijðxÞyj�g
; ð8Þ

the variable yi can be considered as the response variable in a logistic regression in which all

of the other variable yj are the covariates. Moreover, many features are extracted from image,

however, not all of the features are what we want. The ℓ1-regularization of the node feature

parameters can help us choose the appropriate features. Thus the image can be more accurately

described. Finally, we can consider minimizing the following pseudo-likelihood with ℓ1-regu-

larization of the node feature parameters, and ℓ2-regularization of the edge parameters to esti-

mate parameters.

Xn

m¼1

X

i2V

� logpðyijx; yj2N i
;oÞ þ l

m
1
k½oik1 þ l

m
2
k½oijk2: ð9Þ

The negative penalized logarithm of objective function in Eq (9) is convex with respect to

the model parameters, and the minimum value can be obtained by gradient descent.

3 Experiments and analysis

In order to demonstrate the effectiveness of the proposed method, we evaluate the perfor-

mance of the proposed method on a publicly available BRATS 2013 clinical data set and

BRATS 2015 clinical dataset [3]. Thirty patients datasets and 50 synthetic datasets including

ground truths are available in BRATS 2013, and BRATS 2015 contains 220 high grad(HGG)

and 54 low grade (LGG) glioma MRI images including ground truths are provided by a trained

human expert. We also further evaluate the performance of the proposed method on 161

patients sampled from Henan Provincial People’s Hospital (HNPPH), which is also provided

Fig 3. Gradients mapping and curvature mapping. (a)Original image. (b) Gradients mapping. (c) Curvature mapping.

https://doi.org/10.1371/journal.pone.0200745.g003
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ground truths by experienced radiologist. And all the patients provided their written informed

consent for the use of their medical records. Only Henan Provincial Peoples’ Hospital authors

Meiyun Wang had access to identifying information during preparation of this manuscript.

For all dataset of each patient data, T1-w, T2-w, fluid-attenuated inversion recovery (FLAIR)

and post-gadolinium T1-w MR images are available. Moreover, the research of this paper has

been approved by the Life Science Ethical Review Committee of Zhengzhou University.

Our experiments can be designed in two groups. One group is conducted to test the task of

structure learning of undirected graphical model, and the other is designed to evaluate the per-

formance of image segmentation based structure learning. Both groups can be tested on vari-

ous medical image data sets.

3.1 Structure learning

In our work, we first test the proposed model for learning structure of undirected graphical

models using the BRATS data set for further segmenting images. The modification of SLIC

can be used to get over-segmented image, in which each superpixel is thought of as a region

node i. We will learn the structure of undirected graphical models, which can represent the

spatial relationships among label variables yi, and assume that the variables yi follow the Mar-

kovian property. In general, the neighborhood system of the MRF is assumed to be known in

advance. If two superpixels are adjacent, they are connected to each other, which is caused by

the irregular shape of superpixel nodes. Different from the previous traditional case, the neigh-

borhood structure in this paper is obtained by structure learning. We can consider minimizing

the objective function Eq (4) to estimate parameters and select neighborhood.

Specifically, we formulate the objective function as the ℓ1-norm constrained convex optimi-

zation, which is continuously differentiable, and the problem domain set is closed and convex.

The Nesterov’s method is used to solve this optimization problem because it has the optimal

convergence rate among the first-order methods. The adaptive line search scheme allows to

tune the step size adaptively and meanwhile guarantees the optimal convergence rate. There-

fore, it is used to estimate an appropriate step size in each optimization of Nesterov’s method.

The neighborhood structure obtained by structure learning is shown in Fig 4.

Fig 4(a) is a result of superpixel segmentation. In general, the adjacent region nodes can be

regarded as neighbors in MRF based on superpixel. This neighborhood structure is shown in

Fig 4(b). In this paper, the graph structure can be learned through minimizing logarithm of

Fig 4. Results of structure learning. (a) Result of superpixel segmentation. (b) Graph structure based on adjacent superpixel nodes.

(c) Structure learning result based on the proposed method where λ = 6.

https://doi.org/10.1371/journal.pone.0200745.g004
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objective function Eq (4). One edge corresponds to a parameter. If this parameter is not zero,

it means that there is an edge between two nodes. Fig 4(c) plots the graph structure from ℓ1-

regularization learning. Compare with the previous neighborhood structure in Fig 4(b), the

learning structure of the graph based on the proposed method is sparse.

3.2 Image segmentation

The second group of experiments sought to test the effectiveness of the proposed algorithm for

learning graph structure, and to implement image segmentation on BRATS and HNPPH clini-

cal dataset.

3.2.1 Feature learning. We firstly consider the problem of features extraction from

image. Our image features set consists of four classes of features, namely intensity, texture, cur-

vature, and fractal in here.

For each superpixel, we compute thirteen statistics features which are average, standard

deviation, variance, mean of the absolute deviation, median absolute deviation, coefficient of

variance, skewness, kurtosis, maximum, mode of the intensity values, central moments, range,

interquartile range, and entropy.

RLCP inherits the advantages of LBP and GLRL features, and can be used to extract texture

features in here. GLRL matrix is obtained from the indexed LBP image, which helps in extrac-

tion of textural information of brain tissues more thoroughly. LBP code is indexed and GLRL

matrix in principle directions are formed to count occurrences of runs length for each gray

level. Eleven features are calculated from literature [35]. Four directions (0˚, 45˚, 90˚, 135˚)

GLRL matrix are calculated in each irregular patch of LBP image, this gives extracted feature

vector of length 44(11 × 4).

The curvature features for each superpixel are calculated by Eq (7). The extracted curvature

features are the average of the curvature values for all the pixels in the superpixel.

Experiment with 1–10 threshold levels for fractal feature extraction, after 4 threshold levels

of threshold, the overlap measure is no obvious growth. In order to get better results and avoid

time consumption, the optimum level of threshold 4 is chosen for fractal features. In summary,

there are 12 fractal features obtained from 4 thresholded binary images (each binary image

provides 3 fractal features) in Fig 5.

On the experiments, the parameters setting are carefully considered to obtain the optimal

performance. For superpiexl, desired number of superpixels, compactness and number of iter-

ations parameters need to be determined. For texture and fractal features, RLCP directions

and binary images channel of fractal features should be selected for an accurate and fast

calculate.

As shown in Table 1, since the resolution of images in the BRATS dataset is less than

that in HNPPH dataset, we choose 40–200 numbers at 20 interval for superpiexl number on

BRATS data set, and 40–260 numbers at 20 interval for superpiexl number on HNPPH data

set. The best result is selected for superpiexl number, therefore, the number of superpiexl for

each image can be different. The compactness parameter of the SLIC0 algorithm [40] con-

trols the shape of superpixels. A higher compactness value makes superpixels more regularly

shaped. The number of iterations used in the clustering phase of the algorithm is specified as

10. Four directions are calculated in RLCP for texture features, and 4 binary channel for frac-

tal features.

Four class features are extracted from superpixel regions, however, not all of the features

are what we want. We can choose the appropriate features and achieve image segmentation

through the optimization of Eq (8). In optimization function, we use 50 as the maximum num-

ber of iterations.
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Fig 5. Fractal features. (a) Original image. (b) Otsu quantitatively image. (c)-(f) Four thresholded binary images obtained from (b).

(g)-(j) Three features (area, mean intensity, and fractal dimension) from (c)-(f) respectively.

https://doi.org/10.1371/journal.pone.0200745.g005
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3.2.2 Image segmentation. We conducted experiments with glioma segmentation on

medical image data to for evaluating our segmentation approach. The proposed undirected

graphical models are applied to glioma segmentation. We first test the proposed model on the

BRATS data set for evaluating structure learning algorithm and implementing image segmen-

tation. The HGG and LGG results are shown in Figs 6 and 7 respectively.

Table 1. Parametric description.

Dataset Superpiexl Features Optimization function

Superpiexl number Compactness Number of iterations RLCP directions Binary channel Max iterations number

BRATS15&13 40:20:200 40 10 0,45,90,135 4 50

HNPPH 40:20:260 40 10 0,45,90,135 4 50

https://doi.org/10.1371/journal.pone.0200745.t001

Fig 6. Results of HGG image segmentation in BRATS data set. (a) Original image. (b) Ground truth. (c) Superpixel segmentation.

(d)-(f) Three demonstrations of segmentation results from the proposed method.

https://doi.org/10.1371/journal.pone.0200745.g006
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As shown in Figs 6 and 7, our image segmentation method is feasible. It also confirms the

reliability of the results from the proposed method of learning structure.

In order to further test and verify the effectiveness of the proposed algorithm, we implement

the image segmentation experiments on Henan Provincial People’s Hospital with 161 patients

samples. Some HGG results shows in Figs 8 and 9 shows some LGG segmentation results.

The segmentation results of the proposed method are quite effective and accurate in most

of the samples, but there are also some can not get acceptable result, for its reasons, generates

superpiexls with not so good adherence to object boundaries in image, and the results of super-

piexl are strongly correlated with the results of segmentation, this may adversely impact the

performance. In future, we planned to improve the superpiexl segmentation approach to get

better segmentation result.

Fig 7. Results of LGG image segmentation in BRATS data set. (a) Original image. (b) Ground truth. (c) Superpixel segmentation.

(d)-(f) Three demonstrations of segmentation results from the proposed method.

https://doi.org/10.1371/journal.pone.0200745.g007
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We utilize five quantitative evaluation of the proposed model. Five evaluation criteria

between the ground truth by data set provide and the method segmented ground truth using

our method for the BRATS and HNPPH data set is presented in Table 2. Hausdorff Distance

[41] is a mathematical construct to measure the “closeness” of two sets of points that are sub-

sets of a metric space, the larger the result is, the more different the two sets are. If the Dice

coefficient [41] value is 1 it shows perfect overlap if value is 0 there is no overlap between

ground truth and segmented area. The correlation coefficient [42] (a value between -1 and +1)

tells us how strongly two variables are related to each other, if it closed to 0 it means there is no

relationship between the two sets. Specificity or true negative rate computes how much per-

centage of non tumor pixels correctly detected as non-tumor pixels. The range of metrics lies

Fig 8. Results of HGG image segmentation in HNPPH data set. (a)&(d) Original image. (b)&(e) Ground truth. (c)&(f)

Segmentation results from the proposed method.

https://doi.org/10.1371/journal.pone.0200745.g008
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Fig 9. Results of LGG image segmentation in HNPPH data set. (a)&(d) Original image. (b)&(e) Ground truth. (c)&(f)

Segmentation results from the proposed method.

https://doi.org/10.1371/journal.pone.0200745.g009

Table 2. The quantitative evaluation of the proposed approach on data sets.

LGG(Low-grade glioma)

Dataset Correlation Dice HausdorffDist Sensitivity Specificity

Brats15&13 0.901 0.803 4.03 0.891 0.994

HNPPH 0.919 0.823 3.62 0.914 0.996

HGG(High-grade glioma)

Dataset Correlation Dice HausdorffDist Sensitivity Specificity

Brats15&13 0.912 0.813 3.65 0.893 0.995

HNPPH 0.923 0.823 3.46 0.915 0.996

https://doi.org/10.1371/journal.pone.0200745.t002
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between 0 to 1 and maximal value is optimal. Sensitivity defines the percentage of tumor pixels

correctly detected as tumor pixel. The range of metrics lies between 0 to 1 and maximal value

is optimal.

We also test the proposed algorithm on the BRATS and HNPPH data set to compare the

results with those obtained by three state-of-the-art image segmentation algorithms. The com-

pared methods in this experiments include: Thiruvenkadam et al. [43], Zhao et al. [44], and

Gu et al. [45].

Fig 10 shows the proposed and existing methods output on the BRATS data set, and Fig

11 shows the proposed and existing methods output on the HNPPH data set, we observed

that the proposed method (the third column) obtained satisfactory results of segmentation

result than the other three methods. Some region which are wrongly classified by using

Fig 10. The comparison of our approach with three related works for segmentation in BRATS data set. The first column: the

original images. The second column: ground truth. The third column: the proposed method. The fourth column: the method of

Thiruvenkadam et al. The fifth column: the method of Zhao et al. The sixth column: the method of Gu et al.

https://doi.org/10.1371/journal.pone.0200745.g010

Glioma segmentation using GM

PLOS ONE | https://doi.org/10.1371/journal.pone.0200745 August 21, 2018 17 / 22

https://doi.org/10.1371/journal.pone.0200745.g010
https://doi.org/10.1371/journal.pone.0200745


other methods can be correctly classified by using the proposed method. The experimental

results demonstrate the high detection and segmentation performance of the proposed

method.

Empirical comparisons with several state-of-the-art algorithms demonstrate the efficiency

of the proposed algorithm for image segmentation. Performance of the proposed method is

compared with the existing methods for BRATS and HNPPH data set in the same computing

environment, the results are summarized in Table 3.

The observed results show that our method can get higher Dice and Correlation values, as

well as the smallest HausdorffDist. The performance results of the proposed methods is quite

acceptable. In a word, our methods about structure learning and image segmentation can be

shown to be effective.

Fig 11. The comparison of our approach with three related works for segmentation in HNPPH data set. The first column: the

original images. The second column: ground truth. The third column: the proposed method. The fourth column: the method of

Thiruvenkadam et al. The fifth column: the method of Zhao et al. The sixth column: the method of Gu et al.

https://doi.org/10.1371/journal.pone.0200745.g011
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4 Discussion

In this work we have introduced probabilistic framework for glioma segmentation. The nov-

elty of our work is that we learn the structure of graphical models to incorporate them into a

glioma segmentation framework based on conditional random fields. There are some consid-

erations should factor into the performance of the glioma segmentation method in this work.

One of them concerns with the quality of the superpixel algorithms. The reason for this is the

accuracy of superpixel segmentation directly affects structure learning and image segmenta-

tion. It is difficult to obtain compact, regular superpixels, since compactness comes at the

expense of boundary adherence. Nan et al. have reported good result by applying their method

on superpixel segmentation [40]. This approach makes superpixels more regularly shaped.

Another consideration is to integrate structural learning and image segmentation into a

model. In other words, a objective function is constructed for the previous two tasks. We are

currently exploring the possibility of incorporating structure learning, feature learning, and

image segmentation into one model.

5 Conclusion

To summarize, we propose a novel glioma detection and segmentation framework based on

structure learning of undirected graphical models. This method can achieve effective graph

structure learning, and perform accurate glioma segmentation. The MRI images are first over-

segmented into superpixel regions to reduce computational cost, and each superpixel is used

to construct undirected graph models, after parameter optimization and structure learning,

the graph structure is constructed. In glioma segmentation, base on this graph structure, we

extracted the node and edge features for feature learning. Then, segmentation result of glioma

is obtained through the optimization of the objective function. The experimental results dem-

onstrate the proposed system improves the efficiency in glioma segmentation and makes it

superior over the other existing systems.

Supporting information

S1 File. Samples from Henan Provincial People’s Hospital data set. This samples are pro-

vided by Henan Provincial People’s Hospital (HNPPH), there are one low-grade gliomas case

(00 folder) and one high-grade gliomas case (11 folder), both case included T1 weighted imag-

ing, T2 weighted imaging, fluid attenuated inversion recovery (FLAIR) imaging, enhanced T1

weighted imaging, and ground truth, and private information of all the samples was removed

after collection.

(RAR)

Table 3. The quantitative comparison of our approach with three related works for segmentation on the two data sets.

References Methods description Dataset Correlation Dice HausdorffDist

Thiruvenkadam et al. DWT for pre- and post-processing, FCM for brain tissues segmentation BRATS 0.865 0.785 4.35

HNPPN 0.85 0.775 4.75

Zhao et al. SLIC+ texture and merges, with spectral feature + PCA + SVM BRATS 0.835 0.745 5.35

HNPPN 0.78 0.685 5.9

Gu et al. A single click ensemble segmentation (SCES) approach BRATS 0.775 0.675 6.35

HNPPN 0.84 0.765 5.25

Proposed Methods BRATS 0.905 0.805 3.8

HNPPN 0.915 0.82 3.5

https://doi.org/10.1371/journal.pone.0200745.t003
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