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Breast cancer (BRCA) is the second leading cause of cancer-related mortality in women
worldwide. However, the molecular mechanism involved in the development of BRCA
is not fully understood. In this study, based on the miRNA-mediated long non-coding
RNA (lncRNA)–protein coding gene (PCG) relationship and lncRNA–PCG co-expression
information, we constructed and analyzed a specific dysregulated lncRNA–PCG co-
expression network in BRCA. Then, we performed the random walk with restart (RWR)
method to prioritize BRCA-related lncRNAs through comparing their RWR score and
significance. As a result, we identified 30 risk lncRNAs for BRCA, which can distinguish
normal and tumor samples. Moreover, through gene ontology and Kyoto Encyclopedia
of Genes and Genomes pathway analysis, we found that these risk lncRNAs mainly
synergistically exerted functions related to cell cycle and DNA separation and replication.
At last, we developed a four-lncRNA prognostic signature (including AP000851.1,
LINC01977, MAFG-DT, SIAH2-AS1) and assessed the survival accuracy of the signature
by performing time-dependent receiver operating characteristic (ROC) analysis. The
areas under the ROC curve for 1, 3, 5, and 10 years of survival prediction were 0.68,
0.61, 0.62, and 0.63, respectively. The multivariable Cox regression results verified that
the four-lncRNA signature could be used as an independent prognostic biomarker
in BRCA. In summary, these results have important reference value for the study of
diagnosis, treatment, and prognosis evaluation of BRCA.

Keywords: breast cancer, risk lncRNA, competitive endogenous RNA, ceRNA network, random walk with restart,
prognostic signature

INTRODUCTION

Breast cancer (BRCA) is one of the most prevalent malignancies and is the second leading cause of
cancer-related mortality in women worldwide (Bray et al., 2018; DeSantis et al., 2019). Although
there have been several advancements in both surgical and adjuvant therapy, BRCA remains a
significant threat to female health due to high incidence and poor prognosis. There is an urgent

Frontiers in Genetics | www.frontiersin.org 1 June 2021 | Volume 12 | Article 664393

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.664393
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.664393
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.664393&domain=pdf&date_stamp=2021-06-04
https://www.frontiersin.org/articles/10.3389/fgene.2021.664393/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-664393 May 29, 2021 Time: 18:6 # 2

Su et al. Identification of Risk lncRNAs in BRCA

need for novel and effective biomarkers for clarifying mechanism
of early BRCA and providing therapeutic targets for BRCA
patients (Chi et al., 2019).

Long non-coding RNAs (lncRNAs) are a group of RNAs with
length >200 bp, which serve as key regulators in diverse cellular
functions such as development, differentiation, and apoptosis
(Ulitsky and Bartel, 2013; Quinn and Chang, 2016; Trovero
et al., 2020). The important function of lncRNA is that it can
act as a competitive endogenous RNA (ceRNA) to regulate
the expression level of other transcripts especially for protein
coding gene (PCG) by sponging miRNA (Quinn and Chang,
2016). Growing evidences demonstrated that lncRNAs had
been indicated as important molecules in tumorigenesis (Gibb
et al., 2011). Herrera-Solorio et al. (2020) showed that lncRNA
SOX2-OT modulates an orchestrated resistance mechanism,
promoting poor prognosis and human lung malignancy through
genetic, epigenetic, and posttranslational mechanisms. Xiao
et al. (2020) found that the lncRNA MAFG-AS1, which is
highly expressed in bladder urothelial carcinoma, is correlated
with aggressive characteristics and poor prognosis of bladder
urothelial carcinoma. As for BRCA, IRNAS HOTAIR, SPRY4-
IT1, GAS5, MATAR25, PANDAR, and MATAR25, new players in
tumor development and prognosis, have shown owning potential
clinical applications in BRCA (Soudyab et al., 2016; Nagini, 2017;
Chang et al., 2020). In addition, viable ways have been considered
to predict the potential BRCA lncRNAs by performing high-
throughput data based on bioinformatics methods (Guo et al.,
2018; Chi et al., 2019; Wang et al., 2019).

In our study, by analyzing the BRCA expression profile
from The Cancer Genome Atlas (TCGA) and lncRNA-related
databases, we constructed and analyzed a specific dysregulated
BRCA-associated lncRNA-PCR ceRNA network and performed
the random walk with restart (RWR) method to prioritize
BRCA-related lncRNAs through comparing their RWR score and
significance. At last, we identified 30 risk lncRNAs associated
with BRCA and constructed a prognostic signature based on
the TCGA expression data with clinical survival characters. This
study has important reference value to accelerate the discovery of
molecular biomarkers for the study of diagnosis, treatment, and
prognosis evaluation of BRCA.

MATERIALS AND METHODS

Datasets Across Breast Cancer
The PCG and lncRNA expression profiles of BRCA with FPKM
values were obtained from the UCSC Cancer Browser1, which
provided an open-access portal to download data from TCGA.
In total, we acquired 1,222 BRCA samples that were involved

Abbreviations: BRCA, breast cancer; lncRNA, long non-coding RNA; PCG,
protein coding gene; ceRNA, competitive endogenous RNA; TCGA, The Cancer
Genome Atlas; DE, differentially expressed; PCC, Pearson correlation coefficient;
RWR, random walk with restart; SLGCeNBC, specific LncRNAs-PCGs ceRNA
network for breast cancer; ROC, receiver operating characteristic; KM, Kaplan–
Meier; AUC, area under the ROC curve; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; HR, hazard ratio; CI, confidence interval.
1https://genome-cancer.ucsc.edu

in 1,075 patients with complete clinical follow-up information.
We performed a two-step filter for PCG and lncRNA expression
profiles; the aim is to ensure detection reliability and reduce
noise. First, we extracted only paired patient samples with tumor
and adjacent nontumor tissue for differentially analysis. Second,
lncRNAs or PCGs with an average expression value of less than
1 were removed in the tumor and adjacent nontumor tissue.
Finally, we obtained 224 tumor and adjacent nontumor tissue
from 112 patients, including 1,251 lncRNAs and 13,356 PCGs.
Processed gene expression data and clinical data were provided
in Supplementary Material. For the calculation of Pearson
correlation coefficient (PCC), log2 transformation was performed
to lncRNA/TF expression profiles with raw expression values.

Breast Cancer-Associated Known PCGs
We downloaded BRCA-related PCGs from DisGeNET (v7.0)
(Piñero et al., 2020). DisGeNET is a discovery platform
containing one of the largest publicly available collections of
genes associated with human diseases, which integrates data from
expert curated repositories and the scientific literature (Piñero
et al., 2020). We extracted 318 PCGs associated with BRCA from
DisGeNET (Supplementary Table 1).

Identification of the Differentially
Expressed PCGs/LncRNAs
Fold change and statistical significance were computed for
each PCG/lncRNA in expression profiles by limma package,
which is a common, effective R/Bioconductor software package
for differential expression analyses (Ritchie et al., 2015). The
lncRNAs and PCGs with P < 0.05 or | log2 fold change| > 1 were
considered to be differentially expressed (DE) lncRNAs/PCGs.

Construction of a Specific LncRNA–PCG
ceRNA Network for Breast Cancer
We performed two steps to construct specific LncRNAs-PCGs
ceRNA network for breast cancer (SLGCeNBC). Firstly, we
calculated the correlation of co-expression between DE PCGs and
lncRNAs using the PCC method. PCC can be used to measure the
linear relationship between lncRNA and PCG expression (Zhang
et al., 2018). In this study, we considered that the lncRNA–PCG
pairs with PCC > 0.5 and P < 0.01 showed a potential expression
correlation. All lncRNA–PCG pairs meeting the threshold were
merged into the lncRNA–PCG co-expression network.

Secondly, we performed the hypergeometric test to identify
miRNA-mediated lncRNA–PCG pairs. Previous studies proposed
and demonstrated that the number of common targeting
miRNAs between lncRNAs and PCGs determined the ceRNA
cross-talk strength. More common targeting miRNAs could
produce a more strength ceRNA cross-talk pair. Thus, we
downloaded the interaction of miRNA–PCG/lncRNA from
StarBase (Li et al., 2014), mirTarbase (Chou et al., 2018),
TargetScan (Grimson et al., 2007), LncBase (Karagkouni et al.,
2020), and MiRcode (Jeggari et al., 2012) databases. We
downloaded 714,288 miRNA–PCG interaction pairs and 766,809
miRNA–lncRNA interaction pairs, including 13,295 PCGs, 13257
lncRNAs, and 2,593 miRNAs. Then, we used these data to
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perform the hypergeometric test (Feng et al., 2019). We
considered P-value < 0.01 as statistically significant. The P-value
was measured as the following:

p = 1−
r−1∑
i = 0

(
t
i

)(
m− t
n− i

)
(
m
n

)
where m stands for the total number of human genome miRNAs,
t stands for the number of miRNAs interacting with the PCG,
n stands for the number of miRNAs interacting with the
lncRNAs, and r stands for the number of miRNAs shared between
PCGs and lncRNAs.

Random Walking Analysis
Here, we performed RWR to determine ranking for BRCA-
related lncRNAs. A random walk in network was defined as an
iterative walker’s transition from its certain node to a randomly
selected neighbor that started from a given node (e.g., “PCG
x” was a known PCG associated with BRCA) (Zhang et al.,
2018). The random walk performed had capacity of restart with
probability r in every time step at node “PCG x.” The random
walk with restart was defined as the following:

pt+1= (1−r)Wpt+rp0

where W represents the column-normalized adjacency matrix
of the network, pt is a vector whose size is equivalent to the
number of nodes in the network, and the i-th element holds the
probability of being at node i at time step t.

The initial probability vector p0 was constructed such that 1
was assigned to the nodes representing known PCGs associated
with BRCA, and other nodes with 0. We considered that the role
of PCGs related to disease was equivalent in the network. Vector
p would be in the steady state at time step t, where t approached
infinity as a limit. The iteration would be finished till the change
between pt and pt+1 falls below 10−10.

We scored for each lncRNA to prioritize lncRNAs related
to BRCA by performing the RWR algorithm in a specific
LncRNA–PCG ceRNA network for breast cancer (SLGCeNBC)
and performed statistical significance analysis for the score of
every lncRNA. The statistical significance was determined by
comparing the scores of lncRNAs in the network following
n iterations with SLGCeNBC perturbation. To maintain the
network topological properties, random sampling without
replacement was performed when doing the random disturbance.
In iterations, the times that the score of every lncRNA was higher
than the real one were recorded as m. The P-value for every
lncRNA was the ratio of m and n. In this study, n was set
at 10,000 times.

Constructing the Prognostic lncRNA
Signature
To identify the best score cutoff of the selected lncRNAs
for grouping patients most significantly, we employed for
optimal cutoff identification by using the R package “maxstat”

(Hothorn and Zeileis, 2008). The survival outcomes of the two
groups were estimated by Kaplan–Meier analysis (Bland and
Altman, 1998). Then, we used the survival-related lncRNAs (log-
rank test P < 0.05) above to perform Cox regression analysis
(Cox, 1972) and construct risk models as follows:

Risk Score =
n∑

i=1

(xiei)

where n is the number of lncRNAs, ei is the expression value
of the lncRNAi, and xi is the coefficient of lncRNAs in Cox
regression analysis. Finally, we used the signature with the
minimum log-rank P-value as the best prognostic marker (Guo
et al., 2016). Cox regression analysis was performed to explore
the predictive independence of the lncRNA signature. R software2

with R packages including timeROC, survival was used for
statistical analysis, where a P-value of < 0.05 was considered
statistically significant.

RESULTS

Construction of a Specific LncRNA–PCG
ceRNA Network for Breast Cancer
Based on the interaction of miRNAs–PCGs/lncRNAs from
the public database, we merged all miRNA–PCG pairs and
miRNA–lncRNA pairs and then obtained a global PCG–miRNA–
lncRNA triple network. PCG and lncRNA which shared at
least one common miRNA were reserved. Then, we performed
the hypergeometric test to identify PCG–lncRNA pairs with
P-value < 0.01, which yielded more than candidate 800,000
lncRNA–PCG interactions. All the pairs were merged into a
miRNA-mediated lncRNA–PCG network.

Second, based on the expression profile of 112 pairs of tumor
and adjacent nontumor tissue, we obtained DE lncRNAs/PCGs of
BRCA by limma with P < 0.05 and | log2 fold change| > 1, which
produced 316 and 2,463 DE lncRNAs and PCGs, respectively.
Then, we calculated the Pearson correlation between DE PCGs
and lncRNAs with PCC > 0.5 and P < 0.01. All the co-expressed
lncRNA–PCG pairs were merged into a co-expression network.
As for the lncRNA–PCG co-expression network, it contained 307
lncRNAs, 2,105 PCGs, and 57,216 co-expression relationships.
Obviously, it is specific for BRCA.

Finally, we extracted common lncRNA–PCG pairs in the
above two networks to construct SLGCeNBC. We defined the
PCGs or lncRNAs as the nodes of the network. The whole
identification process is shown in Figure 1. In total, 259 lncRNAs,
1,384 PCGs, and 21,702 edges were included in SLGCeNBC
(Figure 2A and Supplementary Table S2).

Topological Analysis of SLGCeNBC
The degree distribution of all nodes followed the power
law distribution approximately with R2 = 0.839 (Figure 2B).
A handful of nodes with a high degree in the networks
were defined as hubs that linked many nodes; most nodes in

2www.r-project.org
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FIGURE 1 | Schematic overview in this study. (i) LncRNA–PCG ceRNA network. PCG and lncRNA shared at least one common miRNA and considered that a
P-value < 0.01 was significant by applying the hypergeometric test. (ii) LncRNA–PCG co-expression network. The correlation of co-expression between DE PCGs
and lncRNAs using the PCC (PCC > 0.5 and P < 0.01). (iii) Extracted common lncRNA–PCG pairs in (i) and (ii) to structure SLGCeNBC. (iv) The BRCA-associated
known PCGs (seed nodes) were mapped into the SLGCeNBC, and the RWR method was performed on this network. Finally, we the ranked candidate lncRNAs
according to the steady probability of RWR.

networks had few interactions. We firstly analyzed the topological
properties of the SLGCeNBC and calculated the degree, closeness,
and betweenness of the SLGCeNBC, respectively. We ranked
all the nodes’ topological features of the network and listed the
top 20 nodes of degree, betweenness, and closeness, respectively
(Table 1). Interestingly, we found that three lncRNAs (MAGI2-
AS3, MIR99AHG, and LINC00641) appeared in at least two
dimensions (Figure 2C). For the lncRNA MAGI2-AS3, we found
that it significantly downregulated (log2FC = −2, P = 1.74E-
38) in differential expression analysis. Some studies showed that
overexpression of MAGI2-AS3 in BRCA cells MCF-7 would
inhibit the Wnt/β-catenin pathway and inhibit cell proliferation
and migration. MAGI2-AS3 may act as a cis-acting regulatory
element downregulating the DNA methylation level of the
MAGI2 promoter region (Du et al., 2019; Xu et al., 2021).
Meng et al. (2020) verified that overexpression of MIR99AHG
promoted gastric cancer cell proliferation and invasion via
the miR577/FOXP1 axis. Other experiments have shown that
MiR-577 inhibits EMT and metastasis of BRCA by targeting

RAB25 (Yin et al., 2018). From these results, it suggested that
MIR99AHG may have an effect on BRCA via the miR577/RAB25
axis, which provided a suggestion for further experiments.
For LINC00641, Mao et al. (2020) confirmed that LINC00641
inhibits BRCA cell proliferation, migration, and invasion by
sponging miR-194-5p.

To further explore the function of the above three lncRNAs,
we performed Gene Ontology (GO) enrichment analysis for
the lncRNAs through their related PCGs that shares at least
two of three lncRNAs in SLGCeNBC. The result of the GO
biological process contained “positive regulation of endothelial
cell proliferation,” “cell adhesion,” “angiogenesis,” “regulation
of small GTPase mediated signal transduction,” “positive
regulation of endothelial cell migration,” “axon guidance,”
“phosphatidylinositol phosphorylation,” “positive regulation of
apoptotic process,” “regulation of phosphatidylinositol 3-kinase
(PI3K) signaling,” and “steroid hormone mediated signaling
pathway” (Figure 2D). Many researches had shown that these
biological processes were closely associated with BRCA. For

Frontiers in Genetics | www.frontiersin.org 4 June 2021 | Volume 12 | Article 664393

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-664393 May 29, 2021 Time: 18:6 # 5

Su et al. Identification of Risk lncRNAs in BRCA

FIGURE 2 | SLGCeNBC and three lncRNAs appeared in two dimensions. (A) SLGCeNBC. The red and blue nodes represent lncRNAs and PCGs, respectively.
A lncRNA and PCG were connected by an edge if they had the ceRNA and co-expression relationships (Supplementary Table 2). (B) The true node degree
distribution of SLGCeNBC; the degree distribution of all nodes followed the power law distribution approximately with a slope of –1.054 and R2 = 0.839. (C) The
lncRNAs (MAGI2-AS3, MIR99AHG, and LINC00641) are ranked in the top 20 in at least two dimensions (degree, betweenness, and closeness). (D) GO enrichment
analysis for lncRNAs MAGI2-AS3, MIR99AHG, and LINC00641 through their related PCGs that share at least two of three lncRNAs in SLGCeNBC. The X-axis and
bubble color are the –log10 of P-value; the Y-axis is the names of the GO terms. Bubble size indicates the number of PCGs annotated to the GO term.

example, some deregulation Arf isoforms from the small GTPase
subfamily induce cancer formation and progression by enhancing
cell proliferation through the activation of mitogen-activated
protein kinases (MAPK) and ribosomal protein S6 kinase beta-
1 (p70S6K) (Davis et al., 2016; Li et al., 2017). High-level
amplification of ARF1 from the Arf subfamily is associated with
increased PCG expression and poor outcomes of patients with
BRCA (Xie et al., 2016). Overexpression of Ras from the small
GTPase subfamily has been found in more than 15% of human
tumors (Goitre et al., 2014). The study indicated that Ras which
is upregulated in BRCA can promote BRCA cell proliferation,
migration, and invasion due to their capability to alter integrin-
mediated cell adhesion (Di et al., 2015). For the biological

processes, PI3K is the most common altered pathway in ER-
positive BRCA and PI3K/AKT is one of the most critical signal
pathways for cancer (Hamilton and Infante, 2016; Devanathan
et al., 2020). These results recommended that the three lncRNAs
with higher degree, betweenness, and closeness were important
in the network and played a crucial role in the origin and
development of BRCA.

Identifying Risk lncRNAs by Random
Walk With Restart
We mapped 318 PCGs associated with BRCA from DisGeNET
(v7.0) (Piñero et al., 2020) into SLGCeNBC. The result showed
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TABLE 1 | The top 20 lncRNAs/PCGs in degree, betweenness, and closeness.

Symbol Degree Symbol Betweenness Symbol Closeness

*MAGI2-AS3 595 *LINC00641 0.2442 CACHD1 0.2876

PCAT19 495 AC009133.1 0.1829 TMEM220 0.2868

LINC01140 472 HIST1H4E 0.1679 CRIM1 0.2867

*MIR99AHG 464 CARMN 0.1328 DMD 0.2865

AC108134.3 448 HIST2H2AC 0.1296 CEP68 0.2864

EMX2OS 443 TYMSOS 0.0931 STAT5B 0.2863

LINC00667 421 MIR4435-2HG 0.0894 ADAMTS5 0.2863

MIR22HG 408 NUP210 0.0848 RBMS2 0.2862

WDFY3-AS2 396 RHPN1-AS1 0.0737 TGFBR3 0.2862

TRHDE-AS1 394 HIST1H4D 0.0698 PLAGL1 0.2860

AC096921.2 383 *MAGI2-AS3 0.0595 LIFR 0.2857

LINC01697 373 AC010326.3 0.0526 CDC14B 0.2856

AC022007.1 368 FAM89A 0.0519 C20orf194 0.2855

LINC02202 362 AC008771.1 0.0456 *LINC00641 0.2855

AC093278.2 341 AC006329.1 0.0448 ANKRD29 0.2853

LINC01537 337 *MIR99AHG 0.0439 TTC28 0.2851

MIR100HG 328 AC105219.4 0.0437 NR3C2 0.2849

A2M-AS1 319 AC092718.4 0.0410 RUNX1T1 0.2846

HCG11 306 ARHGAP5-AS1 0.0352 PTPN14 0.2844

MIR497HG 283 AC010503.4 0.0340 EZH1 0.2843

Asterisk indicates that lncRNAs appeared in two dimensions. The lncRNA with a
higher degree, betweenness, and closeness played crucial roles in the SLGCeNBC.

that there are 40 PCGs mapped into SLGCeNBC. The 40 PCGs
acted as the seed nodes (Supplementary Tables 1, 3), and the
method of RWR (see section “Materials and Methods”) was
performed to prioritize BRCA highly related lncRNAs. The
initial score of the seed nodes was set at 1, and the scores
of all lncRNA node were calculated. To establish whether the
lncRNA scores were significantly higher than the random case, we
perturbed SLGCeNBC and performed the RWR 10,000 times. As

a result, we identified 30 lncRNAs whose scores were significantly
higher than those of the random case (P < 0.05, Table 2 and
Supplementary Table 4). Here, because the significant results
were produced by inputting known BRCA genes and 10,000
times network permutations, these genes were located in the
neighbors of the disease genes and considered as the potential
synergetic regulators of the disease genes. Thus, all 30 lncRNAs
were considered to be risk lncRNAs of BRCA. We showed that
the real scores for risk lncRNAs from RWR were higher than
the scores for the non-risk lncRNAs (P = 2.266e-06, Wilcoxon
rank-sum test). Thirteen of 30 risk lncRNAs have been reported
to be associated with the occurrence, progression, and survival
of tumor. Particularly, some studies had shown that the nine
risk lncRNAs were closely related to the proliferation, metastasis,
and survival of BRCA (Table 2). For instance, Zhang et al.
(2017) revealed that AP000439.3 could regulate the expression
of CCND1 through enhancing estrogen receptor induction of
CCND1 and function as a key regulator of the cell cycle in BRCA.
Ji et al. (2020) demonstrated that LINC00665 promoted BRCA
progression and induced an epithelial–mesenchymal transition-
like phenotype via the upregulation of LIN28B expression
(Ding et al., 2020).

We performed bidirectional hierarchical clustering to further
investigate the risk lncRNAs. In the heatmap (Figure 3A), we
found that the lncRNAs classified the samples into adjacent
nontumor tissue and tumor tissue, suggesting that these
lncRNAs possessed potential for diagnosis and therapy of
BRCA. Thereafter, we counted the amount of risk lncRNAs that
interacted with each PCG. We found that the top two PCGs
were ESR1 and PARD6B, which connected with 11 and 10
risk lncRNAs, respectively (Figure 3B). The evidence indicated
estrogen receptor-alpha (ERalpha) binding to all identified SRC-
3 genomic binding sites from E2-treated cells and confirmed
the ability of SRC family coactivators to regulate the expression
of one of these PCGs, PARD6B/Par6 (Labhart et al., 2005).

TABLE 2 | Risk lncRNA information.

LncRNA P-value log2FC Evidence (PMID) LncRNA P-value log2FC Evidence (PMID)

TYMSOS 0 1.94 AC008115.3 0.0232 1.45

AC092718.4 0 1.37 AC103760.1 0.0246 1.19

AC006329.1 0 1.25 30195788 *LINC00665 0.0276 1.14 31907362, 32083756

AC108860.2 0 1.28 ELF3-AS1 0.03 1.17 32598181, 32194747

*AP000439.2 0.0002 2.97 29048636, 30582215 *AC093297.1 0.0332 4.44 32733537

AC099850.3 0.0004 2.80 33102579, 31391008 AP005121.1 0.0338 2.38

AL161908.1 0.0028 1.15 *SIAH2-AS1 0.0356 1.52 31572452

MAFG-DT 0.0046 1.35 32382761 *MRPS30-DT 0.0384 2.40 31788446

AC009133.1 0.0058 1.06 *AC093297.2 0.0396 1.26 32733537

AL031985.3 0.0066 1.19 AC008771.1 0.0404 1.05

ATP2A1-AS1 0.0068 1.88 AC037198.1 0.0444 2.02

AC141930.1 0.0076 1.46 AP005131.7 0.0444 2.15

*AP000851.1 0.0096 −1.54 31608996, 32867770 LINC01117 0.0444 2.06

*AFAP1-AS1 0.0168 3.81 32020881, 32955920 LINC01977 0.0446 1.67

AL390294.1 0.02 1.54 *AC144450.1 0.0484 1.52 32420379

Asterisk indicates that there is literature supporting an association between lncRNA and BRCA. The P-value indicates statistical significance by comparing the scores of
lncRNAs in the network following n iterations with SLGCeNBC perturbation (see section “Materials and Methods”).
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FIGURE 3 | Analysis of the identified risk lncRNAs. (A) The heatmap of 30 risk lncRNAs based on their expression. The columns represented 224 samples of 112
BRCA patients, and the rows represented lncRNAs. The risk lncRNAs classified the samples into tumor tissue and adjacent nontumor tissue. (B) Top two PCGs with
high lncRNA interactive relationships. Red nodes represent lncRNAs, and blue nodes represent PCGs. (C) Top two risk lncRNAs with high PCG interactive
relationships. (D) GO enrichment analysis for lncRNAs TYMSOS and AC092718.4 through their related PCGs, respectively. The X-axis shows the –log10 of the
P-value; the Y-axis shows the names of the GO term. The number at the top of the bar indicates the number of PCGs annotated to the GO term.

We also counted the number of the PCGs that interacted
with risk lncRNAs. We found that the top two risk lncRNAs
were TYMSOS and AC092718.4, each of which connected
with 103 PCGs (Figure 3C). We performed GO enrichment
analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis for these PCGs related to
two risk lncRNAs, respectively. We found that TYMSOS and
AC092718.4 were mainly enriched in the biological processes and
pathways related to the cell cycle, such as “cell division” and
“proliferation.” Interestingly, the result of TYMSOS was similar
as that of AC092718.4 (Figure 3D and Supplementary Table 5,
Jaccard similarity coefficient = 0.52). However, the similarity of
PCGs which was regulated by TYMSOS and AC092718.4 was
significantly lower than that of enrichment results (Figure 3C,
Jaccard similarity coefficient = 0.35). These results suggest that
risk lncRNAs may regulate in coordination the occurrence and
development of BRCA.

Synergistic Regulation of Risk lncRNAs
To further investigate the synergistic regulation function for
risk lncRNAs, we focused on the PCGs regulated by more
than three risk lncRNAs (Figure 4A) and performed GO

function and KEGG pathway enrichment analysis. The results
showed that the PCGs were significantly enriched to the KEGG
pathway containing “Cell cycle,” “Pathways in cancer,” and
“p53 signaling pathway” (Figure 4B). In more details, eight
risk lncRNAs (TYMSOS, ATP2A1-AS1, AC092718.4, MAFG-
DT, AC108860.2, AC006329.1, LINC00665, AC099850.3, and
AFAP1.AS1) from the “Cell cycle” pathway (Figure 4C) showed
a ceRNA relationship with E2F1, 2, 3 (E2F1 and E2F2), Chk1
(CHEK1), Cdc25A (CDC25A), CycA (CCNA2), ORC (ORC1
and ORC2), and Dbf4 (DBF4) in SLGCeNBC, respectively.
On the other hand, TYMSOS, AC092718.4, and AC006329.1
jointly upregulated the expression of CHEK1 (Chk1) and CCNA2
(CycA), inhibited the phosphorylation of Cdc25A (CDC25A),
to reduce the dephosphorylation of CDK1 and CDK2, and
further improved the phosphorylation levels of Rb and Dp-
1,2. Consistently, ATP2A1-AS1, MAFG-DT, AC108860.2, and
LINC00665 upregulated the expression of E2F1 and E2F2 (E2F1,
2, 3). To sum up, the expression of S-phase proteins CycE was
indirectly co-promoted. On the other hand, the expression of
DBF4 (Dbf4) was upregulated by TYMSOS, AC092718.4, and
LINC00665, which accelerated the phosphorylation of MEM,
and the ORC (origin recognition complex) was upregulated by
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FIGURE 4 | Synergistic regulation of the risk lncRNAs. (A) Risk lncRNA network; PCGs regulated by more than three risk lncRNAs were selected. The red and blue
nodes represent lncRNAs and PCGs, respectively. (B) KEGG and GO enrichment analysis was performed using genes in the risk lncRNA network. The X-axis shows
the –log10 of the P-value; the Y-axis shows the names of the pathway/term. The number at the top of the bar indicates the number of PCGs annotated to the
pathway/term. (C) Risk lncRNAs regulate the cell cycle pathway (local). (D) Risk lncRNAs regulate the pathway in cancer (local).

AC092718.4, AC006329.1, AC099850.3, and AFAP1.AS1, which
ultimately promoted DNA biosynthesis. For the “Pathway in
cancer” pathway (Figure 4D), a total of 18 risk lncRNAs
synergistically regulated ER (ESR1), E2F (E2F1 and E2F2),
CyclinA1 (CCND1), and Survivin (BIRC5), which indirectly
leads to tumor cell proliferation. In the eight risk lncRNAs, there
are clear reports that LINC00665 is related to BRCA. LINC00665,
which acted as ceRNA, promoted BRCA progression and induced
an epithelial–mesenchymal transition-like phenotype via the
competitively upregulation of LIN28B expression (Ding et al.,
2020; Ji et al., 2020).

By GO function analysis, we found that many biological
processes were significant including “DNA replication,” “cell
division,” “DNA repair,” “cell proliferation,” “DNA synthesis
involved in DNA repair,” “regulation of cell cycle,” “DNA damage
checkpoint,” “peptidyl-threonine phosphorylation,” “peptidyl-
serine phosphorylation,” and “cytokinesis” (Figure 4B).
Obviously, these biological processes are closely related to tumor
cell proliferation differentiation and apoptosis. For the GO
terms “peptidyl-threonine phosphorylation” and “peptidyl-
serine phosphorylation,” Saeidi et al. (2020) have found that
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 is
highly overexpressed in human breast tumor tissues and H-Ras
transformed human mammary epithelial (H-Ras MCF10A) and
MDA-MB-231 BRCA cells.

Construction and Evaluation of Risk
Prediction Model in the Training Dataset
We used the TCGA dataset to develop the risk prediction model
and construct the prognostic signature, since we discovered
17 lncRNAs out of the 30 selected ones associated with the
survival of BRCA patients. Then, we used the 17 prognostic
lncRNAs to develop the risk prediction model and obtained 217-
1 = 131,071 risk models. We performed Kaplan–Meier analysis
and compared the predictive ability of 131,071 signatures. A four-
lncRNA signature (AP000851.1, LINC01977, MAFG-DT, and
SIAH2-AS1) was found to have the minimum log-rank P-value
(Figure 5A). The regression coefficients of the four lncRNAs
(AP000851.1, LINC01977, MAFG-DT, and SIAH2-AS1) were all
negative, which means they were related to BRCA poor prognosis
(Supplementary Table 6).

Survival Prediction Performance of the
Four-lncRNA Signature in the TCGA
Dataset
Each patient in the TCGA dataset received a risk score based
on the four-lncRNA signature. Then, the patients with BRCA
in the TCGA dataset were divided into high-risk (n = 537)
or low-risk group (n = 538) based on the median risk score.
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Kaplan–Meier analysis demonstrated that patients in the low-
risk group owned longer survival times than those in the high-
risk group (median survival time: 11.69 vs. 9.48 years, log-rank
test P < 0.001; Figure 5A). Subsequently, we performed time-
dependent receiver operating characteristic (ROC) analysis to
assess the survival accuracy of the four-lncRNA signature. In
the TCGA dataset, the area under the ROC curve (AUC) for
1, 3, 5, and 10 years of survival were 0.68, 0.61 0.62, and 0.63,
respectively (Figure 5B).

To test its prognostic independence, univariate and
multivariable Cox regression analyses (Cox, 1972) were
conducted. The multivariable Cox regression results in the
TCGA datasets verified that the four-lncRNA signature can
predict patients’ survival [high- vs. low-risk, hazard ratio
(HR) training = 2.02, 95% confidence interval (CI) 1.43-2.86,
P < 0.001, n = 1075; Table 3].

DISCUSSION

In recent years, the role of lncRNA has become a highly
studied topic in the field of tumor research. Accumulating
evidence indicates that lncRNA is involved in the oncogenesis

and development of BRCA (Bray et al., 2018; DeSantis
et al., 2019; Ji et al., 2020). With the development of
high-throughput sequencing technology, a large number of
lncRNA expression data involved in the occurrence and
progression of cancer are emerging. It is not hard to infer
that many of the lncRNAs related to BRCA may function
as a complex and organized regulatory network for BRCA
(Chi et al., 2019).

In this study, SLGCeNBC was constructed based on co-
expression and miRNA-mediated RNA cross talks. Therefore, we
identified 30 risk lncRNAs associated with BRCA by performing
RWR in SLGCeNBC. In 30 risk lncRNAs, 13 risk lncRNAs have
been confirmed to be associated with several cancers and nine
risk lncRNAs have demonstrated a high association with BRCA.
This shows that our method is effective and practical. By means
of enrichment analysis using GO and KEGG, we found that
these risk lncRNAs are significantly enriched in cancer-related
biological processes and pathways, which have been stated by
researchers (Hamilton and Infante, 2016; Anwar et al., 2018;
Devanathan et al., 2020; Saeidi et al., 2020), and we found
that the regulation of risk lncRNAs on BRCA-related genes is
synergistic rather than alone. As a result, we found that these

FIGURE 5 | Survival prediction performance of the four-lncRNA signature (AP000851.1, LINC01977, MAFG-DT, and SIAH2-AS1). (A) Kaplan–Meier curves for
BRCA patients stratified by the four-lncRNA signature. P-values were calculated using a log-rank test. (B) ROC analysis to assess the survival accuracy of the
four-lncRNA signature for 1, 3, 5, and 10 years of survival.

TABLE 3 | Cox regression analysis of the signature with BRCA survival (n = 1075).

Univariable analysis Multivariable analysis

Variables HR 95% CI of HR P HR 95% CI of HR P

Lower Upper Lower Upper

Age >58 vs. ≤58 1.75 1.27 2.41 <0.001 2.03 1.44 2.85 <0.001

Stage I, II vs. III, IV 2.17 1.74 2.72 <0.001 2.11 1.69 2.63 <0.001

lncRNA signature High risk vs. low risk 1.98 1.43 2.76 <0.001 2.02 1.43 2.86 <0.001

HR, hazard ratio; CI, confidence interval.
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30 risk lncRNAs are highly correlated with the occurrence and
development of BRCA, and they may form the network system to
jointly regulate the initiation and course of BRCA. These results
suggest that risk lncRNAs may serve as novel diagnostic markers
and treatment targets.

Importantly, we identified a four-lncRNA prognosis signature
based on ceRNA network analysis, which could be used as
the key clinical biomarker in BRCA prognosis. The poor
prognosis of BRCA is mainly manifested in tumor metastasis,
which is the leading cause of death (Zhang et al., 2017).
Tumor metastasis is difficult to detect, which is discovered
only when the tumor is large enough to be observed in
regular follow-up imaging examination or to cause notable
symptoms resulting from a tumor mass effect. This situation
may exacerbate the patient prognosis. In our study, after
survival analysis, we found that a four-lncRNA signature
including four lncRNAs (AP000851.1, LINC01977, MAFG-DT,
and SIAH2-AS1) has the ability to predict survival in patients
with BRCA, which are expected to be novel predictors that
may identify early metastasis. Additionally, we also investigate
prognostic independence effects of the four-lncRNA signature
in the TCGA dataset. As a result, the multivariable Cox
regression results in the TCGA datasets verified that the
four-lncRNA signature can predict patients’ survival. This
result also demonstrated the clinical potential of the four-
lncRNA signature.

Our methods also show some limitations. First of all, in
this study, we conducted a bioinformatics analysis to identify
the crucial factors in BRCA; results indicated that some genes
(PCGs or lncRNAs) might play vital roles in the subtype cancers.
Bioinformatics may infer only the functions of these lncRNAs;
thus, it remains necessary to confirm the biological effects of these
risk lncRNAs in BRCA in experimental studies. This result also
encouraged us to validate the biological function and mechanism.
In a further study, we will conduct the biological experiments
to investigate these potential factors. Secondly, the risk lncRNAs

identified here may not be all candidate risk lncRNAs associated
with BRCA because of only limitations of lncRNA data. Finally,
this study is based on the DE lncRNAs in BRCA. If all lncRNAs
in tumors participate in the occurrence and development of
tumors in the form of a network system, then some lncRNAs
with no obvious changes may slip through the net and our
results range may be narrowed. However, the research results
of our study could contribute to accelerating the discovery of
molecular biomarkers for diagnosis, treatment, and prognosis
evaluation of BRCA.
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