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Abstract: This paper focuses on the binary classification of the emotion of fear, based on the physiolog-
ical data and subjective responses stored in the DEAP dataset. We performed a mapping between the
discrete and dimensional emotional information considering the participants’ ratings and extracted a
substantial set of 40 types of features from the physiological data, which represented the input to vari-
ous machine learning algorithms—Decision Trees, k-Nearest Neighbors, Support Vector Machine and
artificial networks—accompanied by dimensionality reduction, feature selection and the tuning of the
most relevant hyperparameters, boosting classification accuracy. The methodology we approached
included tackling different situations, such as resolving the problem of having an imbalanced dataset
through data augmentation, reducing overfitting, computing various metrics in order to obtain the
most reliable classification scores and applying the Local Interpretable Model-Agnostic Explanations
method for interpretation and for explaining predictions in a human-understandable manner. The
results show that fear can be predicted very well (accuracies ranging from 91.7% using Gradient
Boosting Trees to 93.5% using dimensionality reduction and Support Vector Machine) by extracting
the most relevant features from the physiological data and by searching for the best parameters
which maximize the machine learning algorithms’ classification scores.

Keywords: emotion dimensions; emotion classification; fear classification; neural networks; ma-
chine learning

1. Introduction

As there is a broad interest in the field of affective computing and particularly, affect
recognition, this study aims to explore fear classification based on extracted time-related,
frequency-related and events-related features from a well-known dataset containing physi-
ological recordings (electrodermal activity—EDA and heart rate variability—HRV) and
self-reported ratings of valence, arousal and dominance. We extracted 40 types of features—
33 related to EDA and 7 related to HRV. By combining the discrete and dimensional
emotion models, we considered that fear is characterized by low valence, high arousal
and low dominance. In our pursuit, we applied various machine learning algorithms—
Decision Trees (DT), which are intuitive, transparent to inspection and easy to validate,
k-Nearest Neighbors (kNN), Support Vector Machine (SVM) and artificial networks—and
tackled various situations, such as dealing with an imbalanced dataset via data augmen-
tation, preventing overfitting through cross-validation and by plotting learning curves,
reducing dimensionality, selecting the most relevant features and tuning the appropriate
hyperparameters in order to obtain the highest classification scores.

Sensors 2021, 21, 4519. https://doi.org/10.3390/s21134519 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9264-1603
https://orcid.org/0000-0002-7867-1117
https://orcid.org/0000-0002-6822-2684
https://orcid.org/0000-0002-3842-9828
https://orcid.org/0000-0002-1368-7249
https://orcid.org/0000-0002-8357-5840
https://doi.org/10.3390/s21134519
https://doi.org/10.3390/s21134519
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21134519
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21134519?type=check_update&version=2


Sensors 2021, 21, 4519 2 of 39

Particular attention was given to the data augmentation technique called Synthetic
Minority Oversampling Technique (SMOTE), which generated new samples from the
minority class, based on the closest examples in the feature space. Together with the
undersampling of the majority class, this method helped to resolve the issue of working on
an imbalanced dataset.

We applied the Local Interpretable Model-Agnostic Explanations (LIME) method for
explaining the predictions, considering the features that increase the chances of obtain-
ing the output 0 (no fear) or 1 (fear). Thus, we employed feature selection and feature
importance scores, as well as other methods aimed at explaining the predictions of the
neural networks—visual inspection of the learning curves, tuning the number of layers
and number of neurons and adding dropout, which controls which features contribute
most strongly to the neural network’s output.

Thus, we aimed to understand why a certain model behaves in a certain way and
how it reaches a decision or a prediction, based on the input it is provided, the training
method, feature selection and feature engineering. This is a highly necessary request in the
medical field, where the end users need to trust that the artificial intelligence algorithms
are making correct decisions.

We performed a global interpretation, by examining the models from a broader
perspective, and tried to see which set of features maximized the classification scores.
Additionally, we searched for rules that generalized to future real-world data outside the
test set and tried to understand the models’ behavior in order to evaluate which training
inputs mostly influenced a certain behavior.

Feature extraction presents the most relevant features from a biological point of view
for accurately detecting the emotion of fear. Furthermore, our intuition for the reasons for
which more complex neural network configurations do not reach good performances was
encouraged by the fact that our data are almost linearly separable in a high dimensional
space, as resulting from applying the SVM algorithm.

Two datasets were provided as input to the machine learning algorithms: the non-
overlapping dataset with 120 features and the overlapping dataset, with 40 features.

The results show that all the tested algorithms provided statistically similar results,
either with or without dimensionality reduction and feature selection. However, the highest
performance (over 89%) for both datasets was achieved by the SVM and Gradient Boosting
Trees (GBT) algorithms. For the non-overlapping dataset, by selecting the top 40 features
using Recursive Feature Elimination Feature Selection and then by applying the SVM
algorithm, we reached a performance score of 92.7%. For the overlapping dataset, by using
all 40 features, the GBT algorithm had a 91.7% performance score. By selecting only the top
30 features either with XGBoost Feature Selection or Random Forest Classification Feature
Selection and then applying the kNN algorithm, the performance dropped to 82.5%.

The significance of the study lies in approaching fear, an emotion sometimes consid-
ered rather a disadvantage, which in reality is very important, being the main emotion to
which we owe survival. However, exacerbated fear, which is part of the psychopathological
spectrum, prevents us from responding adaptively to life’s challenges.

The motivation of this study is given by the need to design a simple and efficient
fear identification algorithm, which provides real-time information useful for guiding
therapy sessions. The balance between the efficiency and simplicity of the algorithms will
allow their implementation in a wearable device usable in psychological therapy (phobias,
anxiety, depression). The article presents several aspects of novelty that cover current
gaps in knowledge: (i) identifying and using a minimum number of features that carry a
maximum amount of information, using both data analysis techniques and validating the
selection based on their biological relevance; (ii) the automatic extraction of features using
an in-house-developed MATLAB software that we intend to extend to a wearable device;
and (iii) a fear identification approach based on emotional affective dimensions such as low
valence, high arousal and low dominance using the DEAP (Dataset for Emotion Analysis
using Physiological Signals) dataset for training the classifier.
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The paper is structured as follows: Section 2 introduces fear, an adaptive emotional
response; Section 3 presents the physiological data—RV and EDA; Section 4 comments
on the most relevant studies published in recent years (particularly in the interval 2019–
2021); Section 5 describes the framework and the protocol we followed; Section 6 presents
the feature extraction methodology; Section 7 introduces the machine learning and deep
learning methods that were used; Section 8 presents the results; Section 9 discusses on
the results, provides a comparison with similar studies and sheds light on the study’s
current limitations; and Section 10 summarizes with the conclusions and proposes future
research directions.

2. Fear, an Adaptive Emotional Response

Emotions play an adaptive role that allows both humans and animals to act quickly
and appropriately through actions that maximize the chances of survival and success.
Emotions influence cognitive processes and behavior, being expressed through facial
expressions, voice, behavioral responses and physiological reactions [1]. Understanding
other people’s emotional displays gives us important information about how we must
behave in response to a particular situation.

Fear is one of the fundamental human emotions, which occurs in response to an
external threat that endangers the life or integrity of the being, which is real or perceived
as real. Although it is a negative emotion and generally unpleasant, fear is useful because
it plays an important role in our safety and integrity. For a fast and efficient discrimination
of potentially harmful events, the amygdala, a collection of nuclei in the medial temporal
lobe, is a central neural node both in predatory and social dominance contexts [2]. With
connections to the brainstem, hypothalamus and cortical areas, the amygdala controls psy-
chophysiological and behavioral responses that are commonly considered to be symptoms
of fear and anxiety [3]. Fear is manifested through interdependent reactions of biochemical
(hormonal), physical and behavioral nature. Physical, bodily, specific reactions can be:
sweating, trembling, an increased heart rate, shortness of breath or difficulty in breathing,
muscle tension or increased adrenaline levels.

There are two distinct models for classifying emotions: the categorical (discrete) and the
dimensional model. In the categorical model, there are six basic, distinct and universal emo-
tions: happiness, anger, sadness, surprise, disgust and fear [4–6]. Because complex affective
states cannot be expressed by a single label, the researchers used the dimensional model,
with two fundamental emotional spaces: valence and arousal (the circumplex model) [7].
Valence describes the affective quality of the emotion, being a measure of the pleasantness
that an event generates, specifying how positive (pleasant) or negative (unpleasant) it is.
Arousal characterizes the intensity of the physical and cognitive stimulation and ranges
from low arousal (passive) to high arousal (active) [8]. In the classical circumplex model
of affect, the emotions of fear and anger are indistinguishable, because they both lie in
the same quadrant of low valence and high arousal. Researchers have found dominance
(defined as the capacity of being in control of one’s emotions) as a third dimension, very
important to represent the emotional space in the Pleasure–Arousal–Dominance (PAD)
model. Dominance represents the “fight or escape” reaction to stimuli. In that new dimen-
sional model, fear was described by negative valence, high arousal and low dominance,
while anger is defined by negative valence, high arousal and high dominance [9–11].

Although it has ensured the survival and evolution of the human species over the
centuries, prolonged, irrational fear is harmful both physically and emotionally, affecting
the quality of life, daily activities and communication. This is why the early and efficient
identification of disorders such as those in the anxiety spectrum is a direction with many
approaches. The field of affective computing uses technology to enhance emotion recogni-
tion and aims to develop applications that automatically adapt to unexpected emotional
changes. Multimodal emotion recognition systems have higher classification accuracies,
depending on the number of emotions, extracted features, classification methods and the
quality of the physiological dataset [12]. Biosensors can detect emotions by monitoring
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physiological signals, which are the response to the activity of the Autonomic Nervous Sys-
tem (ANS)—HRV, EDA, temperature and respiration. These kinds of systems are wearable
and unobtrusive [1], being included in the category “affective wearables” [13].

3. Physiological Data
3.1. Heart Rate Variability

A healthy heart does not have the rhythm of a metronome. On the contrary, it is
characterized by oscillations with a complex and constantly changing pattern, as a result of
the rapid adaptation of the cardiovascular system to sudden physical and psychological
challenges to homeostasis [14]. These oscillations reflect the dynamic intervention of
the ANS in the regulation of the internal organs’ activity. HRV is considered one of the
main non-invasive methods for assessing the function of ANS, the heart being equally
innervated by both sympathetic and parasympathetic pathways. The sympathetic nervous
system (SNS) plays a positive role, increasing heart rate, atrioventricular conductivity and
cardiac contractility, while the parasympathetic nervous system (PNS) decreases these
parameters to ensure the adequate rest and energy reserves of the heart. Accordingly, HRV
is a dynamic index of interdependence between the ANS pathways, being an indicator of
adaptation to environmental and psychological challenges [15]. ANS is further regulated
by the central autonomic network (CAN) which consists of cortical (medial prefrontal and
insular cortices), limbic (anterior cingulate cortex, hypothalamus, the central nucleus of
the amygdala, the bed nucleus of the stria terminalis) and brainstem regions [16,17]. HRV
measures the beat-to-beat temporal changes of heart rate, being usually represented by
the variation in the RR intervals collected from the electrocardiogram (ECG) data. It can
be measured from both ECG and photoplethysmography (PPG) signals, which correlate
in the proportion of 88% [18]. The PPG sensor uses a light-emitting diode to record the
waveform of the pulse and can be placed anywhere on the body, due to its high sensitivity
in detecting the pulse waves even from the smallest capillaries [12]. PPG changes quickly
with emotional reactions, but has the disadvantage of being vulnerable to vibrations and
movement artifacts [19]. Heart rate increases with arousal and decreases in the presence of
unpleasant stimuli, being a reflective index of emotional regulation [16].

3.2. Electrodermal Activity

EDA, also known as the Galvanic Skin Response (GSR), is a measure of neuro-physical
arousal, estimating the changes in skin conductance as a response to the ANS activity. EDA
is a valuable tool in psycho-behavioral studies because it is a correct indicator of the SNS
response, being generally difficult or impossible to influence or control the production
of eccrine sweat from the skin as a response to emotional stimuli. Additionally, the non-
invasive nature of this technique makes it preferable to other approaches.

The EDA mechanism is highly modulated within the limbic system via the hypothala-
mus and the thermoregulatory pathways, and to a lesser degree by the premotor cortex
and the basal ganglia [20].

For the evaluation of EDA, the signal that characterizes the evolution in time of the
skin conductance is measured. It is hereinafter referred to as the GSR signal, for consistency
with the name used in the DEAP database. GSR signals can be decomposed into two
quantitative components, in response to specific tasks:

• Skin Conductance Level (SCL)—the tonic component, a measure of continuous, slowly
changing background characteristics (mean value 2–20 µS);

• Skin Conductance Response (SCR)—the phasic component, with rapid changes asso-
ciated with specific and identifiable stimuli, as a result of momentary SNS activation
(mean value 0.1–1.3 µS) [21].

The spontaneous fluctuations in EDA responses can also be recorded, without an
association with a specific stimulus (they occur more than 5 s after a stimulus). An increased
frequency of Non-Specific SCR (NS-SCR) and a high level of SCL are relevant markers of
stress and anxiety [22].
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4. Related Work

Emotion classification is an emerging field which has drawn the attention of re-
searchers from various domains. The development of physiological monitoring devices,
signal-processing algorithms and artificial intelligence methods, including fuzzy optimiza-
tion [23], has recently enabled the expansion of automatic emotion recognition systems.

Using as stimuli for emotions the dataset called testImages_artphoto from [24], a new
approach for emotion recognition with high arousal was presented in [25]. Four emotions
were considered: sadness, contentment, anger and fear. The process was iterative and
user centered. Each iteration consisted of five steps: data acquisition, data preprocessing,
emotion classification, user emotions collection using the Self-Assessment Manikins (SAM)
questionnaires [9] and evaluation. The data acquired were heart rate, movement and audio.
The data preprocessing consisted of synchronization and data normalization. For emotion
classification five models were used: Multilayer Perceptron (MLP), Convolutional Neural
Network (CNN), Long–Short Term Memory, Bidirectional Long–Short Term Memory and
DT. K-fold cross-validation with k = 5 was performed to assess the models’ prediction
rates. Accuracy and Receiver Operating Characteristic (ROC) were used to measure the
performance of the five models. The best results were obtained with DT (the final accuracy
was 91.47%) and the worst results with CNN (85.05% accuracy).

Highlighting the importance of the data preprocessing phase to improve the perfor-
mance of the machine learning models, a comparative analysis between various machine
learning techniques, such as SVM, kNN, Linear Discriminant Analysis (LDA), Logistic Re-
gression (LR) and DT for emotion recognition on the DEAP dataset [26], was performed
in [27]. In order to understand the data and to investigate the most appropriate predictive
models, the authors considered Exploratory Data Analysis as the first stage in the process of
automatic emotion recognition. Valence, arousal, dominance and liking were independently
classified using the classical ML algorithms. The metrics for performance (accuracy, precision,
recall, F1 score) showed that the algorithms were somehow close in performance. Regarding
the accuracy, the best algorithm was kNN, followed by SVM, DT, LR and LDA [27].

In the investigation of [28], a new approach was proposed for emotion identification.
The authors considered four emotional states defined by two dimensions (high valence–
high arousal (HVHA), high valence–low arousal (HVLA), low valence–low arousal (LVLA),
low valence–high arousal (LVHA)) to be identified based on the GSR, PPG, respiration and
electromyography (EMG) signals stored in the DEAP dataset. The new approach consisted
of the following steps: four nonlinear features were extracted (approximate entropy—
ApEn, sample entropy—SaEn, fuzzy entropy—FuEn and wavelet packet entropy—WpEn),
then the extracted features were fused, and a team-collaboration identification strategy was
employed to identify the emotional state. The team-collaboration strategy was a fusion
of three ML techniques: SVM, DT and Extreme Learning Machine (ELM). The obtained
average accuracy was 76.46%.

In [26], only the peripheral physiological signals from DEAP were analyzed. Eight
machine learning techniques (SVM, kNN, Random Forest (RF), DT, LR, Gaussian Naïve
Bayes (GNB), LDA and MLP classifier) for emotion classification were compared, using both
standard and non-linear extracted features. Three combinations of data were investigated:
raw peripheral physiological signals, a non-linear features set and a peripheral features
fusion set. Principal Component Analysis (PCA) was used to reduce the dimensionality
of the data. The performance of ML models was measured by accuracy and F1 score,
which for valence classification varied between 61.25 and 64.92%, and 74.39 and 77.20%,
respectively. For arousal classification, the accuracy was between 61.56 and 63.8% and
F1 score between 75.57 and 77.57%. The conclusions drawn by the authors were that the
emotions can be recognized using peripheral physiological signals and overall SVM, LR
and LDA outperform the KNN, DT, GNB, RF and MLP classifiers.

In [1], 37 users watched emotion-eliciting videos with a duration of 2 minutes and
40 s while PPG and GSR signals were recorded through an instrumented glove. A set of
27 features in time and frequency domain were extracted. Three emotional states were
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classified—amusement (positive valence and positive arousal), sadness (negative valence
and negative arousal) and neutral, located in the center of the circumplex model of affect.
The best model was obtained with RF recursive feature elimination for feature selection and
SVM for the classification of amusement (96%) and sadness (91%). The model was validated
on the DEAP dataset and the algorithm that maximized the F1 score was bagging tree (81%).
For amusement and sadness, the PPG features were not significant because these emotions
have similar values of arousal. Arousal is influenced by heart rate and heart rate is extracted
from the PPG signal. Thus, amusement and sadness can be detected only from GSR features.

The DEAP database has been used for classifying valence and arousal based on the
PPG signal and the normal-to-normal (NN) interval of HRV in time domain and frequency
domain. The best classification results were obtained by two convolutional neural networks
with 10 selected statistical features (three features in time domain and seven features in
frequency domain)—82.1% for valence and 80.9% for arousal. The Pearson correlation
coefficient showed a higher correlation between valence and the statistical features than
between arousal and the statistical features [19]. In [29], respiration and HRV signals
were collected from 53 participants who watched video clips eliciting six basic emotions
(happiness, fear, surprise, anger, sadness and disgust). The multi-signal (respiration rate
and HRV in both time and frequency domain) classification accuracy using a CNN model
was on average 94%, and for the emotion of fear, in particular, 95.83%. The authors also
concluded that it is efficient to classify emotions with multi-signals, where both domains of
HRV and respiration rate should be used. CNNs provide very good results, but at the cost
of high computing requirements.

Using only HRV features for emotion detection (sadness, anger, fear, happiness, relax-
ation), the highest classification accuracy (56.9%) was achieved by the SVM algorithm [30].
EDA features contributed to a classification accuracy of 64.32% for four levels of arousal.

The study described in [31] presents a binary fear recognition system (fear was con-
sidered as a low valence and high arousal emotion) based on 20 PPG and GSR features
extracted from the DEAP dataset, using the subject-independent modality. The best results—
concerning the values of accuracy, specificity and sensitivity—were obtained by applying
the SVM algorithm, a dimensionality reduction technique based on Fisher’s Criterion and
the SMOTE method for dealing with the class imbalance problem (there were 979 negative
observations and 301 positive observations). The classification results were: accuracy—
62.35%, sensitivity—62.27% and specificity—62.41%.

A novel study from 2021 [32] developed a specialized fear recognition system –using
only women participants. It relied on binary classification based on a combination of
linear (temporal and frequency) and non-linear features extracted from the GSR, ECG and
skin temperature signals stored in the MAHNOB dataset [33]. The authors proposed a
mapping of the emotion of fear onto the discrete and dimensional models. Thus, fear was
characterized by low valence, high arousal and low dominance. The best accuracy was
obtained by the Ensemble Classifier (ENS)—96.33% for the subject-dependent modality
and 76.67% for the subject-independent modality using the Leave One Subject Out testing
approach. The limitations of the study lie in the fact that only the data from 12 subjects (the
women from the MAHNOB dataset) were used in the classification process.

In research published in 2019, we developed a binary fear recognition system in
which we mapped the discrete and dimensional emotion models and considered fear as an
emotion with low valence, high arousal and low dominance. The study is presented in [34].
The system was validated on the DEAP dataset as well, but it used all the biophysical types
of data—heart rate, galvanic skin response, respiration, EMG, temperature and in addition,
electroencephalogram. In that study, we did not perform data segmentation, windowing or
feature extraction, but instead we used all the raw signals available in DEAP, without any
pre-processing. The same approach was applied for the other emotions from the discrete
model—anger, joy, surprise, disgust and sadness in our study presented in [35].

In this paper, we considered only the heart rate and galvanic skin response recordings
from the DEAP dataset. A total of 33 features in the time-, frequency- and events-related
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domains were extracted from the GSR signal and another seven from the HR channel.
We considered only GSR and HR because they can be easily recorded by lightweight
wearable devices and have a larger usability for experimental purposes. In contrast with
the research carried out in [34,35], in this one we performed denoising, data segmentation
and windowing with and without overlapping, we applied low computational complexity
binary classification algorithms with and without feature selection and dimensionality
reduction, grid searched for the most relevant hyperparameters in order to obtain the best
classification models and calculated various metrics, including the ROC AUC score, known
to be a very reliable indicator of classification accuracy for imbalanced datasets.

5. Research Design Framework

Our interest is to develop a simple, machine learning model to classify emotions using
the peripheral signals from the DEAP dataset [36]. DEAP is a popular and consistent emo-
tion database used for research purposes in a multitude of studies, having pre-processed
data in both Matlab and Python formats, a comprehensive documentation and an appro-
priate description. The study focuses on the recognition and binary classification of the
emotion of fear, based on the physiological data and subjective responses stored in the
DEAP dataset. Automatic fear recognition and classification is an important approach,
because it contributes to the development of medical and behavioral applications, such
as anxiety, depression, phobias or post-traumatic stress disorder. Figure 1 describes the
data-processing flow, starting with the extraction of the subject’s physiological characteris-
tics from EDA and HRV. Fear classification is performed using different machine and deep
learning algorithms and feature selection techniques.
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6. DEAP Feature Extraction
6.1. DEAP Description

The DEAP database [36] consists of a set of electrophysiological recordings from
32 participants who watched 40 extracts of music videos. After watching each video extract,
the participants rated the video in terms of arousal, valence, like/dislike, dominance and
familiarity using a continuous nine-point scale. Electrophysiological data were recorded in
32 files using the BioSemi format containing the following signals:

• Electroencephalography (EEG) signals recorded from 32 channels;
• Electrooculography (EOG) signals recorded from eight channels;
• GSR signals corresponding to the EDA;
• Respiration signal recorded from a respiration belt;
• PPG signal measured on the left thumb, corresponding to HRV;
• Temperature signal measured on the left little finger;
• Status signal containing the markers sent from the stimuli presentation computer.

All signals were continuously recorded during each trial session, using a sampling
rate of 512 samples/s.
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6.2. DEAP Features Extraction Protocol

The biophysical signals selected for valence, arousal and dominance evaluation were
GSR and HRV. The reason for choosing these signals was the simplicity of setting the
measurement process, that requires a small number of electrodes that are easy to be
placed. In order to process the electrophysiological data contained in DEAP database, the
content of each trial session file was read using a software developed by the authors. This
software converts the BioSemi file format into a .csv file that contains three columns of
data corresponding to skin conductance, heart rate and status signal. The .csv files were
opened using a MATLAB processing script with the csvread() function. The next step was
to extract the signal segments corresponding to each of the 40 trials present in the trial
session file. This segmentation process was based on the values contained in the status
signal, as presented in Figure 2.
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Figure 2. DEAP trial session structure.

Each trial that corresponds to watching a 60 s extract of music video was preceded
by a 5 s interval in which a fixation screen was displayed. Because the fixation screen
was emotionally neutral, this interval allowed us to record the baseline value for all
electrophysiological signals. In parallel with signal segment extraction, the video ratings
collected from the trials were read from the “participant_ratings.xls” file provided in the
DEAP database. Each video was characterized by a continuous numerical value between
1 and 9, assessed for arousal, valence, like/dislike, dominance and familiarity. The fear
perceived by the participant while watching the clip was evaluated on a binary scale
(0—absence of fear/1—presence of fear) based on the following rule [10]:

• fear = 1 if valence ≤ 5 AND arousal > 5 AND dominance ≤ 5;
• fear = 0 in rest.

The features of the electrophysiological signals (40 types of time-related, frequency-
related and event-related features) were associated with each trial using two different
approaches, according to Figure 3:
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• Non-overlapping approach—each of the 60 s trials was segmented in three non-
overlapping windows of 20 s length each. All signal features were evaluated in
each window, the three values obtained for each feature being considered as inde-
pendent. For this approach, for each trial, we evaluated a number of 120 features
(3 segments × 40 features on each segment), as can be seen in Figure 4.
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• Overlapping approach—each trial was segmented in five windows of 20 s length and
10 s overlap. Thus, five sets of 40 feature values were obtained for each trial, all of
them being associated with the fear evaluated for that trial acting as five different data
points, as can be seen in Figure 5.
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The data from three subjects (number 23, 26 and 29) was discarded from the analysis
because it contained invalid information that could not be processed.

6.3. Electrodermal Activity Features Extraction

In order to obtain the skin-conductance-related features, the measured GSR signal
was decomposed into the SCL and SCR components using the Continuous Decomposition
Analysis (CDA) algorithm [37] implemented in the Ledalab software. This algorithm also
detects individual and non-superimposed SCRs and evaluates their amplitudes.

Before applying the CDA algorithm, the GSR signal was filtered and sub-sampled
to 16 samples/s. This filter eliminated all power-grid-induced noises and also acted as
an anti-alias filter prior to sub-sampling. A low-pass Finite Impulse Response (FIR) was
selected due to the following reasons:

• FIR filters have linear phase characteristics that help to preserve the waveshape of
the signal;

• This class of filters is more suitable for fixed-point arithmetic implementation. This
aspect is very important, especially for building the portable fear level estimation
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device that will use a low power microcontroller without floating point computing ca-
pabilities.

The filter was designed using the window method (function fir1() from MATLAB
Signal Processing Toolbox™). Design parameters were: cutoff frequency: 5 Hz, filter order:
512 and Hamming window type.

There were extracted 33 features including time- and frequency-related parameters.
Time-related features were directly computed from the signal samples corresponding to

each time window.
GSR_mav, SCL_mav and SCR_mav represent the mean absolute values of GSR, SCL

and SCR signals over the evaluation window:

X_mav =
1
N

N−1

∑
K=0
|Xk| , (1)

where: X represents the analyzed signal X ∈ {GSR, SCL, SCR} and XK are their samples;
N represents the number of signal samples included in the evaluation window.

GSR_mar, SCL_mar and SCR_mar represent the ratio between the mean absolute
values of GSR, SCL and SCR signals over the evaluation window and over the baseline
recording interval:

X_mar =
X_mav
Xb_mav

, Xb_mav =
1
M

M−1

∑
K=0
|Xbk|, (2)

where: Xbk represents the signal samples corresponding to the baseline recording interval;
M represents the number of signal samples included in the baseline recording interval.

GSR_std, SCL_std and SCR_std represent the standard deviation of the signal sam-
ples over the evaluation window:

X_std =

√√√√ 1
N − 1

N−1

∑
K=0

(XK − X_mav)2, (3)

GSR_str, SCL_str and SCR_str represent the ratio between the standard deviation of
the signal samples over the evaluation window and over the baseline recording interval

Xstr =
Xstd

Xbstd
, Xb_std =

√√√√ 1
M− 1

M−1

∑
K=0

(XbK − Xb_mav)2, (4)

GSR_wl, SCL_wl and SCR_wl represent the Waveform Length of the signals [38]:

X_wl =
N−1

∑
K=1

(∆XK)
2, ∆XK = XK − XK−1, (5)

GSR_ssc, SCL_ssc and SCR_ssc represent the Slope Sign Changes of the signal [38]:

X_ssc =
N−2

∑
K=1

f (XK−1, XK, XK+1), (6)

where:

f (XK−1, XK, XK+1) =


1 i f sign(XK − XK−1) ∗ sign(XK+1 − XK) < 0 and

|XK − XK−1| ≥ ε and
|XK−1 − XK| ≥ ε

0 otherwise
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and the slope threshold ε = 0.001 µS.
GSR_wamp, SCL_wamp and SCR_wamp represent the Willison Amplitudes of the

signals [38]:

X_ssc =
N−1

∑
K=1

f (XK−1, XK), (7)

where

f (XK−1, XK) =

{
1 i f |XK − XK−1| ≥ εW

0 otherwise

and the Willison threshold ε = 0.5 µS.
Frequency-related features were computed from the power spectrum density (PSD) of

the electrodermal signals corresponding to each time window. PSD was evaluated for a set
of frequencies { fK=0...P−1} between 0 and 8 Hz with a 0.01 Hz step.

GSR_fmd, SCL_fmd and SCR_fmd represent the Median Frequencies of the power
spectrum [39]. It is the frequency fQ that divides the signal spectrum in two sections
which have the same energy. The frequency index Q is obtained in order to minimize the
following value: ∣∣∣∣∣Q−1

∑
K=0

PK −
P−1

∑
K=Q

PK

∣∣∣∣∣ (8)

where PK represents the Kth line of the PSD.
GSR_fmn, SCL_fmn and SCR_fmn represent the Mean Frequencies of the power

spectrum [39]:

X_ f mn =
∑P−1

K=0 fKPK

∑P−1
K=0 PK

, (9)

GSR_hlr, SCL_hlr and SCR_hlr represent the ratio between the signal energy in the
[0.2 Hz, 2 Hz] and [0.01 Hz, 0.2 Hz] frequency intervals [39]:

Xhlr =
∑IC

K=Ib
PK

∑Ib
K=Ia

PK
, (10)

where: Ia, Ib and Ic represent the PSD line index that corresponds to f Ia = 0.01 Hz,
f Ib = 0.2 Hz and f Ic = 2 Hz, respectively.

Events-related features characterize the individual and non-superimposed SCRs. They
were obtained from the results of the CDA included in two vectors: {TONK}K=0...R—onset
times and {AMPK}K=0...R—response amplitudes.

GSR_nimp represents the number of electrodermal responses detected inside the
evaluation window:

GSR_nimp = length(AMP) = length(TON) = R, (11)

GSR_avimp represents the average amplitude of electrodermal responses:

GSR_avimp =
1
R

R−1

∑
K=0

AMPk, (12)

GSR_maximp is the maximum amplitude of the responses inside the evaluation
window:

GSR_maximp = max
K=0...R−1

(AMPK) (13)

6.4. Heart Rate Variability Features Extraction

The heart rate signal obtained from the plethysmograph optical sensor consisted of a
vector {HRK} that contained intervals between successive heart beats.
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Seven features were extracted, as follows:
HR_std represents the standard deviation of the intervals between successive heart

beats inside the evaluation window:

HR_std =

√√√√ 1
H − 1

H−1

∑
K=0

(
HRK − HR

)2, (14)

where: H represents the number of heart beats inside the evaluation window and HR is
the average time between heart beats:

HR=
1
H

H−1

∑
K=0

HRK

HRV_std represents the standard deviation of the difference between successive heart
rate values inside the evaluation window:

HRV_std =

√√√√ 1
H − 2

H−1

∑
K=1

(
HRK − HRK−1 − HRV

)2, (15)

where HRV is the average time of the heart rate differences:

HRV =
1

H − 1

H−1

∑
K=1

(HRK − HRK−1)

HRV_NN50 represents the number of successive heart beat durations that differ by
more than 50 ms inside the evaluation window [40]:

HRV_NN50 = card{HRK|0.05≤|HRK − HRK−1|}, (16)

HRV_pNN50 is the ratio between the number of successive heart beat durations
that differ by more than 50 ms and the total number of heart beats inside the evaluation
window [40]:

HRV_pNN50 =
HRV_nn50

H
, (17)

HRV_NN20 represents the number of successive heart beat durations that differ by
more than 20 ms inside the evaluation window:

HRV_NN20 = card{HRK|0.02 ≤|HRK − HRK−1|}, (18)

HRV_pNN20 is the ratio between the number of successive heart beat durations that
differ by more than 20 ms and the total number of heart beats inside the evaluation window:

HRV_pNN20 =
HRV_nn20

H
(19)

HRV_hlr represents the ratio between the HR signal energy in the [0.15 Hz, 0.4 Hz ]
and [0.04 Hz, 0.15 Hz] frequency intervals [41]:

HRV_hIr =
∑IC

K=Ib
PK

∑Ib
K=Ia

PK
, (20)

where: PK represents the -kth line of the HR signal power spectrum density; Ia, Ib and
IC represent the PSD line index that corresponds to f Ia = 0.04 Hz; f Ib = 0.15 Hz and
f IC = 0.4 Hz, respectively.
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7. Fear Classification
7.1. Machine Learning Methods
7.1.1. Classification Algorithms

There is an increasing interest in the use of artificial intelligence in the field of affective
computing. As more as more attention is transferred to the use of automatic emotion
recognition, data extraction and data manipulation have become a tipping point in order
to achieve good results.

In this section, we unravel a brief analysis of the machine learning and deep learning
techniques involved in automatic emotion recognition systems using the biophysical data
from the DEAP database.

In order to binarily classify the emotion of fear, we favored the simplest, most popular
machine learning methods: SVM, tree-based algorithms—GBT, RF and kNN, as well as
shallow and deep artificial neural networks with predefined number of neurons and hidden
layers, on which we applied various optimization techniques. Our approach was inspired
by Occam’s razor principle [42], which states that the simplest model that fits the data
should be preferred. Complex models consume more time and resources and are prone to
overfitting [43].

For the non-overlapping dataset, we had a number of 992 samples labeled with 0 (not
fear) and 166 samples labeled with 1 (fear). Evidently, the distribution of the observations
is very imbalanced. In order to overcome this drawback, the majority class was randomly
undersampled, to have 20% more than the number of examples in the minority class, and
the minority class was oversampled using the SMOTE technique [44], to have 80% of the
number of examples in the majority class. SMOTE is a data augmentation method that
synthesizes new examples from the minority class which are close in the feature space,
based on the k-Nearest Neighbors (k is usually set to 5). After applying these techniques, we
obtained 830 samples labeled with 0 and 664 samples labeled with 1. For the overlapping
dataset, initially there were 4960 observations belonging to the 0 class and 830 observations
in the 1 class. After randomly undersampling and synthetically oversampling via SMOTE
with the same percentages, the proportion turned to 4150/3320.

Cross-validation combines prediction performance from different partitions of the
data, which stand for training and validation subsets [43]. This technique reduces variance
(the model’s sensitivity to variations in the data), offers an overview of how the model
behaves and prevents overfitting. In the case of the k-fold cross-validation, the dataset is
split into k equal folds. The model is repetitively trained on k 1-folds and tested on the
kth-fold. In the end, after k repetitions, the training and testing scores are averaged.

Feature selection eliminates redundant features, reduces training time, prevents over-
fitting and can increase classification accuracy, as the model learns from the most relevant
features. Dimensionality reduction has the same advantages as feature selection, but it
chooses the features from a projected space where relevant and irrelevant features are
merged into new ones.

In the case of the SVM and kNN algorithms, the data was scaled, as the features
differed by orders of magnitude. These two algorithms require scaling because they
involve distances and separation in space. We applied standardization, which removes the
mean of the feature and divides by the standard deviation, scaling thus to unit variance.
Tree-based algorithms are not sensitive to features at different scales, as they look at each
feature independently [43]. As a result, in the case of GBT and RF, scaling was not required.

The following metrics were used:

• The classification report, which presents precision, recall, F1 score and support for
both classes. Precision computes the proportion of positive identifications which are
actually correct. Recall (sensitivity or true positive rate) calculates the fraction of true
positives that are correctly identified. F1 score is the harmonic mean of precision
and recall. It is more informative when the dataset is imbalanced [1], as in our case.
Support represents the number of occurrences of each class in the dataset, a metric
that indicates if the distribution of observations is balanced or imbalanced.
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precision =
True Positives

True Positives + False Positives
, (21)

recall =
True positives

True positives + False Negatives
, (22)

F1 score = 2· precision·recall
precision + recall

, (23)

• The confusion matrix, a table called a contingency table, with two rows and two
columns that contain: the rate of observations correctly predicted as negatives (True
Negatives), the rate of observations incorrectly predicted as positives (False Positives),
the proportion of observations incorrectly predicted as negatives (False Negatives) and
the proportion of observations correctly predicted as positives (True Positives).

• Accuracy calculates the proportion of correct predictions (True Positives + True Negatives)
from the total number of predictions.

accuracy =
True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives
, (24)

• Specificity (or true negative rate) measures the proportion of negatives (True Negatives)
which are correctly identified.

speci f icity =
True Negatives

True Negatives + False Positives
, (25)

• The ROC Area Under Curve (ROC AUC) score is a reliable measurement used for
binary classification that tells us how much the model distinguishes between classes.
Some models can have a high F1 score on average, but a much lower F1 score for one
of the classes. A high value of the ROC AUC score means that the model is capable
of classifying 0s as 0s and 1s as 1s, so there is an increased rate of True Positives and
True Negatives. Acceptable models have an ROC AUC score between 0.7 and 0.8 and
those which exceed 0.8 or even 0.9 are considered very solid. The ROC AUC score is
optimistic for imbalanced datasets.

The purpose of the SVM algorithm is to find a decision boundary in order to separate
data from different classes.

In a space of n dimensions, a hyperplane can be defined by an n-dimensional vector w,
and an intercept b. Any data point x on the hyperplane satisfies wx + b = 0. A hyperplane
is a separating hyperplane if:

• For any data point x from one class, wx + b > 0.
• For any data point x from another class, wx + b < 0.

The hyperplane is selected so that the distance between the nearest points in each class
(called support vectors) and the hyperplane is maximal. When it is impossible to segregate a
set of observations containing outliers, their misclassification is permitted, but the error they
introduce should be minimized. The penalty hyperparameter C controls misclassification
and the strictness of separation. A large C penalizes misclassification, leading to overfitting.
If C is small, more data points will be misclassified, introducing a high bias. The kernels
solve non-linear classification problems by transforming the original feature space into a
linearly separable dataset. The Radial Basis Function (RBF) or Gaussian kernel presents the
hyperparameter γ, the kernel coefficient, which determines how strictly the kernel function
fits the data. A large γ produces overfitting, while a small γ leads to underfitting. The
scikit-learn library [45] uses as default for γ the value 1/number_of_features. SVM can
achieve a high accuracy of classification with the appropriate kernel and parameters [43].

We used the C-Support Vector Classification (SVC) function from the scikit-learn
library. Considering the number of instances and features (the number of instances is not
significantly larger than the number of features), the RBF kernel was the most appropriate
choice. Our dataset is imbalanced, so we set class weight = “balanced” to emphasize the
underrepresented classes.
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The learning curve is a graph that compares the cross-validated training and testing
scores. It is used to detect overfitting or underfitting. When the testing score converges at a
much lower accuracy than the training score, below the desired performance, we conclude
that there is a situation of overfitting. Thus, the model fits too well on the training set and
fails to generalize on the testing set. When both the training and the testing scores are well
below the desired performance, underfitting occurs. As such, the model is unreliable and
incapable of capturing the underlying relationship in the data. We performed a five-fold
cross-validation procedure with a testing (validation) batch of 30% of the data and plotted
the training and testing scores against the number of training examples, as well as the
scalability of the model—fit times (times spent for fitting in seconds) against the number of
training examples and performance of the model—testing score versus fit times.

For a number of 10 iterations (10 rounds), we split the original dataset into training
and testing subsets (70% training and 30% testing), using the train_test_split function from
the scikit-learn library. This function randomly splits the data, preserving the percentage
of observations for each class. The functionality of GridSearchCV from scikit-learn implies
data splitting, fold generation, cross training and validation and exhaustive search over
the best set of parameters, maximizing classification accuracy. We applied a five-fold
cross-validation on the training subset that ran in parallel on all available cores. The values
we tested for the penalty C were: {0.1, 1, 10, 100, 1000, 10000} and for the kernel coefficient
γ: {1/number_of_features, 1/number_of_features ∗ 10, 1/number_of_features ∗ 100,
1/number_of_features ∗ 1000}. The variable number_of_features represents the number
of features (120 features for the non-overlapping dataset and 40 features for the overlapping
one). The most optimized estimator (the model with the best set of hyperparameters that
maximized classification accuracy on the training subset) was validated on the testing
subset. The resulting F1 score, ROC AUC score, accuracy, sensitivity and specificity were
calculated at each iteration and on average, for all the 10 iterations. Confusion matrix and
classification report were also generated at each iteration.

7.1.2. Dimensionality Reduction and Feature Selection Algorithms

PCA is a dimensionality reduction technique which increases the classifier’s perfor-
mance. We projected the original data into a 100-dimensional space for the non-overlapping
dataset and into a 20-dimensional space for the overlapping dataset, followed by cross-
validation, the plotting and assessment of the learning curves, splitting into training and
testing subsets, grid search for the best parameters on the training subset and classification
using the SVC classifier with the RBF kernel on the testing subset throughout 10 iterations,
as previously described. The same metrics were computed for each of the 10 iterations and
on average for all 10.

In order to perform feature selection, we applied various algorithms: XGBoost, Pear-
son Correlation Coefficient, L1 regularization, RF Classification and Recursive Feature
Elimination.

For each feature selection algorithm, we repetitively chose the first k most relevant
features. The variable k takes the values: 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 and 120
for the non-overlapping dataset and 5, 10, 20, 30 and 40 for the overlapping dataset. For
each feature selection algorithm, for each k, we undertook the following steps:

• We split the original dataset into training and testing subsets (70% training and 30%
testing), using the train_test_split function from the scikit-learn library.

• We applied a five-fold cross-validation on the training subset that ran in parallel on
all available cores. The values we tested for the penalty C were: {0.1, 1, 10, 100, 1000,
10,000} and for the kernel coefficient γ: {1/number_of_features, 1/number_of_features
∗ 10, 1/number_of_features ∗ 100, 1/number_of_features ∗ 1000}. The variable num-
ber_of_features represents the number of features, which is equal to k.

• The most optimized estimator (the model with the best set of hyperparameters that
maximized classification accuracy on the training subset) was validated on the testing
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subset, computing the resulting confusion matrix, classification report, F1 score, ROC
AUC score, accuracy, sensitivity and specificity.

RF is an ensemble of trees (called tree bagging) that outperforms simple DT by
reducing variance and preventing overfitting. The individual trees that are included
in the forest are trained on different sets of features. For improving the quality of feature
and value separation at the splitting point we have used the Gini criterion and then tuned
the other hyperparameters [43]:

• max_depth—the maximum depth of an individual tree. We picked three options: {3,
10, None}. None means that the nodes are expanded until all leaves are pure or until
all leaves contain less than min_samples_split samples.

• min_samples_split—the minimum number of samples required for node splitting.
A small value can cause overfitting and a large one leads to underfitting. The values
to explore for this hyperparameter were: {10, 30, 50, 70, 90}.

• max_features—the number of features required for best node splitting in an individual
tree. The options we considered were sqrt(number_of_features) and log2(number
_of_features).

• n_estimators—the number of trees required for majority voting in the bagging algo-
rithm after the individual trees have been trained separately. More trees lead to better
classification rates. The options we tweaked were {100, 300, 500}.

We performed the five-fold cross-validation procedure and plotted the learning curves,
model scalability and model performance. Similarly to the approach described for SVM,
the data were split into training and testing subsets for 10 rounds, we grid searched for
the most optimal parameters on the training subset and computed the metric scores after
validating the best resulting model on the testing subset.

In the case of GBT, the trees are built and trained in succession, in an iterative way,
each new tree trying to correct the residual errors introduced in the prediction by the
previous trees. We set the learning rate (or shrinkage factor, which controls the weighting
of new trees added to the model) at 0.1, the max_depth = 10 and n_estimators = 1000. We
performed the five-fold cross-validation procedure and plotted the learning curves, model
scalability and model performance. The data were split into training and testing subsets for
10 times (70% training and 30% testing) and we computed the metric scores after validating
the best resulting model on the testing subset. In the case of GBT, we did not have to tune
the parameters using grid search because we chose a fixed set of parameters from the start.

For both RF and GBT, there was no need to scale the data using the standard scaler
nor to perform feature selection.

The kNN algorithm predicts the output by finding the nearest neighbor class. It is
calculated as the most common class among the k-Nearest Neighbors.

We performed a five-fold cross-validation procedure with a testing (validation) batch
of 30% of the data and plotted the training and testing scores, model scalability and perfor-
mance. For cross-validation, the number of nearest neighbors was set to five. For 10 times,
we split the original dataset into training and testing subsets (70% training and 30% testing).
The parameters of the KNeighborsClassifier function from the scikit-learn library we grid
searched for were: leaf_size (in the range 5 to 50), n_neighbors (in the range 3 to 9) and p (in
the range 1 to 2). p is the power parameter for the Minkowski metric. p = 1 represents the
Manhattan distance and p = 2 stands for the Euclidean distance. The most optimized esti-
mator (the model with the best set of parameters that maximized classification accuracy on
the training subset) was validated on the testing subset. The resulting F1 score, ROC AUC
score, accuracy, sensitivity and specificity were calculated at each iteration and, on average,
for all 10 iterations. Confusion matrix and classification report were also generated at
each iteration. Similarly to the approach described for SVM, we performed dimensionality
reduction using PCA and feature selection by applying the XGBoost, Pearson Correlation
Coefficient, L1 regularization and RF Classification algorithms. Unfortunately, the Recur-
sive Feature Elimination technique was too computationally expensive and failed to run
effectively, so we dropped it from the final evaluation.



Sensors 2021, 21, 4519 17 of 39

7.2. Deep Learning Methods

The experimentation process was represented by a series of trials of several network
configurations. We tested on different architectures for the neural networks, either shallow
by employing only the input and the output layers, or deep by adding other hidden layers.
The tuning of hyperparameters (the number of hidden layers, the number of neurons, the
learning rate, the number of epochs and batch size) required the utmost attention in order
to evaluate how these could affect or improve the quality of our neural networks and how
resilient the data are against changes in the network’s configuration.

The framework we used for implementing the networks was Keras [46] in the Ten-
sorflow environment [47]. Furthermore, we used the scikit-learn library to process the
data and to compute the classification scores. The matplotlib library [48] was employed to
generate trustworthy plots that were able to generate a better and more comprehensive
understanding of the model’s performance.

As the rule of thumb states that the input data has to be scaled, we used the scikit-learn
StandardScaler function to fit and transform it.

We closely followed two approaches:

• We used the train_test_split function from the scikit-library with a fixed seed for the
random_state variable with the aim to always obtain the same, predictable slices from
the input and the label arrays for the training and testing sessions, averaging the
results for 10 rounds.

• We performed a five-fold cross-validation which is beneficial in the case of overfitting.

We used and customized a Python program for fine tuning our neural network as
presented in [43] and displayed the results in Tensorboard [49] in order to reveal the best
mix of hyperparameters that influenced the dynamic of our program, such as the number
of neurons on the hidden layers, the right values for dropouts for different layers, the
number of epochs and the best values for the learning rate. A rule of thumb method states
that the number of neurons on the hidden layer should be 2/3 the size of the input layer,
plus the size of the output layer [50]. Another one mentions that the number of neurons
on the hidden layer should be the equal to the square root of the product between the
size of the input layer and that of the output layer. For the non-overlapping dataset, we
configured: the number of neurons on the hidden layer (80 representing two thirds of the
number of neurons on the input layer and 11 being the square root of the product between
the number of neurons on the input and output layers), the number of epochs over which
the network has to train (100 or 200), the dropout rate (0.3 or 0.4 or 0.5) for the input layer
and the learning rate (with values between 0.01 and 0.2). The neural network was a simple
one, with 120 neurons on the input layer (equal to the number of input features), a hidden
layer with the ReLU activation function and an output layer with one neuron. For the
overlapping dataset, we configured: the number of neurons on the hidden layer (27 and 6),
the right values for dropouts for different layers (0.3, 0.35, 0.4, 0.5), the number of epochs
(100 or 200) and the best value for the learning rate (between 0.01 and 0.2). The network
had 40 neurons on the input layer, equal to the number of input features.

8. Results
8.1. Results of the Machine Learning Algorithms
8.1.1. Results for the Non-Overlapping Dataset

Table 1 presents the results of the SVM algorithm, applied on the non-overlapping
dataset. The highlighted values represent the highest scores obtained.

Figures 6 and 7 present the learning curves, model scalability and model performance
for the SVM and PCA dimensionality reduction + SVM algorithms applied on the non-
overlapping dataset. The cross-validation score tends to converge to the training score,
above a desired performance of 75 (SVM) and 80% (PCA dimensionality reduction + SVM),
respectively, which implies that there is no situation of overfitting. Additionally, the model
scalability and model performance have an ascending pattern over an increasing number
of training examples and fit times.
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Table 1. Results of the SVM algorithm applied on the non-overlapping dataset.

SVM

PCA
Dimensionality

Reduction
+ SVM

XGBoost
Feature

Selection
+ SVM

Pearson
Feature

Selection
+ SVM

L1
Regularization

Feature
Selection
+ SVM

Random Forest
Classification

Feature Selection
+ SVM

Recursive Feature
Elimination

Feature Selection
+ SVM

5-fold
cross-validation

training
86.7% 92.7% - - - - -

5-fold
cross-validation

test
70.1% 75.7% - - - - -

The best model

C = 10,
gamma = 0.083
(1/n_features
∗ 10)

C = 1000,
gamma = 0.083
(1/n_features
∗ 10)

110 features
C = 10,

gamma = 0.09
(1/n_features
∗ 10)

80 features
C = 10,

gamma = 0.125
(1/n_features
∗ 10)

90 features
C = 10,

gamma = 0.11
(1/n_features
∗ 10)

50 features
C = 10,

gamma = 0.2
(1/n_features ∗ 10)

40 features
C = 1000,

gamma = 0.25
(1/n_features ∗ 10)

Cross-validation
grid search test 87.8% 90.3% 87.8% 89.1% 88.5% 87.7% 89.5%

F1 score 93% 93.5% 92.8% 92.8% 88.4% 92.8% 92.8%
ROC AUC score 92.7% 93.5% 92.1% 92.3% 87.7% 92.1% 92.7%

Accuracy 93% 93.5% 92.8% 92.8% 88.6% 92.8% 92.8%
Sensitivity 90% 93.5% 86% 88% 79.5% 85.5% 92%
Specificity 95.5% 93.5% 98.3% 96.7% 95.9% 98.7% 93.5%

Average F1 score
(10 iterations) 91% 92.3% - - - - -

Average ROC
AUC score

(10 iterations)
90.3% 92% - - - - -

Average
accuracy

(10 iterations)
91% 92.4% - - - - -

Average
sensitivity

(10 iterations)
83.9% 89% - - - - -

Average
specificity

(10 iterations)
96.8% 95.1% - - - - -
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Table 2 presents the results of the DT algorithms, applied on the non-overlapping
dataset. The highlighted values represent the highest scores obtained.

Table 2. Results of the DT algorithms applied on the non-overlapping dataset.

GBT RF

5-fold cross-validation training 100% 100%
5-fold cross-validation test 81% 81.9%

The best model Iteration 9

max_depth = None,
max_features = log2,

min_samples_split = 10,
n_estimators = 300

Cross-validation grid search test - 87.4%
F1 score 90.5% 90.1%

ROC AUC score 90% 89.4%
Accuracy 90.6% 90.2%
Sensitivity 84.5% 83%
Specificity 95.5% 95.9%

Average F1 score
(10 iterations) 88.9% 88.7%

Average ROC AUC score
(10 iterations) 88.4% 88.2%

Average accuracy
(10 iterations) 89% 88.8%

Average sensitivity
(10 iterations) 83.4% 81.9%

Average specificity
(10 iterations) 93.5% 94.4%

Figures 8 and 9 present the learning curves, model scalability and model performance
for the Gradient Boosting Trees and RF algorithms applied on the non-overlapping dataset.
The cross-validation score tends to converge to the training score, above a desired perfor-
mance of 80%, which implies that there is no situation of overfitting. Additionally, the
model scalability and model performance have an ascending pattern over an increasing
number of training examples and fit times.
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Figure 8. Learning curves, model scalability and model performance for the Gradient Boosting Tree algorithm, for the
non-overlapping dataset.

Table 3 presents the results of the kNN algorithm, applied on the non-overlapping
dataset. The highlighted values represent the highest scores obtained.

Figures 10 and 11 present the learning curves, model scalability and model perfor-
mance for the kNN and PCA dimensionality reduction + kNN algorithms applied on the
non-overlapping dataset. The cross-validation score tends to converge to the training score,
above a desired performance of 70%, which implies that there is no situation of overfitting.
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Additionally, the model scalability and model performance have an ascending pattern over
an increasing number of training examples and fit times.
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Table 3. Results of the kNN algorithm applied on the non-overlapping dataset.

kNN
PCA

Dimensionality
Reduction + kNN

XGBoost Feature
Selection + kNN

Pearson Feature
Selection + kNN

L1 Regularization
Feature Selection +

kNN

Random Forest
Classification Feature

Selection + kNN

5-fold cross-validation
training 75.4% 73.3% - - - -

5-fold cross-validation
test 61.5% 62.1% - - - -

The best model
leaf_size = 5,

n_neighbors = 4,
p = 1

leaf_size = 42,
n_neighbors = 4,

p = 1

30 features
leaf_size = 5,

n_neighbors = 3,
p = 1

90 features
leaf_size = 5,

n_neighbors = 4,
p = 1

80 features
leaf_size = 5,

n_neighbors = 4,
p = 1

60 features
leaf_size = 5,

n_neighbors = 4,
p = 1

Cross-validation grid
search test 75.8% 72.8% 76.4% 75.7% 75.4% 76%

F1 score 80.2% 78.6% 80.3% 80.4% 79.5% 80.2%
ROC AUC score 80.8% 79.6% 81.4% 81% 80.1% 80.5%

Accuracy 80.1% 78.6% 80.4% 80.4% 79.5% 80.1%
Sensitivity 87% 89% 91% 87% 86% 83.5%
Specificity 74.6% 70.2% 71.8% 75.1% 74.2% 77.5%

Average F1 score
(10 iterations) 77.2% 75.1% - - - -

Average ROC
AUC score

(10 iterations)
77.9% 76.6% - - - -

Average accuracy
(10 iterations) 77.2% 75.3% - - - -

Average sensitivity
(10 iterations) 84.4% 88.7% - - - -

Average specificity
(10 iterations) 71.4% 64.6% - - - -
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Figure 11. Learning curves, scalability and model performance for the PCA + kNN algorithm, for the non-overlapping
dataset.

Table 4 presents the top 10 features, according to their importance, which were selected
by the SVM and the kNN algorithms for the non-overlapping dataset. [W1] corresponds to
the first window of the trial (the first 20 s), [W2]—the second window of the trial (seconds
21–40) and [W3]—the third window (seconds 41–60).

Table 4. Top 10 features selected by the SVM and kNN algorithms for the non-overlapping dataset.

SVM kNN

GSR_fmd[W3] SCL_fmd[W2]
HRV_NN50[W3] GSR_fmd[W1]

HRV_hlr[W1] HRV_hlr[W1]
GSR_fmd[W2] SCR_fmd[W1]
SCR_fmd[W1] HRV_NN50[W3]

HRV_NN20[W2] GSR_fmd[W3]
HRV_hlr[W3] HRV_NN20[W2]
SCL_fmd[W1] SCR_ssc[W2]

SCR_wamp[W1] SCL_fmd[W3]
SCR_mav[W2] SCL_fmd[W1]

8.1.2. Results for the Overlapping Dataset

Table 5 presents the results of the SVM algorithm, applied on the overlapping dataset.
The highlighted values represent the highest scores obtained.

Figures 12 and 13 present the learning curves, model scalability and model perfor-
mance for the SVM and PCA dimensionality reduction + SVM algorithms applied on the
overlapping dataset. The cross-validation score tends to converge to the training score,
above a desired performance of 70%, which implies that there is no situation of overfitting.
Additionally, the model scalability and model performance have an ascending pattern over
an increasing number of training examples and fit times.
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Table 5. Results of the SVM algorithm applied on the overlapping dataset.

SVM

PCA
Dimensionality

Reduction +
SVM

XGBoost
Feature

Selection +
SVM

Pearson
Feature

Selection +
SVM

L1 Regularization
Feature Selection +

SVM

Random Forest
Classification

Feature Selection
+ SVM

Recursive Feature
Elimination

Feature Selection +
SVM

5-fold
cross-validation

training
73.6% 75.2% - - - - -

5-fold
cross-validation

test
66.2% 67.2% - - - - -

The best model

C = 10,
gamma = 0.25
(1/n_features
∗ 10)

C = 10,
gamma = 0.25
(1/n_features
∗ 10)

40 features
C = 10,

gamma = 0.25
(1/n_features
∗ 10)

40 features
C = 10,

gamma = 0.25
(1/n_features
∗ 10)

40 features
C = 10,

gamma = 0.25
(1/n_features ∗ 10)

40 features
C = 10,

gamma = 0.25
(1/n_features
∗ 10)

40 features
C = 10,

gamma = 0.25
(1/n_features ∗ 10)

Cross-validation
grid search test 85.3% 83.9% 85.1% 85.5% 85.5% 86.2% 86.1%

F1 score 88.9% 85.8% 89.2% 87.8% 88.1% 87% 87.5%
ROC AUC score 88.8% 86% 89.2% 87.8% 88% 86.9% 87.4%

Accuracy 88.9% 85.8% 89.2% 87.8% 88.1% 87% 87.5%
Sensitivity 87.4% 87.6% 89.2% 87.9% 86.7% 85.8% 86.8%
Specificity 90.2% 84.4% 89.1% 87.7% 89.3% 88% 88.1%

Average F1 score
(10 iterations) 87.9% 86% - - - - -

Average ROC
AUC score

(10 iterations)
87.8% 86.2% - - - - -

Average accuracy
(10 iterations) 87.9% 86% - - - - -

Average
sensitivity

(10 iterations)
87% 88.6% - - - - -

Average
specificity

(10 iterations)
88.6% 83.9% - - - - -
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Figure 13. Learning curves, scalability and model performance for the PCA + SVM algorithm, for the overlapping dataset.

Table 6 presents the results of the DT algorithms, applied on the overlapping dataset.
The highlighted values represent the highest scores obtained.

Figures 14 and 15 present the learning curves, model scalability and model perfor-
mance for the GBT and RF algorithms applied on the overlapping dataset. The cross-
validation score tends to converge to the training score, above a desired performance
of 80%, which implies that there is no situation of overfitting. Additionally, the model
scalability and model performance have an ascending pattern over an increasing number
of training examples and fit times.

Table 7 presents the results of the kNN algorithm, applied on the overlapping dataset.
The highlighted values represent the highest scores obtained.

Figures 16 and 17 present the learning curves, model scalability and model perfor-
mance for the kNN and PCA dimensionality reduction + kNN algorithms applied on the
overlapping dataset. The cross-validation score tends to converge to the training score,
above a desired performance of 75%, which implies that there is no situation of overfitting.
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Additionally, the model scalability and model performance have an ascending pattern over
an increasing number of training examples and fit times.

Table 6. Results of the DT algorithms applied on the overlapping dataset.

GBT RF

5-fold cross-validation training 100% 100%
5-fold cross-validation test 86.2% 85.4%

The best model Iteration 7

max_depth = None,
max_features = sqrt,

min_samples_split = 10,
n_estimators = 300

Cross-validation grid search test - 89.3%
F1 score 92.2% 90.2%

ROC AUC score 91.7% 89.6%
Accuracy 92.2% 90.3%
Sensitivity 87.3% 83.4%
Specificity 96.2% 95.8%

Average F1 score
(10 iterations) 91.7% 89.8%

Average ROC AUC score
(10 iterations) 91.1% 89.2%

Average accuracy
(10 iterations) 91.7% 89.9%

Average sensitivity
(10 iterations) 85.4% 82.2%

Average specificity
(10 iterations) 96.8% 96.1%
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Table 7. Results of the kNN algorithm applied on the overlapping dataset.

kNN
PCA

Dimensionality
Reduction + kNN

XGBoost Feature
Selection + kNN

Pearson Feature
Selection + kNN

L1 Regularization
Feature Selection +

kNN

Random Forest
Classification Feature

Selection + kNN

5-fold cross-validation
training 81% 80.6% - - - -

5-fold cross-validation
test 69.8% 69.3% - - - -

The best model
leaf_size = 5,

n_neighbors = 4,
p = 1

leaf_size = 6,
n_neighbors = 4,

p = 1

30 features
leaf_size = 5,

n_neighbors = 3,
p = 1

40 features
leaf_size = 5,

n_neighbors = 3,
p = 1

40 features
leaf_size = 5,

n_neighbors = 4,
p = 1

30 features
leaf_size = 5,

n_neighbors = 3,
p = 1

Cross-validation grid
search test 78.6% 75.7% 79.9% 80% 79.8% 80.6%

F1 score 84% 78.7% 81.7% 80.2% 81% 81.8%
ROC AUC score 83.9% 78.7% 82.5% 81.3% 81% 82.5%

Accuracy 84% 78.7% 81.7% 80.2% 81% 81.7%
Sensitivity 83.3% 79.3% 90% 91.1% 81% 89.3%
Specificity 84.6% 78.3% 75.1% 71.4% 81% 75.7%

Average F1 score
(10 iterations) 81.7% 77.8% - - - -

Average ROC AUC
score

(10 iterations)
81.8% 78.2% - - - -

Average accuracy
(10 iterations) 81.7% 77.8% - - - -

Average sensitivity
(10 iterations) 83.1% 81.1% - - - -

Average specificity
(10 iterations) 80.6% 75.2% - - - -
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Table 8 presents the top 10 features, according to their importance, which were selected
by the SVM and the kNN algorithms for the overlapping dataset.
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Table 8. Top 10 features selected by the SVM and kNN algorithms for the overlapping dataset.

SVM kNN

SCL_fmd SCL_fmd
SCR_fmd GSR_fmd

HRV_NN20 SCR_fmd
GSR_fmd HRV_NN50

HRV_NN50 HRV_hlr
HRV_hlr HRV_NN20
GSR_mav GSR_mav
SCL_mav SCL_mav

HRV_pNN20 GSR_str
GSR_nimp GSR_nimp

8.2. Results for the Artificial Networks Configurations
8.2.1. Results for the Non-Overlapping Dataset

Tensorboard selected as the best configuration to maximize classification accuracy
(82.5%) the one with 80 neurons on the hidden layer, a dropout of 0.3 and learning rate of
0.01, run over 200 epochs. In order to prevent overfitting, we designed five configurations
starting from this one and plotted the learning curves (Table 9).

Table 9. Tested configurations for the non-overlapping dataset.

Number of
Hidden Layers

Number of Neurons
on the Hidden Layer Dropout Number

of Epochs

Config. 1 - - - 200
Config. 2 - - 0.5 for the input layer 200
Config. 3 - - 0.8 for the input layer 500
Config. 4 1 80 0.8 for the input layer 500
Config. 5 1 11 0.8 for the input layer 500

We tested the following configurations with 120 neurons on the input layer, 1 neuron
on the output layer, the ReLU activation function and a batch size of 32.

For Configuration 1, as we expected, omitting any regularization implied the oc-
currence of overfitting during cross-validation with 70% of training and 30% of testing
data. Moreover, one of the first things that stands out while looking at the learning curves
presented in Figure 18 is how drastically the basic neural network’s dynamic changed over
the epochs.
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Figure 18. Accuracy and loss for Configuration 1, non-overlapping dataset.

A good fit means that the training and validation loss decrease to a point of stability
(lower loss on the training dataset than on the validation dataset) with a minimal gap
(called “generalization gap”) between the two final loss values.
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For Configuration 2, introducing a dropout strategy reduced partially, but not suf-
ficiently, the overfitting effect (Figure 19) and yielded comparably good results as well
(Table 10). Furthermore, by running multiple tests with an even greater dropout, of 0.8, we
obtained similar scores.
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Figure 19. Accuracy and loss for Configuration 2, non-overlapping dataset.

Table 10. Classification scores for Configurations 1–5, for the non-overlapping dataset.

Config. 1 Config. 2 Config. 3 Config. 4 Config. 5

F1 score 87.5% 85.7% 86.3% 85.2% 83.7%
ROC AUC

score 87.7% 85.5% 86.1% 85.9% 83.6%

Accuracy 87.5% 85.7% 86.4% 85.3% 83.7%
Sensitivity 90.2% 83.4% 82.5% 93.2% 82.5%
Specificity 85.1% 87.6% 89.7% 78.6% 84.7%

The learning curves for Configuration 3 are presented in Figure 20.
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Figure 20. Accuracy and loss for Configuration 3, non-overlapping dataset.

For Configuration 4, it can be observed that the extra layer did not improve perfor-
mance; however, the scores are similar to those obtained for the previous configurations
(Table 10). Despite this fact, looking at the curves for loss and accuracy, it can be inferred
that the model had a tendency to overfit (Figure 21). For Configuration 5, we considered
changing the number of neurons on the hidden layer to 11, to match the formula presented
in [51]. It can be observed that adding the extra layer did not help improve the performance
(Table 10); however, the model still tended to overfit (Figure 22).
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We chose Configuration 3 to be the best model because it did not overfit and because
it also obtained some of the best classification scores (ROC AUC score of 86.1%). The
five-fold cross-validation (during 500 epochs with a batch size of 32, Adam Optimizer with
a decaying learning rate) and the averaged scores for 10 runs for this model (70% training
and 30% testing data) are presented in Table 11.

Table 11. Cross-validation and test scores for Configuration 3.

Cross-Validation Test (10 Runs Averaged)

F1 score 97.4% 92.8%
ROC AUC score 97.5% 92.4%

Accuracy 97.4% 92.8%
Sensitivity 98.4% 87.8%
Specificity 96.6% 97.1%

8.2.2. Results for the Overlapping Dataset

Tensorboard selected as the best configuration to maximize classification accuracy
(79.2%) the one with six neurons on the hidden layer, a dropout of 0.3 and learning rate of
0.01, run over 200 epochs. In order to prevent overfitting, we designed seven configurations
starting from this one and plotted the learning curves (Table 12).

We tested the following configurations with 40 neurons on the input layer, 1 neuron
on the output layer, the ReLU activation function and a batch size of 32.

By looking at the learning curves for Configuration 1 (Figure 23), the considerable
discrepancy between the accuracy and loss scores obtained during the training session
with respect to their counterparts obtained during the testing session (the data has been
split into 70% training and 30% testing) can be easily observed. Despite the fact that with
this configuration we achieved good scores for the training session (accuracy over 90% and
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little loss), it can be inferred that the network learned too well and had the tendency to
overfit the data, thus resulting in a poor performance on the testing set.

Table 12. Tested configurations for the overlapping dataset.

Number of
Hidden Layers

Number of Neurons
on the Hidden Layers Dropout Number

of Epochs

Config. 1 - - - 200
Config. 2 - - 0.5 for the input layer 200
Config. 3 - - - 500
Config. 4 - - 0.5 for the input layer 500
Config. 5 1 6 0.5 for the input layer 200
Config. 6 2 27 and 6 0.5 for the input layer 200
Config. 7 3 30, 20 and 10 0.5 for the input layer 200
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Henceforth, we established using dropouts as a means of regularization to reduce
overfitting.

As it can be observed for Configuration 2 (Figure 24, Table 13), the network performed
slightly worse, misclassifying more examples of both classes, this being a consequence of
including the regularization procedure. Nevertheless, the gap between the accuracy and
loss for the train and test diminished and the model did not overfit anymore. The first
question that arises is the legitimate choice of the dropout value. Consequently, we settled
for a dropout of 0.5.

Table 13. Classification scores for Configurations 1–7, for the overlapping dataset.

Config. 1 Config. 2 Config. 3 Config. 4 Config. 5 Config. 6 Config. 7

F1 score 81% 77.6% 80.2% 77.2% 75.7% 73.7% 67.2%
ROC
AUC
score

80.8% 77.4% 80.6% 77.6% 76% 75.6% 71.3%

Accuracy 81% 77.5% 80.1% 77.1% 75.6% 73.9% 68.5%
Sensitivity 79.3% 76.9% 84.5% 81.4% 79.2% 90% 94.9%
Specificity 82.4% 78% 76.7% 73.8% 72.7% 61.3% 47.8%

For Configuration 3, we considered letting the neural network train slightly longer
to envision whether it would hit a performance plateau or yield better results. Thus, we
trained for 500 epochs with no dropout.

Notwithstanding the fact that training accuracy reached beyond the value of 95%
as compared to the accuracy obtained for Configuration 1 with only 200 epochs, the test
accuracy limited itself to almost the same value (Table 13). On the other hand, the loss in
this case skyrocketed and diverged even more.
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For Configuration 4, we introduced dropout in order to reduce overfitting and trained
for 500 epochs.

The testing results came closer to the training results; however, both of them were
lower due to dropping random nodes from the net. The conclusion we drew was to settle
for a number of epochs of 200 and to further change the architecture, as more training did
not effectively help the network to generalize better.

For Configuration 5, we added a hidden layer with six neurons, which did not improve
the overall performance.

We chose the next configuration (Configuration 6) to have one hidden layer with
27 neurons and another one with six neurons, according to [50,51]. In this situation, the
testing scores were even lower (Table 13).

For Configuration 7, we designed a network with three hidden layers with 30, 20 and
10 neurons on each of them.

We chose Configuration 2 to be the best model because it did not overfit and because it
also obtained some of the best classification scores (ROC AUC score of 77.4%). The five-fold
cross-validation (over 200 epochs with a batch size of 32, Adam Optimizer with a decaying
learning rate) and the averaged scores for 10 runs (70% training and 30% testing data) for
this model are presented in Table 14.

Table 14. Cross-validation and test scores for Configuration 2.

Cross-Validation Test (10 Runs Averaged)

F1 score 85.7% 78.3%
ROC AUC score 85.6% 78.8%

Accuracy 85.8% 78.2%
Sensitivity 83.8% 83.9%
Specificity 87.3% 73.7%

9. Discussion
9.1. Discussion of the Results for the Non-Overlapping Dataset

In order to see whether the algorithms (simple algorithm, with dimensionality reduc-
tion and with feature selection) applied on the data had the same efficiency, we performed
the one-way ANOVA test for independent measures. With regard to the results of the SVM
algorithm (Table 1), we obtained that there was no significant difference between the sets
of cross-validation grid search test score, F1 score, ROC AUC score, accuracy, sensitivity
and specificity (p = 0.48, F = 0.92), which means that all the methods had the same efficacy
(the averages of all groups were equal) for SVM, PCA + SVM, XGBoost Feature Selection
+ SVM, Pearson Feature Selection + SVM, L1 Regularization Feature Selection + SVM,
Random Forest Classification Feature Selection + SVM and Recursive Feature Elimination
Feature Selection + SVM. Additionally, there was no difference between the averages of
the F1 score, ROC AUC score, accuracy, sensitivity and specificity over 10 iterations for
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the methods SVM and PCA dimensionality reduction + SVM (p = 0.51, F = 0.47). Table 15
presents the p and F values for the SVM, DT and kNN algorithms. The results show that
there is no statistical difference between the classification scores obtained with and without
feature selection and dimensionality reduction. Practically all tested methods resulted in
the same classification performance.

Table 15. p and F values for ANOVA test for independent measures, non-overlapping dataset.

SVM DT kNN

Grid search for the
best configuration

Average over
10 iterations

Grid search for the
best configuration

Average over
10 iterations

Grid search for the
best configuration

Average over
10 iterations

p 0.48 0.51 0.85 0.92 0.98 0.72
F 0.92 0.47 0.03 0.008 0.13 0.12

The highest ROC AUC score was obtained for the PCA dimensionality reduction
+ SVM algorithm (93.5%, C = 1000, gamma = 0.083 (1/n_features ∗ 10)). The simple SVM
algorithm led to an ROC AUC score of 92.7% (C = 10, gamma = 0.083, (1/n_features ∗ 10)).
In order to select fewer features, we applied the Recursive Feature Elimination Feature
Selection + SVM method with the top 40 features (C = 1000, gamma = 0.25 (1/n_features
∗ 10)) and obtained an ROC AUC score of 92.7%.

The GBT and RF algorithms resulted in similar ROC AUC scores (90 and 89.4%,
respectively).

With regard to the kNN algorithm, the highest ROC AUC score was achieved for
the XGBoost Feature Selection + kNN (81.4%), with the top 30 features, leaf_size = 5,
n_neighbors = 3 and p = 1. With PCA dimensionality reduction, we obtained an ROC AUC
score of 79.6% (leaf_size = 42, n_neighbors = 4, p = 1) and by applying only kNN, an ROC
AUC score of 80.85% (leaf_size = 5, n_neighbors = 4, p = 1).

We chose Configuration 3 to be the best model, because it did not overfit and because
it also obtained some of the best classification scores (ROC AUC score of 86.1%).

To sum up, the highest ROC AUC scores were obtained, in order, for PCA dimension-
ality reduction + SVM—93.5%, GBT—90%, an artificial neural network with no hidden
layers and 0.8 dropout on the input layer—86.1% and the XGBoost Feature Selection + kNN,
with the top 30 features—81.4%. If we want to select fewer features and to have at the same
time a high classification performance, Recursive Feature Elimination Feature Selection +
SVM algorithm with the top 40 features led to an ROC AUC score of 92.7%.

9.2. Discussion of the Results for the Overlapping Dataset

Table 16 presents the p and F values for the SVM, DT and kNN algorithms. The results
show that there is no statistical difference between the classification scores obtained with
and without feature selection and dimensionality reduction for SVM, DT and kNN grid
search. Only by testing the best resulting model over 10 iterations with the kNN algorithm
did we obtain better classification scores without PCA dimensionality reduction than by
using PCA dimensionality reduction (p = 0.006).

Table 16. p and F values for SVM, DT and kNN algorithms, overlapping dataset.

SVM DT kNN

Grid search for the
best configuration

Average over
10 iterations

Grid search for the
best configuration

Average over
10 iterations

Grid search for the
best configuration

Average over
10 iterations

p 0.012 0.06 0.41 0.52 0.37 0.006
F 3.93 4.65 0.72 0.44 1.1 13.64

The highest ROC AUC score was obtained for the XGBoost Feature Selection + SVM
with all 40 features (89.2%, C = 10, gamma = 0.25 (1/n_features ∗ 10)). The simple SVM
algorithm led to an ROC AUC score of 88.8% (C = 10, gamma = 0.25, (1/n_features ∗ 10))
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and with PCA dimensionality reduction an ROC AUC score of 86% (C = 10, gamma = 0.25,
(1/n_features ∗ 10)).

The GBT and RF algorithms resulted in similar ROC AUC scores (91.7 and 89.6%,
respectively).

In what concerns the kNN algorithm, the highest ROC AUC score was achieved by
applying the kNN algorithm only, without dimensionality reduction and without feature
selection—83.9%, with leaf_size = 5, n_neighbors = 4 and p = 1. With PCA dimensionality
reduction, we obtained an ROC AUC score of 78.7% (leaf_size = 6, n_neighbors = 4, p = 1)
and by applying feature selection, with the top 30 features, either through XGBoost Feature
Selection or Random Forest Classification Feature Selection, we achieved an ROC AUC
score of 82.5% (leaf_size = 5, n_neighbors = 3, p = 1). Over 10 iterations, the best kNN
model (leaf_size = 5, n_neighbors = 4, p = 1) obtained a higher ROC AUC score (81.8%)
without PCA dimensionality reduction that was statistically significant at p = 0.001.

We chose Configuration 2 to be the best model because it did not overfit and because
it also obtained some of the best classification scores (ROC AUC score of 77.4%).

In conclusion, the highest ROC AUC scores were obtained, in order, for GBT—91.7%,
SVM—89.2%, kNN—83.9% and an artificial neural network with no hidden layers and 0.5
dropout on the input layer—77.4%. If we want to select fewer features and to have at the
same time a high classification performance, XGBoost Feature Selection or Random Forest
Classification Feature Selection + kNN with the top 30 features led to an ROC AUC score
of 82.5%.

Concerning the SVM algorithm, the best performing model on the non-overlapping
dataset (which was PCA dimensionality reduction + PCA) was more efficient than the best
model on the overlapping dataset (which was XGBoost feature selection + SVM, where all
40 features were selected)—p = 0.0004, F = 26.7. The same pattern was valid for the artificial
network configurations—Configuration 3 for the non-overlapping dataset performed better
than Configuration 2 for the overlapping dataset (p = 0.0002, F = 40.92).

For the DT, the best-performing algorithms were GBT for both non-overlapping and
overlapping datasets. Their efficiency was, however, similar (p = 0.47, F = 0.57).

For the kNN algorithm, the best-performing model on the non-overlapping dataset
(XGBoost feature selection + kNN, with the top 30 features) was more efficient than the
best model on the overlapping dataset (kNN only)—p = 0.32, F = 1.06.

9.3. Discussion of Feature Selection

By applying the SVM and kNN classification algorithms using the two approaches
(non-overlapping and overlapping), we arrived at four sets of features considered as the
most relevant in terms of their importance in the classification process.

In the case of the non-overlapping approach, by analyzing the top 10 features obtained
by means of the two algorithms, we observed that six of them were common: HRV_hlr,
SCR_fmd, SCL_fmd, GSR_fmd, HRV_NN50 and HRV_NN20. This observation confirms
the consistency of the selection process and indicates that these features have the highest
degree of correlation with fear.

In the case of the overlapping approach, the number of common features selected for
the two algorithms was higher, with nine in the top 10—HRV_hlr, SCR_fmd, SCL_fmd,
GSR_fmd, HRV_NN50, HRV_NN20, GSR_mav, SCL_mav and GSR_nimp—which means
that this approach led to more relevant features for the classification process.

It was also observed that all features selected using the non-overlapping approach
were found in the set of features selected using the overlapping approach. This indicates
that these features are very relevant, being the ones that carry most of the information
needed to classify fear. In reality, there are three categories of basic features: median
frequencies of the power spectrum (fmd), the ratio between the signal energy in the high-
and low-frequency intervals (hlr) and the number of successive heart beat durations (NN).

fmd is a relevant parameter for SCR and SCL, but also for GSR. For SCR, a higher
value of the median frequencies of the power spectrum could be explained by the presence
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of a higher number of NS-SCR. As the increase in NS-SCR frequency is correlated with
fear [22], fmd is a relevant parameter from this point of view. An increasing SCL has
higher median frequencies of the power spectrum than a constant SCL, fmd thus providing
information on the baseline anxiety state. There is therefore a correlation between the
fmd value and fear, an increase in the frequency of this parameter indicating a variable
stress level. A lower value of SCL_fmd corresponds to a more constant SCL level, being
an indicator of relaxation. GSR_fmd is correlated with the distribution of high and low
frequencies depending on the energy level.

NN, the number of high differences between successive NN intervals, is correlated
with high frequency power, reflecting the vagal (PNS) activity [17,52], an indicator of the
ability to adapt to stress.

hlr, the ratio of high-frequency to low-frequency power, reflects the balance between
the sympathetic and vagal activity. It has been applied in an attempt to better estimate the
sympathetic activity [17,52].

The most relevant features are part of the categories fmd, hlr and NN, which are
related to the GSR signal’s phasic and tonic components, as well as to the HRV intervals.
It is intuitive that they are important and that they contain fear-related information, thus
making the classification algorithms more predictable and trustworthy in the decision-
making process.

9.4. Predictions Interpretation Using the LIME Method

In order to understand why the models behave in a certain way, we applied the
LIME method for interpretation and for explaining predictions in a human-understandable
manner [53].

LIME is model-agnostic, as it is able to explain any model without making assumptions
about it, provides a human-understandable and interpretable representation so that the
user is provided with a global intuition of the model and is locally faithful for any particular
data point that replicates the model’s behavior [54].

After applying the SVM algorithm and the LIME method on the non-overlapping
dataset, the prediction interpretation for a particular data sample is presented in
Figure 25. The model was 92% confident that the prediction was 0. The features col-
ored in blue (SCL_fmd[W1], SCR_fnm[W3], GSR_ssc[W3], GSR_fnm[W1], SCR_ssc[W3],
SCR_hlr[W2]) increase the chances to predict the output value of 0, while those colored in
orange decrease it (increase the chances to predict the output value of 1).

In Figure 26, the model is 96% confident that the prediction is 1. The features colored
in orange (HRV_p50[W2], GSR_fmd[W1], HRV_d20[W2], HRV_d20[W3], HRV_p50[W3],
GSR_nimp[W3], HRV_d50[W3], SCL_fmd[W3], SCL_std[W2], HRV_hlr[W2]) increase the
chances to predict the output value of 1.

The features SCL_fmd[W1], GSR_fmd[W1] and SCL_fmd[W3] were selected in the
top 10 most relevant features by the feature selection algorithms (Table 4).
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After applying the SVM algorithm and the LIME method on the overlapping dataset,
the prediction interpretation for a particular data sample is presented in Figure 27. The
model was 93% confident that the prediction was 0. The features colored in blue (SCL_fmd,
HRV_p20, SCR_fmd, SCL_str, SCR_ssc, HRV_hlr) increase the chances to predict the output
value of 0, while those colored in orange decrease it (increase the chances to predict the
output value of 1).
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In Figure 28, the model is 93% confident that the prediction is 1. The features colored
in orange (SCR_wamp, SCR_fmd, GSR_wamp, SCR_hlr, SCR_str, HRV_d20, HRV_d50,
GSR_mav, SCL_mav, SCL_str) increase the chances to predict the output value of 1.
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The features SCL_fmd, SCR_fmd, HRV_hlr, GSR_mav and SCL_mav were selected in
the top 10 most relevant features by the feature selection algorithms (Table 8).
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9.5. Comparison with Similar Studies

Our results are better than those obtained by Machajdik et al. [24], who used heart rate
data to classify fear. They obtained a classification accuracy of 91.47% using DT. For the
overlapping dataset, our GBT algorithm reached an ROC AUC score of 91.7%, while for the
non-overlapping dataset, 93.5% using SVM and 92.7% using Recursive Feature Elimination
for Feature Selection and SVM.

Pan et al. [28] classified the emotional state characterized by low valence and high
arousal based on the physiological features from the DEAP dataset with an average classi-
fication accuracy of 76.46% using a fusion of SVM and DT. Our SVM and DT algorithms
outperformed this result with more than 12% for the ROC AUC score for both the overlap-
ping and non-overlapping dataset.

Our results are better than those obtained by Dominguez et al. [1], who classified
sadness based in PPG and GSR with an accuracy of 91% using Recursive Feature Elimina-
tion for Feature Selection and SVM. In our case, Recursive Feature Elimination and SVM
resulted in an ROC AUC score of 92.7% with the top 40 features from the non-overlapping
dataset. Dominguez et al. validated their model on the DEAP dataset with an F1 score of
81% using bagging trees. Our DT algorithms performed better on both the overlapping
and non-overlapping dataset—ROC AUC scores of 91.7 and 90%, respectively.

Fear was classified based only on the HRV features with an accuracy of 56.9% using the
SVM algorithm [30]. SVM was also favored in [31], where the emotion of fear (considered
as low valence and high arousal) was classified with an accuracy of 62.35% based on
the physiological measurements from the DEAP dataset. Our method outperforms these
studies by more than 25% for the SVM algorithm and more than 15% for the artificial neural
network for the overlapping dataset.

The ENS resulted in an accuracy of 96.33% for the subject-dependent modality and
76.67% for the subject-independent modality using the Leave One Subject Out testing
approach, based on the GSR, ECG and skin temperature signals of 12 subjects (only women)
stored in the MAHNOB dataset [32]. Their classification results are close to ours, but a
disadvantage stands in the fact that they relied on a lower number of subjects.

By collecting and using respiration rate and HRV in both time and frequency domains,
fear classification accuracy using a CNN model reached 95.83%, but at the cost of high
computational requirements [29].

Our methods for fear classification outperformed valence and arousal classification.
Vij et al. [26] obtained a maximum F1 score for valence classification of 77.2%, and 77.5%
for arousal classification using the SVM algorithm. Based on the data from DEAP, using
PPG signals and the normal-to-normal intervals of HRV in the time domain and frequency
domain, valence classification reached 82.1%, while arousal classification reached 80.9%
using convolutional network configurations [19].

In our research from 2019 [34], the highest F1 scores were obtained by using the
Random Forest Classifier with no feature selection, having as input the Higuchi Fractal
Dimension of 32 EEG channels and the physiological recordings (hEOG, vEOG, zEMG,
tEMG, GSR, Respiration, PPG and temperature)—89.96%; Random Forest Classifier and
Fisher selection having as input the Approximate Entropy for each of the 32 EEG channels
and the physiological recordings (hEOG, vEOG, zEMG, tEMG, GSR, Respiration, PPG
and temperature)—89.51%; and Random Forest Classifier and Sequential Feature Selection
using both EEG Power Spectral Densities and Higuchi Fractal Dimensions of the 32 EEG
channels and the physiological recordings (hEOG, vEOG, zEMG, tEMG, GSR, Respiration,
PPG and temperature)—81%. kNN resulted in the highest classification accuracy (87.45%)
with the PCA feature selection and EEG Power Spectral Densities of the 32 channels and
the physiological recordings (hEOG, vEOG, zEMG, tEMG, GSR, Respiration, PPG and
temperature) as input.

In the current research, for the non-overlapping dataset, PCA dimensionality reduc-
tion and SVM led to an ROC AUC score of 93.5% and for the overlapping dataset, GBT
reached an ROC AUC score of 91.7%. For the non-overlapping dataset, Recursive Feature
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Elimination for Feature Selection together with the SVM algorithm with the top 40 features
resulted in an ROC AUC score of 92.7%. For the overlapping dataset, XGBoost Feature Se-
lection or Random Forest Classification Feature Selection and kNN with the top 30 features
reached an ROC AUC score of 82.5%. Thus, the current approach increases classification
performance, relying only on the features extracted from the GSR and HR signals, after
following a protocol which consists of denoising, segmentation, windowing, adjusting an
imbalanced dataset and exhaustively searching for the most optimal classification models’
hyperparameters.

9.6. Limitations of the Current Study

One highly decisive aspect regarding the efforts made within the field of artificial
intelligence and machine learning is the sustained attention given to the studies’ constraints.
It is very important to have a meaningful interpretation of how each detail can change
and impact the results of such experiments and whether the conclusions that one takes are
universal or whether they are drawn from a certain framework.

In our situation, dealing with imbalanced classes represented one of the threshold
problems. As is commonly the case, adjusting and refining the data we worked with
implied creating our own boundaries.

SMOTE could be considered a limitation in this scenario. It was necessary in the
evolution of our experiment due to its ability to balance the two classes; nevertheless,
generating new data often comes with a cost. We performed data augmentation before
feeding the algorithm with samples. Other studies relied on upsampling the minority class
inside the cross-validation loop. Especially during the cross-validation trials, the means
by which SMOTE can render new samples is disputable; the examples split between the
validation and the training sets can be very similar. Thus, the classifier quickly recognizes
those from the validation and test sets, and further provides a high, misleading accuracy
that impacts real progress. However, we tried the inner upsampling as well, but the
results varied little upon examination. We suspect that the neural networks suffer from
overfitting as we judged and compared the results for cross-validation and test from
Tables 11 and 14, respectively. Thus, the cross-validation and test classification scores have
an ascending trend, reaching very high values. The same observation can be made for the
DT algorithms (Figures 6, 7, 12 and 13).

Moreover, another tool was employed to further inspect the dependencies among data:
single factor ANOVA, which tests whether the data are equal. The tests were performed on
the standardized data that the networks used for training and testing. The tool confirmed
that the samples were not susceptible to being identical or too similar (F > F critical,
F = 20.45, F critical = 1.06).

In the DEAP database, participants performed a single self-assessment of the emo-
tional status for the entire video extract. Because the emotional state of the participants
may vary during the 60 s corresponding to the video extracts, a single evaluation may not
correctly represent the evolution of the emotional states for each evaluation window. This
issue can negatively affect the training process of the fear evaluation algorithms, leading to
lower estimation accuracy.

10. Conclusions

In this paper, we performed a thorough analysis of the best methods for classifying the
emotion of fear, considering various machine learning techniques. The results show that
fear can be predicted by extracting the most relevant features from the electrodermal and
heart rate data and by searching for the best parameters which maximize the algorithms’
classification scores. By performing various tweaks, such as resolving the problem of
having an imbalanced dataset, reducing overfitting, testing various configurations, tuning
the most important hyperparameters and identifying various technical and mathematical
limitations, we reached a classification performance (measured with the ROC AUC score,
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which is the most reliable classification metric) that surpassed most of the studies in the
literature or was comparable to some of the most recent ones (although few in number).

We have come to the conclusion that the classification scores are statistically equal,
whether we use the algorithms with or without dimension reduction/feature selection.
The differences in performance are small. However, we selected the algorithms which
maximized the ROC AUC score—for the non-overlapping dataset, PCA dimensionality
reduction + SVM—93.5% and for the overlapping dataset, GBT—91.7%. For the non-
overlapping dataset, if we want to select fewer features and to preserve a high classification
performance, the Recursive Feature Elimination for Feature Selection + SVM algorithm
with the top 40 features had an ROC AUC score of 92.7%. For the overlapping dataset,
XGBoost Feature Selection or Random Forest Classification Feature Selection + kNN with
the top 30 features lead to an ROC AUC score of 82.5%.

The selection of features is consistent, as six of the top 10 features are common to all
employed approaches and algorithms. Additionally, the six common features are relevant
from the biological point of view, knowing from the literature that they are correlated with
the activity of the ANS, which is involved in dealing with situations of stress and fear.

The deficiencies of the current study are detailed in Section 9.6. The main limitations
lie in the fact that we worked on an imbalanced dataset that had to be artificially balanced
using the SMOTE technique, the modality in which the signals were recorded—a single
self-assessment of the emotional status for an entire video extract—and the particular data
points which were missing or had flawed values in the dataset, affecting in this way the
calculations and introducing errors in the features extracted.

The method developed in this study can have implications in both practice and
research. For clinical applicability, we can mention the real-time monitoring of fear during
anxiety treatment sessions, phobias and post-traumatic stress disorder. As a research target,
this method can be used for developing and testing applications that require the real-time
evaluation of the user’s emotional response, such as medical, educational, military, or
sports training.

The technology application scenario involves a future development of a wearable
device that uses these algorithms for clinical applicability in the treatment of anxiety by VR
immersion therapy. Because the use of VR equipment does not allow an easy collection of
EEG data or interpretation of facial expressions, we chose EDA and HR as the only viable
options in these conditions.

As future directions of research, we also plan to apply the same feature extraction,
classification and feature selection methods on data originating from other databases (such
as MAHNOB [33]) and on data recorded from subjects who will play a virtual reality game
dedicated to phobia therapy. We have developed and are currently developing various
games for acrophobia [55], ophiophobia [56], claustrophobia [57], pyrophobia [58] and
fear of public speaking therapy [59]. The best classification algorithms will be used to
automatically estimate the in-game intensity of fear and to adjust the level of exposure
to various threatening stimuli. Moreover, recent explainable methods can be employed
in future work in order to provide a better understanding of the proposed model and
achieved results, such as the EEG-based approach proposed for decoding open/closed
hand motion preparation described in [60] and the brain-inspired spiking neural network
architecture presented in [61].
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