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Abstract 

B cell maturation antigen (BCMA), a transmembrane glycoprotein member of the tumor necrosis factor receptor 
superfamily 17 (TNFRSF17), highly expressed on the plasma cells of Multiple myeloma (MM) patients, as well as the 
normal population. BCMA is used as a biomarker for MM. Two members of the TNF superfamily proteins, including 
B-cell activating factor (BAFF) and A proliferation-inducing ligand (APRIL), are closely related to BCMA and play an 
important role in plasma cell survival and progression of MM. Despite the maximum specificity of the monoclonal 
antibody technologies, introducing the tumor-specific antigen(s) is not applicable for all malignancies, such as MM 
that there plenty of relatively specific antigens such as GPCR5D, MUC1, SLAMF7 and etc., but higher expression of 
BCMA on these cells in comparison with normal ones can be regarded as a relatively exclusive marker. Currently, 
different monoclonal antibody (mAb) technologies applied in anti-MM therapies such as daratuzumab, SAR650984, 
GSK2857916, and CAR-T cell therapies are some of these tools that are reviewed in the present manuscript. By the 
way, the structure, function, and signaling of the BCMA and related molecule(s) role in normal plasma cells and MM 
development, evaluated as well as the potential side effects of its targeting by different CAR-T cells generations. In 
conclusion, BCMA can be regarded as an ideal molecule to be targeted in immunotherapeutic methods, regarding 
lower potential systemic and local side effects.
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Introduction
Multiple myeloma (MM) is known as a malignancy of 
plasma cells (PCs) located in the bone marrow, that leads 
to excess production of abnormal immunoglobulins and 
bone destruction. MM is a primary malignancy of the BM 
PCs initiated by the transformation of memory B cells 
(CD19 + , CD 27 + , CD 38 + , CD45 − , and CD138 −) 
[1]. In recent decades, many therapy strategies have been 
developed based on monoclonal antibodies (mAb) (such 
as daratumumab or elotuzumab), proteasome inhibitors 

and immunomodulatory drugs. However, MM remains 
an incurable disease yet. Its severity and clinical and/
or laboratory stages manifestations vary from a prema-
lignant precursor, monoclonal gammopathy of unde-
termined significance (MGUS), to smoldering MM, and 
active MM finally [2]. The progression of multiple mye-
loma to invasive disease is due to genetic mutations and 
chromosomal abnormalities. Many of these alterations 
are associated with changes in metabolism, apoptosis, 
cell growth, and the epigenetics of MM cells [3]. MM 
cells are in close contact with BM accessory cells that 
eventually lead to the spread, survival, and escape of the 
immune system. These bone marrow stroma cells include 
endothelial cells, osteoclasts and osteoblasts, BM mac-
rophages, regulatory T-cells (Tregs), plasmacytoid DCs 
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(pDCs), dendritic cells, mesenchymal cells, and myeloid-
derived suppressor cells. These cells support MM cells 
by producing a wide variety of cytokines, antiapoptotic 
and growth factors, for example, macrophage inflamma-
tory protein-1α (MIP-1α), tumor growth factor β (TGFβ), 
B-cell activation factor (BAFF), A proliferation-inducing 
ligand (APRIL), and most importantly interleukin-6 (IL-
6) [2] (Fig.  1). Important signaling pathways that are 
activated include STAT3, NF-κB, ERK1/2, AKT/PI3K, 
and play an important role in disease progression. New 
therapies directly target the growth and survival of MM 
cells which are necessary strategies in high-risk relapsed 
and refractory (RR) MMs [4]. B cell maturation antigen 
(BCMA) is the target of the choice antigen used in anti-
MM immunotherapy. BCMA is a non–tyrosine kinase 
receptor surface glycoprotein that is widely expressed on 
malignant plasma cells and most MM cell lines as well 
[5]. BCMA by its ligand, APRIL, increases survival and 
long-lived plasma cells that contribute to MM develop-
ment. It is closely related to the BAFF receptor (BAFF-R), 

that highly expresses on MM cells. The NF-κB pathway 
is mainly activated by binding APRIL or BAFF to BCMA 
and to protecting MM cells by activating anti-apop-
totic proteins like; BCL-XL, BCL-2, MCL-1 [6–8]. TNF 
receptor activates BAFF on transcription, proliferation, 
survival, and differentiation of MM cells by activating 
NF-κB factor [9]. Chimeric antigen receptor (CAR) T or 
NK cells, GSK2857916 an antibody–drug conjugate, and 
bispecific antibodies are considered as several specific 
treatments for MM [10]. Through genetic engineering, 
T cells can detect cells that express BCMA. BCMA-
specific CARs transfected T-cells, called anti-BCMA-
CAR-T-cells demonstrated specific MM cells killing 
activity in vitro [11, 12]. Julia Bluhm et. al. [13] reported 
that BCMA can be an interesting target for CAR T-cells 
therapy approaches. Conventional treatments with 
monoclonal antibodies have lower side effects and costs 
than CAR-T cell but depend on the high concentration 
of BCMA expression in cells. Antibody–drug conjugates 
(ADCs) are strategies to increase mAb therapy. In this 

Fig. 1  Expression of B cell maturation antigen on plasma cells. The stages of B cell differentiation take place in the bone marrow and Lymphnode. 
When memory cells differentiate into plasma cells, BCMA expression begins and is expressed on short-lived proliferating plasmablasts, and 
long-lived PCs, mature B-cells and malignant B cells which are much more pronounced in malignant cells. An example is multiple myeloma 
cells. BCMA isn’t critical for normal B-cell homeostasis but is required for the survival of long-lived PCs. induction of BCMA expression occurs 
with a BAFF-R decreasing during the differentiation of PCs. APRIL and BAFF are two ligands for BCMA, And BCMA has a closely related to calcium 
modulator and cyclophilin ligand interactor (TACI). In addition to binding to BCMA, these ligands bind to their receptors at the cell surface, 
triggering signaling pathways which promote the growth and survival of PCs and activate anti-apoptotic pathways. APRIL binds to sulfated side 
chains of heparin sulfate proteoglycan (HSPG) its binding site to bind to TACI and BCMA. APRIL/BCMA signaling pathway Increases the activity of 
malignant plasma cells. BCMA is converted to soluble BCMA (sBCMA) by the enzyme protease γ-secretase, sBCMA can interfere with signaling and 
the level of sBCMA is a marker for b cell involvement in some disease
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method, cytotoxic payload is directed to tumor cells that 
escaped from the immune system and bispecific mAbs 
bind T or NK cells to tumor cells, activating effective cells 
and lysing malignant cells [14].

Finding the Tumor-Specific Antigens as a unique 
marker for targeting tumor cells other than normal 
ones is the challenging part of any immunotherapy 
approaches, as in CAR-T cell therapy manipulating tech-
nics. There are some known relatively specific markers 
for tumoral plasma cells to distinguish from normal ones, 
such as CD38, CD138, G-protein Coupled Receptor 5D 
(GPRC5D) [15, 16] SLAMF7 (CD319), MUC1 (engi-
neered CAR T Cells Targeting the Cancer-Associated 
Tn-Glycoform of the Membrane Mucin MUC1 Control 
Adenocarcinoma), as well as other non-specific mark-
ers such as CD44v6, CD56, NKG2, Lewis-X, but a higher 
and relatively specific expression of the BCMA on these 
cells, currently makes it an optimal but not ideal target 
in CAR-T cell therapy methods. During selecting process 
of the optimal immunologic target(s), Specific expression 
patern of the target is as important as the antigen shed-
ding status of it, because soluble antigens participating 
in the mAbs neutralization or inactivates CAR T-cells, 
about this feature as the shedding process of BCMA is 
related to γ-secretase membrane enzyme function, con-
trolling the shedding status is so easier than the other 
targeting options, theoretically. However, regarding the 
molecule expression pattern on the normal plasma cells, 
studying the full functional mechanisms, and local and/
or systemic side effects of the targeting solely or in com-
bination with other antigens, is the background aimed in 
this review, at the same time currently introduced mAb 
based approaches reviewed because of the vicinity of the 
both mAb and CAR T-cell technologies.

BCMA structure and function
BCMA is a cell membrane type III non-tyrosine kinase 
receptor glycoprotein [17–19]. This protein does not 
have a signal peptide, its extracellular residues are rich 
in cysteine [20, 21]. There are six motifs in the N ter-
minal section of this receptor, which indicates that the 
BCMA is a member of the tumor necrosis factor recep-
tor superfamily 17 (TNFRSF17)/CD269 [2]. TNF and 
TNF receptors family members are important in enhanc-
ing immune functions [22]. It is specifically expressed on 
plasma blasts and plasma cells (PCs) [23]. It is detected 
in the interfollicular region of the germinal centers but 
no evidence of expression in the follicular mantle zone 
has been reported [24]. Lack of BCMA doesn’t affect the 
number of normal B cells but disrupts long-lived plasma 
cells [24, 25]. Firstly, Tsapis et. al. described the BCMA 
gene through molecular analysis of t(4;16)(q26; p13)/
IL2/TNFRSF17 in human intestinal T-cell lymphoma 

[19]. BCMA was predicted to be an integral transmem-
brane protein with 24 hydrophobic central amino acids 
region in an α-helix structure [26], containing three exon 
regions separated by two introns that encode 185 amino 
acids peptide [18].

As mentioned, BCMA is a glycoprotein whose gly-
cosylation is a common practice for modulating mem-
brane proteins [27] and this process keeps the protein 
on the cell membrane [28]. The N-glycan site in BCMA 
is probably in the asparagine (N) residue at 42nd amino 
acid (N42). The N-glycosylation is important because of 
its role in regulating plasma cell function through ligand 
binding control. In addition, BCMA glycosylation, espe-
cially its sialylation, promotes cell survival [15, 25].

Recently, two members of the TNF superfamily pro-
teins called B-cell activating factor (BAFF) and A pro-
liferation-inducing ligand (APRIL), that BCMA closely 
interacts with, have been identified and their role in 
the maturation and differentiation of B cells have been 
described [16].

BAFF (BLyS, TALL-1), a member of the tumor necro-
sis factors superfamily, is known to stimulate B cells 
[29]. This molecule, which is mainly expressed by mac-
rophages and dendritic cells, is the survival signal for 
peripheral B cells [30, 31]. In some B cell malignancies, 
such as myeloma and autoimmune diseases, increase 
BAFF expression has been shown [32, 33]. During the 
study of systemic lupus erythematosus (SLE), it was 
found that overexpression of transgenic BAFF caused 
autoimmune disease [33, 34] so that it may play a role 
in autoimmune disorders [35, 36]. In many B-cell neo-
plasms, BAFF signaling becomes inefficient and causes 
tumor cells to grow and survive by creating an autocrine 
ring [33, 37]. BAFF also promotes tumor cells by activat-
ing NF-κB (nuclear factor kappa-  B), BCL2, BCLX(L) 
upregulation, and downregulation of BAX [38].

BAFF binds to three specific receptors on B cells: BAFF 
receptor, TACI (transmembrane activator calcium mod-
ulator and cyclophilin ligand interactor), and BCMA. It 
binds to BCMA in normal cells to increase cell survival, 
proliferation, differentiation, and antibody production 
[30, 39]. Serum levels increasing of BAFF shown in mul-
tiple myeloma patients [8, 40], but the BAFF receptor is 
difficult to detect on malignant plasma cells [41] and so 
suggesting that it has less effect on the survival of multi-
ple myeloma cells [42].

APRIL was initially detected on tumor cells; it is 
secreted by myeloid cells and penetrates the bone mar-
row during abnormal myelopoiesis in multiple myeloma. 
It was later shown to be able to secrete immunoglobulins 
and class switching involved in B cells. Multiple myeloma 
cell line is dependent on interleukin-6. In the absence 
of this interleukin, APRIL protects cells [8, 29, 43] and 
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saves them from dexamethasone-induced apoptosis [8]. 
APRIL binds only to BCMA and TACI [16], Binding to 
BCMA suppresses the immune system in the bone mar-
row and increases the growth of multiple myeloma cells. 
this physiological relationship indicates that BCMA 
has greater affinity and interaction with APRIL [44, 45]. 
APRIL promotes the survival of malignant plasma cells 
through heparan sulfate proteoglycans, which its roles 
in regulating cell adhesion, cytoskeletal re-organization, 
migration, and growth factor signaling have been shown 
[46–50]. This indicates that APRIL has a more specific 
role than BAFF [46]. Both BAFF and APRIL are involved 
in tumor cells by transmitting antitumor signals [51]. In 
patients with multiple myeloma, they increase compared 
to normal people[52]. BAFF and APRIL stimulate multi-
ple myeloma cells through anti-apoptotic molecules such 
as BCL2, MCL1 [6, 29, 43].

TACI expressing on mature B cells upregulates on 
activated B cells and plasma cells [53]. In humans, TACI 
(TNFRSF13B) gene mutations in humans are shown in 
about 10% of patients with Common Variable Immuno-
Deficiency (CVID) disorder, which manifests with 
impaired antibody production and are more susceptible 
to Streptococcus pneumoniae and Hemophilus influen-
zae infections, as well as autoimmune diseases [54, 55].

BCMA expression
When BCMA was firstly cloned from human T cell lym-
phoma, noticed that its expression was associated with 
B cell maturation and the highest level observed in the 
plasma cell line [19]. BCMA protein is located in the 
Golgi apparatus, which its expression is relatively lim-
ited to a specific cell lineage, B cells, so it a hypothesis 
that as the Golgi apparatus is larger and more abundant 
in plasma cells, it may perform as an antibody secretion 
facilitator [28].

BCMA expression has been tracked on differentiated 
PCs a well as plasma blasts. This protein is produced 
in memory B cells differentiating to plasma cells and is 
present in all PCs but not in CD34 + HSCs, naive B cells, 
and other normal tissue cells [16, 25, 56–58]. Blimp-1(B-
lymphocyte-induced maturation protein 1), a gene con-
trolling the proliferation of PCs, has a positive inducer of 
BCMA expression [59].

Induction of BCMA expression occurs with a BAFF-
R decreasing during the differentiation of PCs [25, 60]. 
BCMA is present on the surface of mature and malig-
nant B lymphocytes too [19, 40, 61, 62], so its expression 
is not limited to normal cells and tissues [15]. BCMA 
membrane expression has been detected by anti-BCMA 
antibodies in CD138 + multiple myeloma cells [21], 
more commonly in malignant cells than in normal PCs 
and other bone marrow cells [63]. This observation is 

confirmed by multiple gene expression profiling and 
immunohistochemistry [21]. In a study by Friedman 
et al. MM cells and even primary MM cells show a strong 
expression of BCMA [64]. BCMA was detected using 
Chromatin immunoprecipitation, which is required for 
the analysis of IRF4, a transcription factor for MM [65], 
also its expression is preserved in MM patients after 
treatment [66]. Regulated and widespread expression 
of BCMA on MM cells stimulates cell growth and sup-
presses the immune system in the bone marrow [5]. In 
the Kinner et. al. study, primary bone marrow samples 
were taken from eighth patients with MM to analyze 
the expression of BCMA on the surface of MM cells and 
myeloma progenitor cells (MPC), MPCs do not have the 
plasma cell phenotype and are not completely differenti-
ated [5], they have a weaker response in patients to treat-
ments such as stem cell transplantation and proteasome 
inhibiting [67]. In several hematological tissues includ-
ing bone marrow, tonsils and spleen, lymphnodes, white 
blood cells, BCMA isoforms were detected by qPCR [40], 
its expression in various blood cells, and Hodgkin lym-
phoma was assessed by flow cytometry [68], as well as in 
glioblastoma [69], chronic lymphocytic leukemia [70, 71], 
and Raji-Burkitt’s Lymphoma and primary lymphoma 
[61, 72]. No expression could be detected in endothelial 
cells, keratinocytes, fat cells within tissues [73, 74] and 
in other blood cells including neutrophils, macrophages, 
and T cells [75, 76]. In addition, there is another type of 
PCs called plasmacytoid dendritic cells (pDCs) that is 
involved in the survival and drug resistance of MM cells 
[77]. These cells have significantly lower BCMA expres-
sion than PCs [78], pDCs located in the bone marrow 
near MM cells to enhance their growth and survival [77], 
so the role of BCMA in pDCs causes further enhance-
ment of the viability and drug resistance of MM cells [77].

A study in the UK on 70 MM patients showed that 
BCMA expression was maintained through disease 
recurrence, extramedullary spread, and residual disease 
[66]. Tai et. al. showed that BCMA is expressed on the 
MM cells and is limited to plasma cells. The density of 
BCMA on the cell surface was measured using MFI 
(Mean Fluorescent Index) by flow cytometric analysis 
[63]. An enzyme called γ-secretase, a multi-subunit pro-
tease cleaves BCMA to release its soluble form called 
sBCMA [79]. The level of sBCMA is a marker for B cell 
involvement in known autoimmune diseases [80] and is 
more closely related to the patient’s clinical condition 
[81]. In Systemic Lupus Erythematosus (SLE), the serum 
level of sBCMA is strongly associated with disease activ-
ity [82]. In a study of 209 patients on new case multiple 
myeloma, the level of sBCMA was significantly lower 
than in the control group and its significance in mono-
clonal gammopathy was not determined [63]. Also, in 
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patients with indolent MM, the amount of sBCMA is less 
than active MM. In addition, the amount of this protein 
in MM disease is associated with clinical response, over-
all survival and is inversely related to the production of 
polyclonal antibodies in these patients [63]. In the studies 
of Germezi et. al. who introduced sBCMA as a biomarker 
that can control and predict the results of MM patients 
and by examining 243 patients, the level of this protein 
measured by ELISA method in smoldering MM and 
active MM was high, in addition, sBCMA levels are cor-
related with plasma cell ratio at biopsy, patient’s clinical 
status, and M protein [25, 83, 84]. As a result, the study 
of BCMA expression could serve as a target for access to 
antitumor effects in MM patients [63].

Role of BCMA in the signaling pathways
BCMA mainly plays an important role in B cells for their 
proliferation, survival and also differentiates them into 
plasma cells [17, 25]. Humoral immunity status is affected 
by BCMA probably via increasing the survival of normal 
plasma blasts and PCs [39, 85]. BCMA does not appear 
to be critical for overall B cell homeostasis as it is not 
presented in naïve and memory B cells, but for the sur-
vival of Long-lived PCs in the BM is necessary [25, 60]. 
BCMA-related factor, BAFF-R, acts as the main receptor 
for B cell survival. Another protein TACI plays a nega-
tive but important role in regulating B cell homeostasis 
and autoimmunity. Continuous expression of BCMA in 
multiple myeloma prototypes indicates that it is a recep-
tor for regulating prosurvival pathways [68].

APRIL and BAFF, which are ligands of the TNF fam-
ily, are associated with three members of the TNFR, 
including TACI (CD267, TNFRSF13B) [86], BAFFR 
(BR3, CD268, TNFRSF17) [87, 88] and BCMA (CD269, 
TNFRSF13C) [19]. The structure of glycosaminoglycans, 
such as those found in Sindcan1 (DC138), is the inde-
pendent junction of APRIL and TACI [50, 89]. Figure 1 
has summarized the process.

There is a BAFF signal that is required for cell survival 
during differentiation, besides the BCR signal, that its 
downregulation results in the loss of more than 90% of 
mature B cells[90, 91]. As mentioned, TACI acts as a neg-
ative regulator in the maturation process of B cells, yet 
BCMA has no role in this stage whereas its role is in the 
later stages of differentiation [60, 92–94]. In a study of 
293 transfected cells, it was observed that increasing the 
BCMA expression activates the NF-κB signaling pathway, 
relating to TRAF2, TRAF5, TRAF6, IKK1, and IKK2 ele-
ments [60, 95] (Fig. 2).

BAFF‑R signaling pathways
The APRIL-BAFF bonding role dominates in the next 
step of B-cell differentiation [96]. BAFF and its receptor 

play an important role in the development and survival of 
B cells [97]. Although BAFF does not induce cell prolif-
eration alone, cells prepared with BAFF invitro transcribe 
the proteins required by the cell cycle, and BCR-induced 
proliferation occurs more rapidly. Cell size and protein 
content of the cells is positively controlled by BAFF, as 
well as forcing cells to glycolytic metabolism [98]. Ele-
vated BAFF levels play a role in autoimmune diseases, 
so it is important to understand the supportive signaling 
pathways in B cell survival [97]. The NF-κB is the most 
important pathway that activating by two: the classical 
(Canonical) and the alternative (noncanonical) pathways, 
with transcription factors including NF-κB1(P50 and its 
precursor P105), NF-κB2(P52 and its precursor P100), 
RelA (P65) RelB, and c-Rel [99] (Fig.  2). The alternative 
pathway is the major pathway for B cell survival through 
BAFF-R, characterized by the presence of IKK1 and P100 
phosphorylation cleaving to P52 [100]. The processed 
p52 heterodimerize with RelB, migrates to the nucleus, 
and induces transcription of anti-apoptotic genes. IKK1 
is also phosphorylated by NIK [101]. In unstimulated 
cells, TRAF3, TRAF2, and cIAPs1/2 factors are linked 
together, NIK is continuously destroyed by the protea-
some, These three sets(TRAF3, TRAF2, and cIAPs1/2) 
are a factor for NIK ubiquitination and targeting it for 
degradation[102, 103]. After cell stimulation, TRAF3 is 
exposed to BAFF-R, which causes TRAF3 self-degrada-
tion by cIAPs 1/2 and TRAF2, This action leads to the 
stabilization of NIK and eventually causes cleavage of 
P100 [103, 104]. The NF-κB alternative pathway is acti-
vated by the CD40 receptor too, a member of the TNF 
family (Fig. 2).

BCR signaling
Signal transduction by the BCR on mature naive recircu-
lating B cells is achieved by the association of Ig-α/Ig-β 
heterodimer. The classic pathway is activated by the for-
mation of P50 and P65 dimers after BAFF-R stimulation 
[105]. Also, the activation of canonical NF-κB signaling 
is induced by the Carma/Bcl10/ Malt1 (CBM) complex. 
In B cells, the PI3K signaling pathway activates PKCβ, 
so phosphorylated CARMA1 increases canonical acti-
vation of NF-κB through the CBM complex as well as 
the phosphorylation of IKK2 by the TAB/TAK complex 
[106]. In addition, IKK1 can contribute to the canonical 
IKK2/Nemo pathway by giving some important survival 
signals [107, 108] and it is also important in B cells for 
GC formation (Fig.  2). Also, the BCR prompts p100 to 
facilitate BAFF-R signaling. The expression of p100 acts 
as an inhibitor of p50 and p65 [108]. Therefore, canonical 
and non-canonical NF-κB pathways have special proper-
ties that ultimately determine the tempo and specificity 
of gene expression [109].
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PI3K pathway
Another pathway downstream of BAFF-R is called PI3K, 
which plays an important role in BCR signaling and 

helps B cell survival. Recent studies showed that PI3K 
signaling induction correlates with B cells maturation 
defects improvements [98, 110, 111]. The class IA PI3Ks 

Fig. 2  B-Cell Receptor (BCR), CD19 and CD40/BAFF receptors signaling, relationships and cross talk(s). The NF-κB is the most important pathway 
that activating by two: the classical (Canonical) and the alternative (noncanonical) pathways, with transcription factors including NF-κB1 (P50 and 
its precursor P105), NF-κB2(P52 and its precursor P100), RelA (P65) RelB, and c-Rel. The alternative pathway is the major pathway for B cell survival 
through BAFF-R, characterized by the presence of IKK1 and P100 phosphorylation cleaving to P52. The processed p52 heterodimerize with RelB, 
migrates to the nucleus, and induces transcription of anti-apoptotic genes. IKK1 is also phosphorylated by NIK. In unstimulated cells, TRAF3, 
TRAF2, and cIAPs1/2 factors are linked together, NIK is continuously destroyed by the proteasome, TRAF3, TRAF2, and cIAPs1/2 are factors for NIK 
ubiquitination and targeting it for degradation. After cell stimulation, TRAF3 is exposed to BAFF-R, which causes TRAF3 self-degradation by cIAPs 
1/2 and TRAF2, this action leads to the stabilization of NIK and eventually causes cleavage of P100. The NF-κB alternative pathway is activated by the 
CD40 receptor too, a member of the TNF family. The BCR on mature naive recirculating B cells is achieved by the association of Igα/Igβ heterodimer. 
The classic pathway activated by the formation of P50 and P65 dimers after BAFF-R stimulation. Activation of canonical NF-κB signaling inducing 
through the Carma/Bcl10/ Malt1 (CBM) complex. In B cells, the PI3K signaling pathway activates PKCβ, so phosphorylated CARMA1 increases 
canonical activation of NF-κB through the CBM complex and phosphorylation of IKK2 by the TAB/TAK complex. IKK1 can contribute to the canonical 
IKK2/Nemo pathway, imparting important survival signals and it is also important in B cells for GC formation. recent studies show that the BCR 
induces p100 to facilitate BAFF-R signaling. The expression p100 acts as an inhibitor of p50 and p65. Therefore, canonical and non-canonical 
NF-κB pathways have special properties that ultimately determine the tempo and specificity of gene expression. Akt by disabling FOXO1, Prevents 
transcription of proapoptotic genes. It is observed that in the absence of FOXO1, peripheral B cells accumulate
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comprise of three catalytic isoforms (p110α, β, and δ) 
that form heterodimers with adapter subunits (p85α, 
p55α, p50α, p85β, and p55γ), whose functions are regu-
lating enzymatic activity [112]. p110 can play its role by 
applying p85 with transmembrane adapter CD19 asso-
ciated with cytosolic BCAP in B-cell receptor signaling. 
PtdIns(3,4,5)P3 and PtdIns(3,4)P2 are may be substrates 
for the phosphoinositide 3-phosphatase PTEN, which 
seemed like the main functional antagonist of PI3K [113]. 
Production of PtdIns P3 stimulates cell growth, prolifera-
tion, survival, and differentiation pathways. By Akt phos-
phorylation, BAFF induces PI3K activity [98] (Fig.  2). 
The significance of this induction is that cells in p110δ 
deficient have difficulty responding to BAFF-induced 
survival [114]. In regard to the downstream effector 
pathways, BAFF interaction with Btk, PKCβ, and Akt 
promotes ribosome biogenesis and enhances metabolic 
activity to prime B cells for antigen-induced proliferation 
[115, 116]. Also, BAFF increases the regulation of the 
pro-survival factor Mcl-1 by the Akt-dependent inactiva-
tion of GSK3α/β [117]. Akt by disabling Foxo1 prevents 
transcription of proapoptotic genes. It is observed that 
in the absence of FOXO1, peripheral B cells accumulate 
[118, 119]. PI3K binds to adapter proteins CD19 and 
BCAP and produces PtdIns P3, which in turn employs 
PLCγ2 and Btk. Btk activates PLCγ2, increases DAG pro-
duction, and enhances intracellular Ca2 + release which 
merges to activate PKCβ. PKCβ activation is critical for 
the canonical NF-Κβ pathway.

It is possible that the activation of Mcl-1 expression is 
regulated primarily in a post-translational manner which 
needs PI3K signaling. Also, it should be noted that some 
of the BH3-only family members are inhibited by the 
PI3K family. For instance, Bad is destroyed via phospho-
rylation by Akt, Bim, and Puma and becomes the targets 
of FOXO factors [120, 121].

CD40 receptor
CD40 is one of the main members of the TNF family that 
affects B cell biology [109]. CD40 expression occurs dur-
ing B cell development, in the B cell transition phase, its 
signals support BAFF-R expression and possibly cell sur-
vival or homeostatic proliferation [122, 123]. The pres-
ence of CD40 on mature cells stimulates proliferation, 
in GC, supports B cell survival, differentiation, and iso-
type switching [124]. CD40 is vital for the initiating of T 
cell-dependent B cell activation and therefore plays an 
essential role in humoral immunity response [97, 125]. 
CD40 signaling is mainly activated through canonical 
and noncanonical NF-kB pathways, and other signaling 
pathways such as MAPK, PI3K, and PLCg approximately 
after CD40 engagement [126–128]. Stimulation of CD40 
causes the uptake of TRAF proteins. In this proteins 

family, TRAF2, TRAF3, and TRAF6 can bind directly to 
the cytoplasmic tail of CD40 but are indirectly associated 
with TRAF1 and TRAF5 [129, 130]. TRAF6 activates 
TAK1 resulting in activation of the canonical NF-κB 
signaling pathway [131, 132]. TRAF2 with MEKK1 kinase 
activates Jnk and P38, which is important in response 
to CD40 ligation [128]. TRAF2 and TRAF3 with CD40 
cause NIK accumulation and consequently activate the 
alternative NF-κB pathway [103].

APRIL signaling
APRIL is expressed in a large number of tumors and 
stimulates cell growth [133]. For example, in myeloma 
cells, it activates the MAPK, PI3K⁄AKT, and NF-κB 
pathways, which leads to an up-regulation of Mcl-1 and 
Bcl-2 anti-apoptotic proteins [8]. Also, APRIL can bind 
to heparan sulfate (HS) [49, 50], by its lysine-rich region 
in the N-terminal portion. The APRIL TNF-like free 
region communicates with BCMA and TACI receptors 
[46]. TACI-Fc also binds to HS chains including synde-
can-1 [89]. The role of syndecan-1 in interaction with cel-
lular matrix proteins, chemokines, growth factors, and 
adhesion molecules has been identified [134]. A study 
by Je´roˆme Moreaux et. al. [46] showed that MM cells 
can bind to a considerable quantity of APRIL and solu-
ble TACI via cell surface syndecan-1 which this bind-
ing to syndecan-1 is essential for APRIL myeloma cell 
growth and survival. Overexpression of BCMA stimu-
lates APRIL and activates both NF-κB pathways. In addi-
tion, it increases angiogenesis, metastasis factors, and the 
expression of growth and survival genes [5]. One study 
found that APRIL was associated with the expression of 
VEGF, its receptor, and CD138, as well as with the pro-
gression of MM [135].

Several studies show that BAFF binding to BCMA 
or TACI induces different signaling pathways such as 
NF-κB, P38 mitogen-activated kinase for BCMA [95], 
NF-κB nuclear translocation, and Jun-N-terminal kinases 
(JNKs) phosphorylation for TACI [136]. Also, previous 
studies had shown that continuous expression of BCMA 
in T293 cells, activates pathways including mitogen-acti-
vated protein kinase (MAPK), especially JNK, P38 kinase, 
NF-κB, and Elk-1 without stimulation of BAFF or APRIL 
[95]. Recent findings suggest that in MM, functional 
mutations occur in both canonical and non-canonical 
NF-κB. These mutations cause the activation of a variety 
of molecules such as NFKB1, NFKB2, NIK, CD40, and 
TACI, and inactivation of TRAF2, TRAF3, cIAP1/cIAP2 
as well. Inactivation of TRAF3 represents one of the most 
common mutations in MM [137, 138] which leads to 
irregularity and amplification of both NF-κB pathways 
through the continuous presence of NIK. In some cases, 



Page 8 of 17Nobari et al. Journal of Translational Medicine           (2022) 20:82 

NIK expression is necessary for the proliferation and 
spread of MM [139].

Therapy
MM is the second most common hematopoietic malig-
nancy in which malignant neoplasms of plasma cells 
accumulate in the bone marrow [140, 141]. This malig-
nancy is caused by changes in memory cells (CD19 + , 
CD 27 + , CD 38 + , CD45 − , and CD138 −) [1], causing 
the development of osteolytic bone lesions and exces-
sive production of monoclonal immunoglobulins in the 
blood and urine [140, 142]. MM arises from a precur-
sor malignant disorder called monoclonal gammopathy 
of unknown significance (MGUS) and then progresses 
to smoldering MM (SMM), then active MM, which 
can eventually lead to PC leukemia [143, 144]. BCMA 
expression gradually increases from the MGUS stage to 
more advanced stages of multiple myeloma, including 
SMM and active MM [21]. In recent decades, various 
therapies have been used as mAbs such as proteasome 
inhibitors (PI) (e.g., Bortezomib), immunomodulatory 
drugs (IMiDs), (e.g., lenalidomide, daratumumab and 
elotuzumab) [145]. The use of PI and IMiDs combina-
tions improves the response, in addition to increas-
ing the overall survival in recurrent MM patients. The 
mAbs, which are the immunotherapeutic approaches, 
also improves the outcome of the disease, but since drug-
resistant clones are always emerging, the disease remains 
incurable for most patients, so continuous researches for 
new treatments are necessary [146–148]. These methods 
resulted in a better response and prolonged survival, that 
have been summarized in Table 1.

Targeting BCMA with mAb in MM
The main function of the mAbs is to block growth 
factors signal transduction, cause growth arrest and 
apoptosis, or stimulation of deletion of mAb-coated 
target cells by activation of the host immune system 
by various Fcγ receptors(FcγR) expressed on the effec-
tor cells, calling Antibody-dependent Cell Cytotoxic-
ity (ADCC) strategies [17]. Treatment with mAbs has 
a longer half-life than other anti-MM drugs in ongo-
ing and completed clinical trials combining with lena-
lidomide/len and dexamethasone/dex with elotuzumab 
(elo) targeting CS1 (SLAMF7) [149], furthermore, 
daratuzumab (Dara) and SAR650984 (SAR) targeting 
CD38 [147, 150]. It should be noted that Dara and SAR 
exhibit clinical activity as monotherapy but, CS1 and 
CD38 are expressed in other hematopoietic cells that 
disrupt mAb utilization. IgG therapy helps to improve 
mAb function and is also used by antibody–drug conju-
gates (ADCs) to trap malfunctioning immune cells, and 
because MM patients have a recurrent immune system 

disorder, ADCs are needed to target specific antigens, 
directly and indirectly, to eliminate MM cells [17]. 
ADCs are one of the fastest-acting anticancer drugs 
whose function is to detect specific antigens on tumor 
cells, attach them, and then absorb a cytotoxic chemi-
cal (payload) along with their cargo to kill tumor cells 
[2]. Toxic consignments associated with ADCs include 
monomethyl auristatin F (MMAF), tubulin polymeri-
zation inhibitor, pyrrolobenzodiazepine (PBD), or the 
RNA polymerase II inhibitor, α-amanitin, applying a 
cleavable or non-cleavable linker [10, 78, 151]. Recently, 
an ADC was developed to target BCMA to kill MM 
cells with fewer side effects [78].

J6M0‑mcMMAF (GSK2857916)
J6M0 is a humanized anti-BCMA that competes with 
APRIL and BAFF for BCMA binding [17]. J6M0 is a mAb 
and IgG1 whose afucosylated state can bind to all MM 
cell lines due to its tendency to BCMA [78]. J6M0 has 
a stronger binding capacity to CD138 + cells than pDC 
cells, indicating an association between BCMA mRNA 
and its protein expression on cells. Because J6M0 with 
normal FC or afucosylation cannot directly lead to cell 
death, it is converted to J6M0 ADCs with the anticancer 
drug auristatin. J6M0 was linked to either valine-citrul-
line (vc; protease cleavable linker)-monomethyl auristatin 
E (MMAE) or maleimidocaproyl (mc; non-cleavable)-
monomethyl auristatin F (MMAF) which uses these as 
cargo that has higher stability and anti-tumor function 
[2, 78, 152]. J6M0-mcMMAF (GSK2857916) binds more 
strongly to MM target cells and has no adverse nega-
tive impacts on BCMA-negative cells (NK, monocytes, 
PBMCs, or BMSCs) [17]. Afucosylated GSK2857916 con-
tinuously enhances antibody-dependent cellular cytotox-
icity[78]. This mAb stops cell proliferation by blocking 
the cell cycle of G2/M and induces apoptosis by activat-
ing caspases 7, 3, and 8; moreover triggers ADCC and 
antibody-dependent cellular-mediated phagocytosis 
against patient MM cells [2]. This mAb was the first ADC 
therapy with three distinct MOAs (apoptosis, ADCC, 
ADCP) to eradicate MM cells in the BM microenviron-
ment more effectively [17]. Recently Oca et. al. reported 
the maximum accumulation of GSK2857916 on tumor 
site in immune-competent mice injected with EL4 lym-
phoma tumors expressing human BCMA (El4-hBCMA) 
cells [153]. During Phase 1 dose-escalation and expansion 
handled by Trudel et. al. (NCT02064387) showed that at 
maximum dose of 3.4 mg/kg once every three weeks, in 
60% of the patient partial response or better achieved 
[154], but based on Oca et. al. work, combination with 
other immune-check point therapies shows much better 
result that monotherapy once [153].
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Chimeric antigen receptor T‑cells
More recently, genetic therapy has been used in cell ther-
apy approaches to manipulate T cell receptor genes to 
bind and kill tumor antigens [155]. Scientists have been 
introduced genetic engineering methods to produce chi-
meric antigen receptors (CARs) [156]. CARs are hybrid 
receptors for the antigen that is part of the antibody and 
part of the TCR and has an extracellular antigen-bind-
ing portion and an intracellular signaling domain [157]. 
The single-chain variable fragment (scFv) is derived 
from a tumor-specific antibody [158]. In mAb, the part 
that detects the antigen is integrated with CAR, which 
accompanies CD3ζ and a co-stimulatory molecule (such 
as intracellular activating domains of CD28 or 4-1BB) 
[159]. To achieve the final genetic construct for the CAR, 
a hinge and a transmembrane domain (TM), commonly 

from CD8 + cells or immunoglobulin bridge of the extra-
cellular scFv and intracellular CD3ζ immunoreceptor 
tyrosine-based activation motif (ITAM) domains can be 
added to constructs [160] (Fig. 3).

The first generation of in  vitro CARs possessed an 
intracellular signaling domain and consist only of CD3ζ 
to protect T-cell activation and target killing but, these 
CAR T cells had very limited persistence and antitumor 
efficacy in  vivo. As a result, second-generation CARs 
were replaced to improve T-cell performance. TCR is 
for the detection of foreign peptide antigens that con-
tain 8–12 amino acids [161], therefore, it may react with 
peptides that have similar sequences. Due to this, T 
cells need at least two signals to be fully activated. The 
first signal is provided by TCR and the second signal, or 

Table 1  Immunotherapy approaches in anti-myeloma treatments

Antibody-dependent cellular toxicity (ADCC), complement-dependent toxicity (CDC), antibody-dependent cellular phagocytosis (ADCP), Signaling lymphocytic 
molecule F7 (SLAMF7), B-Cell Maturation Antigen (BCMA), Fc Receptor H5 (FcH5), G-protein Receptor Coupled 5D (GPRC5D)

Technology Targeted molecule Introduced drug Mechanism of action References

Mono-clonal antibody-based 
technologies

Anti-CD38 Daratumumab ADCC, ADCP, CDC [62]

Isatoximab ADCC, ADCP, CDC, Pro-apoptosis [62]

Anti-SLAMF7 Elotuzumab ADCC via NK cell activation 
through EAT-2 and CD16

[93]

Antibody–
drug conju-
gates (ADCs)

Anti-BCMA Belantamab mafodotin (GSK-
2857916)

Humanized anti-BCMA IgG1 
MoA conjugated to monomethyl 
auristatin F (MMAF)

[36, 37]

Anti-CD138 Indatuximab ravtansine Targeting CD138, linked with 
maytansinoid cytotoxic agent

[38]

Anti-CD56 Lorvotuzumab-mertansine Targeting CD56, linked to a 
microtubule inhibitor (MD1)

[40]

Anti-CD74 Milatuzumab
doxorubicin

Targeting the CD74 linked to 
doxorubicin

[8]

Bispecific 
monoclonal 
antibodies (Bs 
mAbs)

CD19/CD3 Blinatumomab Cytotoxicity induction by accu-
mulating T-cells to CD19 + cells

[106]

BCMA/CD3 AMG-420 Cytotoxicity induction by accu-
mulating T-cells to BCMA + cells

[104]

BCMA/CD3 AMG-701 Cytotoxicity induction by accu-
mulating T-cells to BCMA + cells 
with extended serum half-life in 
compared with AMG-420

[108]

BCMA/CD3 teclistamab (JNJ-64007957) Direct Cytotoxicity induction 
by accumulating T-cells to 
BCMA + cells

[110]

CD38/CD3 GBR-1342 Direct Cytotoxicity induction 
by accumulating T-cells to 
CD38 + cells

[98]

CD38/CD3 AMG-424 Direct Cytotoxicity induction 
by accumulating T-cells to 
CD38 + cells

[104]

FcRH5-CD3 Cevostamab-BFCR4350A Direct Cytotoxicity induction by 
accumulating T-cells to FcRH5 
expressing cells

[112]

GPRC5D-CD3 talquetamab-JNJ-64407564 Direct Cytotoxicity induction by 
accumulating T-cells to GPRC5D 
presenting cells

[113]
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co-stimulation, is mediated through ligation of CD28 
by CD80 or CD86, which are normally expressed on 
antigen-presenting cells (APC). CD80 and CD86 pro-
mote both signals and fully support T-cell activation, 
target killing, and long-term persistence. Therefore, 
T-cell activation fails when a T cell is exposed to a nor-
mal peptide on a normal cell [161, 162]. The scientists 
replaced the two-signal model of T-cell activation via 
modifying CARs to insert a CD28 costimulatory domain 
in tandem with CD3ζ ITAM domains [163, 164]. These 
second-generation CARs, their most important function, 
cause T-cell persistence and the elimination of effective 
tumors in  vivo [165–167]. Second-generation CAR T 
cells have been proved to mediate strong anti-leukemia 

responses in clinical trials. Also, there is a third-genera-
tion CAR that includes CD28 and OX40 co-stimulation 
which stimulates the superior survival of CCR7 (−) 
T cells [164]. This CAR has less stimulation than IL-10 
secretion compared to a second-generation CAR [168]. 
Fourth-generation CAR T cells, also commonly referred 
to as "TRUCK" T cells are produced to incorporate a 
third stimulatory signal [169]. They contain a nuclear fac-
tor of activated T cells (NFAT) domain, which induces 
a large number of cytokines (e.g., IL-12). This genera-
tion is equipped with immune-stimulating cytokines to 
improve the persistence of CAR T cells in a tumor envi-
ronment that suppresses the immune system [170]. In 
addition, transgenic cytokine expression such as IL-12 

Fig. 3  The types of CAR T cell. CAR is a hybrid receptor for antigen that is part of the antibody and part of the TCR and has two domains: 
extracellular antigen binding portion and an intracellular signaling domain. The extracellular domain includes the single-chain variable fragment 
(scFv), hinge with transmembrane domain (TM), and intracellular T cell activation domain of CD3ζ included three immunoreceptor tyrosine-based 
activation motifs (ITAMs). In the first-generation CAR T cell, we see a single structure of CD3ζ that acts as a signal transmitter from the endogenous 
T cell receptor that does not have enough power to activate the T cell and kill the target cell. CARs without costimulatory have no special function, 
so in the second generation costimulatory such as CD28 or 4-1BB were added to the cytoplasmic domain. This improves the proliferation and 
response process and increases the life of the CART cells. In the third generation, use a large number of signaling domains to produce potent 
cytokines with greater lethality. They equipped the fourth generation with nuclear factor activated T(NFAT) cells that stimulate cytokines such as 
interleukin 12. The fifth generation CARS contains IL-2Rβ, which activates the Janus kinases (JAKs) and signal transducer and transcription activator 
(STAT) signaling pathways. Function of costimulatory: CD28-mediated co-stimulation is important for regulating lymphocyte proliferation and 
survival. OX40 stimulates the production of interleukin 2. 4-1BB (CD137) plays an important role in maintaining T cell response signals and plays a 
major role in T cell survival and memory of CD8 + T cells
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can stimulate bystander T cells to kill antigen-negative 
cancer cells [169]. The fifth generation of CARs which 
have a fragment of the IL-2β (IL-2Rβ) receptor instead of 
the OX-40 / CD27 is being tested. Part IL-2Rβ induces 
the producing of Janus kinases (JAKs) and signal trans-
ducer and transcription activator (STAT) -3/5 [171, 
172]. The problem with this new method is that, first, to 
detect tumor antigen by T cells, it is necessary to supply 
that antigen by antigen-presenting cells (APC), which is 
not possible in tumor cells. Secondly, T cells only detect 
tumor peptide antigens and are unable to detect antigens 
of polysaccharides, lipids, etc. that are present on the 
surface of tumor cells. Of the advantages of this method 
are, firstly, it is not necessary to present antigen by HLA 
molecules on the surface of APCs to detect tumor anti-
gen. Second, since the binding site for CAR antigens is 
derived from antibodies, tumor cells antigens that reduce 
their HLA molecules to escape the immune system on 
their surface are also identified by CAR T-Cells [173].

Treatment of multiple myeloma with CAR‑T cells
The BCMA antigen is common and variable in all MM, 
and its expression is 25 to 100% in malignant plasma 
cells. A set of completely human BCMA-binding scFVs 
has been introduced by Bu et  al. and has shown that 
this BCMA-specific antigen is commonly recurrent and 
resistant to treatment in phase I patients with multiple 
myeloma [65]. These chimeric receptors are transduced 
into the autologous T cell taken from the patient, by a 
retroviral or lentiviral vector or, more recently, by the 
Crisper/CAS9 method (for targeted placement within 
the genome and to prevent T cell tumor). And thereaf-
ter, new chimeric receptors are expressed on the cell 
surface. These T cells that express the chimeric recep-
tors are called CAR T-Cells [156]. CAR T cells have 
high affinity and specificity to tumor cells as well as high 
cytotoxicity potential and proliferation [174]. In mul-
tiple myeloma, BCMA is the target antigen of choice 
commonly used in clinical trials of CAR-T cells [175, 
176]. CAR T cells are also effective in treating acute and 
chronic leukemia and B lymphoma cells, where CD19 
antigen is widely expressed. In MM, it has recently been 
reported that targeting activated integrin β7 can selec-
tively eradicate MM cells including CD19 + clonotypic 
B cells [176–178]. Recently, a cancer-specific glyco-
epitope called the Muc1 protein (Tn-Muc1) was shown 
as a suitable target for CAR T cells against a variety of 
cancers [179]. Therefore, to find mAbs that bind to MM 
cells, an antibody called MMG49 was identified, which 
binds to the integrin β7 protein, which, of course, binds 
only to the active integrin β7, thus MMG49 can play as a 
therapeutic target for removing MM clones [180]. Also, 
anti-MM CAR T cell therapy targeting BCMA has been 

tested in phase I clinical trials, and promising results 
were recently obtained from NCI’s group [179, 181]. In 
a clinical trial conducted by Ji Xu et al. in 2019, targeting 
CAR against BCMA antigen in 17 patients with multiple 
myeloma (RRMM) after lymphatic chemotherapy has 
shown promising results and the overall response rate 
was 88.2% [182]. Besides relatively higher efficiency of 
the method, some limitation of CAR-T cell therapy needs 
to be overcome, basically therapeutic resistance grossly 
as result of tumor heterogeneity and antigen escape, and 
toxicity mostly because of cytokine releasing syndrome 
(CRS), and neurotoxicity mediated by pro-inflammatory 
cytokines following manipulated T-cells activation are 
most common disadvantages of the methods. Currently 
more than 100 clinical trials submitted for multiple mye-
loma targeting, that about 9 studies ended or nearly end-
ing by results.

Targeting membrane molecules other than BCMA
During conventional diagnosing protocols immu-
nophenotyping studies of CD38/CD138 expression on 
suspected cells is the one of the key features for differ-
entiating MM form other plasma cells dyscrasies or 
proliferations. So, it seems rational to search anti-CD38 
and anti-CD138 as relatively specific tools targeting 
MM cells. CD38 expression level is constant during the 
disease stages but CD138 expression elevates during 
refractory and progressive stages [30–33]. Thus, these 
antigens seem are specific for MM but they express on 
other tissues, for instance CD138 express on normal tis-
sues of hepatocytes, gastrointestinal goblet and columnar 
cells and squamous epithelium, at the same time, CD38 
expresses on hematopoietic cells, Purkinje cells and lung 
smooth muscle cells. SLAM family member protein 7 
(SLAMF7) expressing on normal T-cells, B-cells and NK-
cells that targeting with mAb like elotuzumab, showed 
lysing of these SLAMF7 + normal cells too. G-protein 
coupled receptor 5D (GPRCP5D) expressing on the 
myeloma cells at high levels, so it can be regarded as a 
potent target in anti-myeloma immunotherapy strategies, 
but its expression on the normal plasma cells or mature 
B-cells in lower levels, as well as hair follicles question-
able its specificity. Mucin 1 (MUC1) expressing aber-
rantly on MM cells, its intracellular domain interacts 
with β-catenin and serves as substrate for glycogen syn-
thesis kinase 3β (GSK3β) that blocks β-catenin degrada-
tion, and so increasing the cells growth and proliferation 
by WNT/β-catenin. The MUC1 expression can be seen in 
solid tumors such as breast and colon carcinoma as well 
as numerous normal tissues such as, respiratory system, 
gastro-intestinal tract, kidney and urinary tract, female 
reproductive tissue and etc. that make it concerning its 
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usefulness as specific multiple myeloma marker, despite 
its higher expression levels on MM cells.

Conclusion
During choosing the most appropriate surface markers 
as specific tumor antigen, there are some key proper-
ties that should be taken account such as specificity to 
tumor cells not normal ones, higher and constant expres-
sion of the antigen and the shedding status of the antigen 
should be regarded. Among the variety of surface anti-
gens that prone to consider as specific markers BCMA 
seem to more potent to be targeted but more shedding 
and growing BCMA-negatvie MM cells, that can cause 
escaping the tumor cells from immunotherapy strategies, 
should be considered and looking after a method that 
maximizing the targeting effectiveness from the begin-
ning of immune cell therapy technologies is essential. So 
the maximum effectiveness of the CAR T-cell and other 
immunotherapeutic approaches is existing and express-
ing Cancer-Specific Antigen of tumor cell that differen-
tiates these cells from normal ones in the same tissue, 
but in some cancers, there is no known cancer-specific 
antigens have been defined so, the most recent advances 
in CAR receptor designing by regarding “AND”, “OR”, 
“NOT” conditional functions, let the researchers produce 
more cancer-specific CAR T-Cells especially in the situa-
tions that there is no known cancer-specific antigen have 
been introduced.
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