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Abstract: Robot-Assisted Minimally Invasive Surgery (RAMIS) has reshaped the standard clinical
practice during the past two decades. Many believe that the next big step in the advancement of
RAMIS will be partial autonomy, which may reduce the fatigue and the cognitive load on the surgeon
by performing the monotonous, time-consuming subtasks of the surgical procedure autonomously.
Although serious research efforts are paid to this area worldwide, standard evaluation methods,
metrics, or benchmarking techniques are still not formed. This article aims to fill the void in the re-
search domain of surgical subtask automation by proposing standard methodologies for performance
evaluation. For that purpose, a novel characterization model is presented for surgical automation.
The current metrics for performance evaluation and comparison are overviewed and analyzed, and a
workflow model is presented that can help researchers to identify and apply their choice of metrics.
Existing systems and setups that serve or could serve as benchmarks are also introduced and the
need for standard benchmarks in the field is articulated. Finally, the matter of Human–Machine
Interface (HMI) quality, robustness, and the related legal and ethical issues are presented.

Keywords: RAMIS; partial automation; robot surgery validation; robot surgery benchmarking

1. Introduction

The appearance and global spread of Robot-Assisted Minimally Invasive Surgery
(RAMIS) induced a revolution in healthcare during the past two decades. The new approach
extended the benefits of traditional Minimally Invasive Surgery (MIS) and offered lower
risk of complications and faster recovery to patients [1–3]. The advanced endoscopic system
and surgical instruments of RAMIS enabled the execution of more computer-integrated
workflow models, improving the outcome of the interventions, as in the case of the nerve-
sparing technique in radical prostatectomy [4,5]. RAMIS offers a number of benefits to
surgeons, such as ergonomics, motion scaling, and 3D vision. Undoubtedly, the most
successful RAMIS device is the da Vinci Surgical System (Intuitive Surgical Inc., Sunnyvale,
CA, USA), with almost 7000 da Vinci units installed worldwide, which have performed
over 10 million procedures to date. It has been over twenty years since the first generation
robot (Figure 1) was cleared by the U.S. Food and Drug Administration, and today, the
fourth generation—referring to the da Vinci Xi, X, and SP—is available, along with the
research-enhanced version of the original system [6,7], and even the recent pandemic could
not significantly disrupt this domain [8].
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Figure 1. The da Vinci classic teleoperated surgical system, which is still a popular platform for
RAMIS research, due to the DVRK extension. Image credit: Intuitive Surgical.

Many believe that the next step in the advancement of surgery will be subtask-level
automation [9]. Automating monotonous and time consuming subtasks may decrease the
cognitive load on the surgeon, who could then better focus on the more critical steps of the
operation [10,11]. Currently, many research groups are working on this problem [12,13];
some groups chose to work in ex vivo (or rarely in vivo) [14,15] or realistic phantom
environments [16], but simplified silicone phantoms are utilized mostly [15,17–21]. In the
most recent years, the automation of simple surgical training exercises on rigid [22–28]
or deformable [29,30] phantoms tends to receive increasing attention. Among all the
training exercises, the automation of different versions of peg transfer is presented in the
most significant number of studies [22–28,31], probably due to its simplicity, enabling to
elaborate the basic principles and best algorithms for automation.

Regardless of how intensive the research of surgical subtask automation is, there is
no consensus, so far, on the choice of evaluation metrics for the implementation level,
thus, it is hard to compare those methods to each other, or even to the technique of
human surgeons. Fontana et al. state the following on autonomous robotics: “Within
computer science, autonomous robotics takes the uneasy role of a discipline where the features of both
systems (i.e., robots) and their operating environment (i.e., the physical world) conspire to make the
application of the experimental scientific method most difficult.” [32]. According to their study,
the difficulties caused by the large factor of uncertainties often lead to a methodological
problem. Namely, it is practically challenging to perform accurate experimentation, thus
methodological soundness often takes a secondary role in robotic studies, compromising
repeatability and reproducibility of the research projects. The absence of those aspects
forces even the best research works into the category of “proof of concept”, while on the
other hand medical devices are among the most heavily regulated domains (as described
in Section 7).

A contextual characterization model for surgical automation was proposed and an
overview of performance metrics, benchmarks, robustness, ethical and legal questions were
presented in the authors’ related paper [33]. In this article, this contextual characterization
model for surgical automation is refined. The topics of performance metrics, benchmarks,
robustness, ethics, standardization, and regulation are discussed and analysed more thor-
oughly, and methodlogical recommendations are formed. The context was also extended
to questions regarding Human–Machine Interfaces (HMIs) and hand-overs.

This article is structured as follows. Section 2 discusses the characterization of au-
tonomous surgical systems, and a characterization model is proposed. In Section 3, the
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candidates for standard performance metrics of surgical subtask automation are presented,
scored, and evaluated, and a recommendation is formed on the choice of standard valida-
tion metrics. It is also discussed which of those metrics are usable to compare autonomous
surgical subtask execution to the performance of human surgeons and to compare those
autonomous methods to each other. Section 4 overviews the benchmarking environments
usable to further standardize the validation of the autonomous surgical systems, and a list of
candidates is proposed. In Section 5, the issues regarding the interface between the surgeon
and the autonomous system and the problems with hand-overs are addressed. Section 6
discusses the importance of robustness and approaches to its measurement. Section 7
considers the legal and ethical questions of autonomous surgical systems. Finally, Section 8
concludes the topics addressed in the article.

2. Characterization of Autonomy

Before the discussion of the evaluation metrics takes place, it is important to define
the contextual classification for the automation of surgical tasks. The Autonomy Levels
for Unmanned Systems (ALFUS) Ad Hoc Workgroup of National Institute of Standards
and Technology paid a significant effort to define a framework for the characterization of
Unmanned Systems (UMS) from the aspect of autonomy. The resulted ALFUS Framework
concerns a broad spectrum of UMSs, including unmanned aerial, ground, maritime vehicles,
and unattended ground sensors which are applicable in areas like military, manufactur-
ing, search and rescue, or medical domains. Within the ALFUS Framework, a three-axis
representation—the Contextual Autonomous Capability (CAC) model—was defined to
characterize UMSs from the perspectives of requirements, capabilities , and levels of diffi-
culty, complexity, or sophistication. The individually established scores (1–10) along those
three axes, namely Human Independence , Environmental Complexity, and Mission Complexity
are used to give a standard and straightforward characterization of certain autonomous
applications [34].

In this article’s context, a specialized version of the CAC model, Surgical Contextual
Autonomous Capability (SCAC), is introduced and customized to the domain of surgical
robotics. SCAC extends the Level of Autonomy (LoA, Section 2.1) concept of RAMIS,
presented in [10], offering a more detailed classification of autonomous surgical applications.
The other foundation of the SCAC model is the Level of Clinical Realism (LoCR) scale for
surgical automation, defined in [35] as:

• LoCR 1 – Training tasks with rigid phantoms;
• LoCR 2 – Surgical tasks with simple phantoms;
• LoCR 3 – Surgical tasks with realistic phantoms, but little or no soft-tissue interaction;
• LoCR 4 – Surgical tasks with soft-tissue interaction;
• LoCR 5 – Surgical tasks with soft-tissue topology changes.

The LoCR concept (Figure 2) can be interpreted as a compound scale, as it includes
the complexity of both the environment and the surgical task. Thus, in this work it is de-
composed to two individual scales: Level of Environmental Complexity (LoEC, Section 2.2)
and Level of Task Complexity (LoTC, Section 2.3). LoA, LoEC, and LoTC are chosen to be
the three aspects in the specialized, SCAC model (Figure 3), matching the original concept
of the ALFUS Framework. The proposed SCAC model is able the characterize autonomous
surgical applications from the perspectives of human independence and difficulty levels
regarding the task and the environment. Although this article focuses on surgical subtask
automation, our model concerns the whole domain of automation in surgery.
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Figure 2. The Level of Clinical Relevance (LoCR) scale for Robot-Assisted Minimally Invasive Surgery
(RAMIS) with examples. LoCR 1: 3D printed board for the peg transfer training task, designed by
Hwang et al. [27]; LoCR 2: Fundamentals of Robotic Surgery (FRS) training dome; LoCR 3: 3D printed
bone phantom for drilling tasks; LoCR 4: anatomically relevant silicone pelvis phantom [36]; LoCR 5:
in vivo human surgical environment [37].

Figure 3. The three-axis model of Surgical Contextual Autonomous Capability (SCAC). The x, y,
and z axes represent the key characterizing aspects of autonomous surgical applications: Level of
Autonomy (LoA), Level of Environmental Complexity (LoEC), and Level of Task Complexity ((LoTC),
respectively. The characterization of three example applications are illustrated: (a) autonomous peg
transfer surgical training exercise [22] (grading LoA 2; LoEC 1; LoTC 1); (b) autonomous multi-throw
multilateral surgical suturing [17] (LoA 2; LoEC 2; LoTC 3); (c) autonomous bone drilling for total hip
replacement surgery, performed by the ROBODOC system (CUREXO INC., Seoul, Korea) [38] (grading
LoA 4; LoEC 3; LoTC 3).

2.1. Level of Autonomy

Establishing objective conditions for autonomy has been a historical challenge for the
robotics community [39]. First, the Degree of Autonomy (DoA) was introduced in ISO
8373:1994 Robots and robotic devices – Vocabulary, but was defined properly only decades
later in IEC/TR 60601-4-1: Medical electrical equipment – Part 4-1: Guidance and interpretation
– Medical electrical equipment and medical electrical systems employing a degree of autonomy as
“taxonomy based on the properties and capabilities of the medical electrical equipment or medical
electrical system related to autonomy”. IEC/TR 60601-4-1:2017 recommends the parameter-
ization of DoA along four cognition related functions of a system, affecting options of a
medical electrical system: Generate an option; Execute an option; Monitor an option; Select
an option [40]. The LoA concept of RAMIS—originating from the field of autonomous
vehicles [41]—was proposed in [10], modified from [9], simplifying DoA to offer a tax-
onomy to generally assess the development phases of surgical robotics (Figure 4). The
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proposed 6-grade scale is coherent to the mainstream standardization efforts, and defined
as the following:

• LoA 0 – No autonomy;
• LoA 1 – Robot assistance;
• LoA 2 – Task-level autonomy;
• LoA 3 – Supervised autonomy;
• LoA 4 – High-level autonomy;
• LoA 5 – Full autonomy.

Figure 4. The Level of Autonomy (LoA) concept for Robot-Assisted Minimally Invasive Surgery
(RAMIS) proposed by Haidegger [10] with a scale 0–5; from no autonomy to full autonomy.

2.2. Level of Environmental Complexity

The common surgical environment can be described more accurately than the broad
range of areas included in the ALFUS Framework. The proposed scale is read as follows:

• LoEC 1 – Training phantoms: made for the training of surgical skills (e.g., hand–eye
coordination), no or limited, highly abstract representation of the surgical environment,
e.g., wire chaser;

• LoEC 2 – Simple surgical phantoms: made for certain surgical subtasks, modeling
one or few related key features of the real environment, e.g., silicone phantom for
pattern cutting;

• LoEC 3 – Rigid, realistic surgical environment: realistic surgical phantoms or ex/in
vivo tissues/organs, little or no soft-tissue interaction, e.g., ex vivo bone for orthope-
dic procedures;

• LoEC 4 – Soft, realistic surgical environment: realistic surgical phantoms or ex/in vivo
tissues/organs, soft-tissue interaction, e.g., anatomically accurate phantoms for certain
procedures or ex vivo environment;

• LoEC 5 – Dynamic, realistic surgical environment: realistic surgical phantoms or ex/in
vivo tissues/organs, soft-tissue topology changes, e.g., in vivo environment with all
relevant physiological motions.

2.3. Level of Task Complexity

The LoTC represents the Mission Complexity from the ALFUS Framework in the sur-
gical domain. Two components of complexity were compiled into the proposed scale: is it a
training or an actual surgical task, and what are the Situation Awareness (SA) requirements
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of the execution. SA is defined in three levels based on the cognitive understanding of
the (past–present–future) environment, and can be categorized into the following classes:
spatial (locations), identity (salient objects), temporal, goal, and system awarenesses [42,43]:

• Level 1 SA – perception of the environment;
• Level 2 SA – comprehension of the current situation;
• Level 3 SA – projection of future status.

Based on the mentioned considerations, the following LoTC scale is proposed:

• LoTC 1 – Simple training tasks: no or limited, distant representation of surgical task, no
or Level 1 SA is required, e.g., peg transfer;

• LoTC 2 – Advanced training tasks: no or distant representation of surgical task, basic
reasoning and Level 2 or 3 SA is required, e.g., peg transfer with swapping rings;

• LoTC 3 – Simple surgical tasks: no or Level 1 SA is required, e.g., debridement;
• LoTC 4 – Advanced surgical tasks: Level 2 SA, spatial knowledge and understanding of

the scene are required, e.g., suturing;
• LoTC 5 – Complex surgical tasks: Level 3 SA, clinical and anatomical knowledge are

required, e.g., stop acute bleeding.

3. Performance Metrics

For the purpose of validation of an autonomous surgical subtask, the most obvious
idea would be to compare it with the task execution of human surgeons—even with
varying skill levels. It is also viable to compare the performance of the autonomous system
to another, already validated one. For both methods, i.e., human–machine and machine–
machine comparison, the proper choice of performance metrics that describe how well the
subtask is executed is crucial [44].

Since the research domain of surgical subtask automation is still in its infancy, no
standard set of metrics is established yet. In the case of surgical skill assessment, the
standard practice is to appoint a ground truth for that skill level, e.g., the number of surgeries
performed, years of practice, or manual scoring by an expert surgeon. Then, the metrics
measured in the experimental study are correlated to the ground truth to find out which
metrics are best related to the surgical skill [44,45]. To extend this methodology of finding
the metrics best represent the quality of autonomous surgical subtask execution, there are
three possibilities to correlate the metrics of the autonomous execution:

(a) to the ground truth utilized in the case of human surgeons;
(b) to the metrics from human execution that are found to be correlated with surgical skill;
(c) to new ground truth for autonomous execution.

All of these options are found to be quite problematic: in the case of (a), the ground
truth metrics (e.g., years of practice) could not be interpreted for autonomous surgery;
(b) relies on the statement that the same metrics represent the quality of both human and
autonomous execution—which is not only not prove, but it is easy to see the opposite
e.g., for metrics like distance traveled or jerk. The only viable solution appears to be option
(c), to correlate to the new ground truth for autonomous execution. However, to conduct
such a study, a ”population” of autonomous agents would be required, similarly to studies
on human surgeons. Unfortunately, assembling a ”population” of autonomous agents,
proper for the conduction of a study is not possible, and even the term ”population” is
ambiguous in this context.

Although it is not possible to experimentally prove which metrics represent the quality
of an autonomous system or the clinical outcome best, a set of metrics can still be recom-
mended based on their various properties. In the following subsections, the area of MIS
skill assessment is reviewed briefly in terms of performance metrics, then the candidates for
standard performance metrics will be presented, organized by modality. Those metrics are
scored and evaluated along different aspects, and finally, a recommendation on standard
validation metrics is proposed. Additionally, it is important to note that choosing the
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fitting metrics to evaluate the performance of the given application greatly depends on the
system’s SCAC, the relationship of the metrics to choose and SCAC is also discussed.

3.1. Performance Metrics in MIS Skill Assessment

The principle of RAMIS subtask automation is trying to replicate some of the hu-
man surgeon’s actions. Thus, the search for metrics to evaluate the performance of an
autonomous surgical application should start in the area of MIS skill assessment. Finding
the metrics that best correlate with the surgical skills is far from trivial, and already has
an extensive literature [44,45]. For example, one could think that mortality rate after the
surgery would somehow relate to the surgical skills ; the better the surgeon the lower the
mortality rate would be. However, there are a number of different factors contributing to this
metric. For instance, a beginner surgeon may not undertake the operation of patients with
poor health conditions, and does low-risk surgeries instead, resulting in low mortality rate.
In contrast, an expert surgeon may be more willing to undertake high-risk interventions,
but that could result in a higher mortality rate, despite how well the interventions are
performed [46].

One of the most widely used standard surgical skill assessment techniques is the
Global Evaluative Assessment of Robotic Skills in Endoscopy (GEARS-E) [47], in which
the following aspects of execution are scored: depth perception; bimanual dexterity; efficiency;
tissue handling; autonomy; endoscope control. A quite similar and also prevalent technique is
the Robotic Objective Structured Assessments of Technical Skills (R-OSATS) [48], scoring
depth perception/accuracy of movements; force/tissue handling; dexterity; efficiency of movements.
Both methods utilize manual scoring 1 to 5 using the Likert scale [49], thus being subjective,
making it hard to be used in the validation of autonomous applications. Raison et al. [50]
compiled their surgical simulation training study using a custom score set divided to
general scores: time to complete; economy of motion; master working space; instruments out of
view; excessive force; instrument collision, and task specific scores: blood loss; broken vessels;
misapplied energy time; missed target; dropped instrument.

The above-mentioned metrics all represent the technical skills of surgery. However,
the outcome of the surgical procedure is also dependent on the non-technical skills of the
surgeon, and those cannot be interpreted in the case of an autonomous application [44,51].
Those skills are typically rated using a questionnaire filled by the subject, like the NASA
Task Load Index (NASA-TLX) [52], evaluating mental demand; physical demand; temporal
demand; performance; effort; frustration. Non-technical skills are not discussed in more detail
due to the lack of their usefulness in automation unless any adverse event occurs.

3.2. Metrics by Modality

In the followings, various performance metrics are overviewed, and their usability is
discussed. Those metrics are collected from the literature of surgical subtask automation, and
also from the fields of autonomous robotics, autonomous vehicles, and surgical skill assessment,
and are organized into subsections by the modality of the measured values [44,45,53].

3.2.1. Temporal Metrics

Completion time is one of the most commonly used metric both in surgical skill as-
sessment [44,45] and in surgical subtask automation [15,19,24,27,29,54,55]. It characterizes
the whole execution of the subtask, and could be defined in a number of ways, e.g., in
the case of peg transfer, completion time can be taken as the average of each individual
transfer, or as the average for whole subtask executions. For humans, temporal metrics
tend to correlate with skill level or give a measure of hesitation. In the case of automation,
those connect more loosely to the quality of the execution. However, as the lower time
requirement of surgical interventions is beneficial—for both the patient, surgeon, or the
hospital—near-human, or even superhuman completion time is still an important factor in
automation. For instance, Sen et al. [17] measured completion time for autonomous suturing
and compared it to manual executions from the JHU-ISI Gesture and Skill Assessment
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Working Set (JIGSAWS) database [56]. Additionally, Ginesi et al. [25] validated their au-
tonomous task planning algorithm for peg transfer by measuring the task planning time in
different scenarios.

Temporal metrics could also be used to evaluate the elements of the whole system. Time
to compute is one of the most important metrics in the field of computer science and could
describe e.g., perception algorithms, trajectory generation, or planning in autonomous
systems [25]. Completion time and time to compute become extremely useful when working on
benchmarks, then it can be quite a strong factor of comparison between different solutions,
offering inter-comparability for different research groups.

Time is also critical in the reaction to adverse events. Current research efforts in
the area of RAMIS aim at LoA 2, where the surgeon’s supervision is essential, as they
need to recognize and solve adverse events. The reaction time of autonomous surgical
systems becomes important—if not crucial—at LoA 3+, where the autonomous system has
to recognize and react to unexpected events either by solving the emergency autonomously
or by sending a handover request to the human surgeon.

3.2.2. Outcome Metrics

Outcome metrics assess the end result of the whole procedure—or in this case subtask—
or its elements individually, ignoring the way it is performed completely. Such metrics
are e.g., number of errors, quality of the outcome, and success rate. Success rate is proba-
bly the most universal and easy to measure, thus utilized frequently in surgical subtask
automation [15,19,27,29,31,54,55,57]. McKinley et al. [57] evaluated autonomous tumor
resection by end-to-end success rate, while Hwang et al. [27] defined it for the peg transfer
training exercise as the percentile value of the ratio of Success/Attempts for each individual
transfer. Attanasio et al. [21] utilized visible area as outcome metric in autonomous retraction.
Nguyen et al. [30] measured the accuracy of pattern cutting next to autonomous tensioning.
In the study of Shademan et al. [14], autonomous end-to-end anastomosis is presented
and validated in vivo on porcine, where number of sutures, number of suturing mistakes, leak
pressure, luminal diameter reduction, weight at surgery, and weight at sacrifice are measured and
compared to manual execution.

It is important to note that outcome metrics are highly task-specific, thus, making
any comparison between different subtasks is very difficult. On the other hand, the
implementation of those metrics requires less effort than most of the others.

3.2.3. Motion-Based Metrics

Motion-based metrics utilize the position (and sometimes orientation) of the surgi-
cal instrument, the surgeon’s hands, or other tracked objects, as a trajectory or motion
profile [44,50,58–60]. Some of the simplest ones are distance traveled, economy of motion, and
number of movements, but it is also common to use hidden Markov models or other machine
learning algorithms to compare the movement patterns to expert surgeons. Those metrics
offer an objective way to assess the skill of human surgeons, hence, those give a measure of
hesitation, dexterity, and motor skills. However, their usefulness is limited in the field of
surgical subtask automation. For example, distance traveled could be decreased or increased
programmatically without major effects on the quality of execution. Additionally, for the
more advanced metrics, comparing the motion pattern to experts could also be misleading
in the case of autonomy; the motion patterns of human experts contain the restraints and
signature of human anatomy, but an autonomous robot could possibly execute the same
task through different—even more beneficial or optimized—trajectories.

3.2.4. Velocity and Acceleration Metrics

Velocity and acceleration metrics are calculated as the first and second derivatives
of the motion profiles mentioned regarding motion-based metrics [59,61]. These are
widespread in surgical skill assessment, to name some without being exhaustive: peak
speed, normalized speed, number of changes in velocity over time, number of accelerations and decel-
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erations, mean acceleration, or the integral of the acceleration vector. These are related to similar
traits as the motion-based metrics, and thus their usefulness in automation is questionable.

3.2.5. Jerk Metrics

Jerk is a metric deriving from the third derivative of the motion profile. As it has a
quite broad literature from surgical skill assessment [53,59,62] to the diagnostics of neurode-
generative diseases [63,64], it deserves to be mentioned separately. Jerk metrics also tell us
about motor skills; motion patterns are usually become smoother by practice. However, its
usage in automation is quite insignificant, since it is a highly human-specific metric.

3.2.6. Force-Based Metrics

The amount of force applied to the tissues is a significant characteristic of surgery; it is
important not to cause damage by excessive force, but it is also crucial to provide enough
tension e.g., during tightening a knot [65,66]. Additionally, Trejos et al. [53] have shown in
their experimental study that force-based metrics correlate better with experience levels
than temporal metrics in manual MIS. Unfortunately, sensorizing MIS or RAMIS instru-
ments is still very challenging due to the small dimensions or sterilization requirements,
and thus, the usage of force-based metrics is not prevalent in skill assessment or in the
evaluation of automation. However, currently, there are several solutions to measure or
estimate forces and torques on the shaft or the tip of the instruments [67,68], the phantoms,
or even to measure the applied grasping force [69,70]. Using such devices, the metrics of
the force applied, e.g., grasp maximum, grasp integral, cartesian maximum, or cartesian integral
could be included to the validation of surgical subtask automation. Such an example
can be seen in the work of Osa et al. [71], where the applied force was measured during
autonomous thread tightening.

3.2.7. Accuracy Metrics

Accuracy is a minor problem in surgical skill assessment, but it is extremely important
in many areas of automation. Accuracy metrics usually characterize one or few subcompo-
nents or aspects of the autonomous system, such as the positioning accuracy of the utilized
robots and low-level controllers, accuracy of hand–eye registration, pose estimation, or object
detection. The current best practice is to measure the accuracy of the system’s components in
surgical subtask automation in order to validate the application. For instance, Lu et al. [72]
validated their knot-tying application by measuring the tracking error on the instruments.
Additionally, Lu et al. [15] measured the tracking error of the grasping point in their study
on autonomous suture grasping. Sen et al. [17] measured the accuracy of needle detection
in their study on autonomous suturing. Elek et al. [73] measured depth error of the camera,
positioning error, and accuracy of dissection profile extraction among automation metrics in
their autonomous blunt dissection study. Besides validation, accuracy metrics could also
help localize problems during the implementation phase.

Although measuring metrics such as the robot positioning accuracy, the accuracy of
hand–eye registration, the instrument tracking error, or the accuracy of pose estimation can be
highly beneficial, especially during the implementation phase, those properties and errors
are all contributing to the end-to-end positioning accuracy. Thus, for the purpose of validation,
those measurements could be substituted by testing and measuring end-to-end positioning
accuracy, or application accuracy, that can even tell more about the accuracy of the whole
system, than the accuracy of its components [74].

The application accuracy could be measured most precisely by incorporating a high-
precision external system, such as industrial robots or tracking systems (visual or electro-
magnetic). This method is highly recommended, however, in some cases, this is not a viable
option due to the high cost of such devices, and low fidelity methods need to be utilized.
Pedram et al. [75] measured the error of pose estimation of the needle, then used this pose
estimation to measure the application accuracy of the needle in their study on autonomous
suturing. Seita et al. [19] used the following method to fine-tune the end-to-end positioning
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of their system for autonomous debridement: the tool was sent to points on some kind
of grid, using positions from their computer vision solution, then the tool position was
adjusted manually to the desired position on the grid, and from the kinematic data of the
robot, the application accuracy was calculated. As this method, especially by utilizing a grid
with physical constraints to help accurate manual positioning (e.g., holes or dips for the
tool endpoint), offers a simple yet accurate method for the measurement of the application
accuracy. The utilization of such methods is also viable for the validation of autonomous
systems in RAMIS but only recommended if the errors of the ground truth system are
known and error propagation is taken into account.

3.3. Conclusions on Performance Metrics

The main scope of this article is to introduce a criteria set for the evaluation and
validation of subtask-level automation in RAMIS. The most characteristic and meaningful
metrics are compiled into Table 1, and scored for usability in the targeted area of the
assessment of systems at LoA 2 in three aspects: Task Independency, Relevance with Quality,
and Clinical Importance. The metrics with the best overall scores are highlighted with dark
gray, those are highly recommended for the validation of autonomous subtask execution
in RAMIS. The metrics highlighted with light gray are found to be moderately useful, the
utilization of those could be considered in a number of subtasks as well.

Table 1. Characteristic performance evaluation and comparison metrics for RAMIS subtask au-
tomation, grouped by modality. The metrics are scored in three aspects on a scale of 1–3: Task
Independency (1—usable only for specific tasks; 2—can be used for any task, but not inter-comparable;
3—can be used for any task, different tasks are comparable); Relevance with Quality of task execution
(1—irrelevant; 2—relevant, but cannot correlate with quality; 3—relevant and correlates with the
quality of task completion); Clinical Importance (1—not important; 2—moderately important; 3—very
important). The scores are summed in the last column for each metric and the ones with the best
scores are highlighted with light gray (6–7) and dark gray (8–9).

Modality Metric
Task Relevance Clinical Overall

Independency with Quality Importance Score

Temporal
Completion Time 2 2 2 6
Time to Compute 2 2 2 6

Reaction Time 3 2 3 8

Outcome
Rate of Errors 2 3 3 8

Quality of the Outcome 2 3 3 8
Success Rate 2 3 3 8

Motion-based
Distance Traveled 2 2 1 5

Economy of Motion 2 2 1 5
Number of Movements 2 2 1 5

Velocity and Acc.
Peak Speed 2 1 1 4

Number of Accelerations 2 1 1 4
Mean Acceleration 2 1 1 4

Jerk Jerk 3 1 1 5

Force-based
Grasp Force 1 3 3 7

Cartesian Force 2 3 3 8

Accuracy
Accuracy of Pose Estimation 3 3 3 9
Accuracy of Object Detection 3 3 3 9

Application Accuracy 2 3 3 8
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Based on the overall scores, outcome and accuracy metrics (accuracy of object detection,
accuracy of pose estimation, and application accuracy) were found to be the best among all
for the validation of autonomous surgical systems, in general. It is important to note
that accuracy metrics perform slightly better in task independency, since, unlike outcome
metrics, those offer inter-comparability between different tasks. Temporal and force-based
metrics also received good overall scores, with reaction time and Cartesian force in the “highly
recommended” category. Although the measurement of force-based metrics requires addi-
tional sensors, unlike other metrics, those metrics tell a lot about the quality of execution
and also the utilized force is very important clinically. Motion-based, velocity, acceleration,
and jerk metrics received relatively low scores, the usability for the performance assessment
of autonomous surgical subtasks were found questionable.

The choice of metrics greatly depends on the certain subtask and the experimental
setup. Thus, a flowchart is supplied that can be used to compile a list of metrics for the
validation of the given autonomous surgical application (Figure 5). The list of metrics
depends on, among the others, the type of benchmarking environment, the handing of
soft tissues, or the LoEC and LoA of the system. For example, for the validation of
an instrument pose estimation algorithm for surgical videos using a benchmark dataset
requires completion time accuracy of object detection and accuracy of pose estimation, while the
validation of a system performing autonomous peg transfer should to be validated using
completion time, application accuracy, success rate, accuracy of pose estimation and accuracy
of object detection. Important to note that accuracy of pose estimation, and accuracy of object
detection are suggested to be added to the list in any case, since those can be used for the
validation of almost any application in the field of surgical subtask automation, and also
received the highest overall scores.

Figure 5. Flowchart to compile a list of performance metrics for the validation of different autonomous
applications. The proposed method requires different properties of the autonomous surgical ap-
plication, the task and the validation environment as input, and outputs the list of recommended
validation metrics.
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4. Benchmarking Techniques

The recommended metrics allow the comparison of different autonomous applica-
tions. Additionally, testing and evaluating autonomous applications in a benchmark
environment—a standardized problem or test that serves as a basis for evaluation or
comparison—offers an even more solid basis for both human–machine and machine–
machine comparisons [76]. Currently, the usage of benchmarking techniques is not preva-
lent in the field of surgical subtask automation, still it is used intensively in the area of
autonomous driving. The development of autonomous vehicles is considered analogous
to surgical subtask automation due to the high complexity of the environment and the
presence of potentially life-threatening risks [77].

As the development of autonomous subtask execution in surgery progresses and gets
closer to clinical use, the need for evidence on the autonomous system’s capabilities will
rise. In [78], Fiorini states the followings: “Benchmarks will be the key to build a solid confidence
on the robots’ capabilities to understand and react to clinical situations as a human surgeon would
do, and the process of medical certification for surgical robots will need to be developed.” Next to low
LoEC it is relatively convenient to create benchmarks, but unfortunately, as LoEC increases,
meaning realistic or even dynamic environments, the development of benchmarks will be
considerably more difficult.

In the research of self-driving, benchmarking techniques can be compiled into three cat-
egories: benchmark datasets to test system components like object detection accuracy [79–82];
standard simulated environments like the scenarios developed for the CARLA Car Simula-
tor [83,84]; physical test towns like mCity [85].

Autonomous surgical subtasks could also be evaluated using the mentioned types
of benchmarks. Benchmark datasets for instrument segmentation are already available
within the yearly MICCAI Challenges, including ground truth for training and evaluation of
accuracy [86,87]. Among the surgical simulators, the Asynchronous Multi-Body Framework
(AMBF) [88] has to be emphasized, as it is open-source, offers da Vinci and Raven robot
arms, and supports the simulation of deformable objects. Moreover, AMBF contains a
built-in peg transfer board that could already serve as a benchmark. Important to note
the 2021 AccelNet Surgical Robotics Challenge, also based on the AMBF simulator, offers a
simulated setup to develop autonomous suturing applications [89].

Benchmarking physical setups presents a bigger challenge to implement [90]. Thanks
to 3D printing technology it is possible to create and distribute some standard physical
benchmarks, such as training phantoms or rigid surgical phantoms. The peg transfer
board presented in [27], whose design files are freely available, is a perfect candidate
for a standard physical benchmark. By defining a standard execution of the exercise
and standard evaluation metrics a simple benchmark could be compiled to measure and
compare the performance of different autonomous algorithms.

The utilization and spread of benchmarks alongside the standard performance metrics
in RAMIS subtask automation would potentially make the performance of different au-
tonomous systems much more comparable. Since a number of challenges offer benchmark
datasets, even standard simulated environments, the authors highly recommend the usage
of these as is. In terms of physical benchmarks, 3D printing technology makes the sharing
and reproducing of phantom environments and other objects easier and cheaper than
ever [36], and hopefully the practice of using 3D printable surgical phantoms will soon
spread in the research community.

5. Human–Machine Interface Quality

The quality of the HMI has an important role in the clinical usability of autonomous
surgical systems, especially between LoA 1 and LoA 4, where the human surgeon and
the autonomous system perform the surgical intervention together. In the field of RAMIS
subtask automation, it is quite uncommon to test and validate the HMI of the autonomous
system. However, in related research fields, such as self-driving vehicles or image-guided
surgery, the HMI is validated much more frequently [91,92]. Usually, the quality of the
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HMI is assessed using the performance metrics seen in Section 3, like time to complete or
success rate; the aim of those tests is to assess the performance of the human surgeon and
the autonomous system together.

Another important aspect of HMI quality is the system’s hand-over capability, espe-
cially with LoA 2–4 systems. During a hand-over, as it is described in Section 3.2.1, time
is the most crucial factor. Firstly, the autonomous system should recognize the adverse
event and have to initialize a hand-over request to the surgeon as soon as possible, then the
autonomous system has to yield the control safely. Secondly, in the case of surgeon-initiated
hand-overs the system has to yield the control to the surgeon again, safely and with the
lowest possible delay [93].

The assessment of general HMI quality and hand-over capabilities is rarely found in
surgical subtask automation-related studies currently. However, such tests could enhance
the clinical relevance, and also could improve the trust in those systems, by the public and
the relevant authorities.

6. Robustness

Robustness is defined in a number of ways [94], the followings are the best fitting to
surgical subtask automation:

• The ability...to react appropriately to abnormal circumstances (i.e., circumstances “outside of
specifications“). [A system] may be correct without being robust. [95];

• Insensitivity against small deviations in the assumptions [96];
• The degree to which a system is insensitive to effects that are not considered in the design [97].

Reaching higher LoA, LoEC, and LoTC, the robustness of autonomous surgical systems
becomes crucial. It is conclusive that LoA cannot be increased without higher robustness,
hence unexpected events may result in unwanted human handover requests, potentially
causing a dangerous scenario. The surgeon’s SA might decrease during autonomous
execution, affecting handover performance negatively. Furthermore, as LoEC and LoTC
are increasing, the number of uncertainties and not considered circumstances also rises.

To measure the robustness of an autonomous system, additional methods should be
utilized, the performance of the system should also be tested next to unexpected events. In
the case of the autonomous training task, it might be relatively simple to even manually
generate such events (e.g., accidentally dropping grasped objects). Another example of
robustness testing can be seen in the work of Elek et al. [73], where the performance of the
perception algorithm was measured on different textures. However, in the case of higher
complexity, the utilization of automatic robustness testing software may be necessary [98].

It is also common in deep learning to add noise to the input to increase robust-
ness and avoid overfitting, like in the autonomous soft-tissue tensioning application by
Nguyen et al. [30].

7. Legal Questions and Ethics

During the academic research phase, legal and ethical aspects of an autonomous
surgical application or system are usually considered less. However, at the point when
development approaches clinical usage, those aspects become critical. Since autonomous
surgical systems could potentially endanger the life of the patient, the introduction of new
standards and regulations in the field can be extremely difficult and elaborate. The avail-
ability of best practices for the validation of such systems could support those processes.

In the field of automation, liability is usually a prickly question, but in general, as LoA
increases, the liability in RAMIS is gradually shifting from the surgeon to the manufacturer
of the system. The regulating authorities, such as the European Commission in the case of
the European Union, are to protect citizens from harm caused by, in this case, autonomous
surgical applications. Thus, in order to commercialize such solutions, the manufacturer
needs to adequately demonstrate that the autonomous system is capable of performing
the intervention with equal or better performance as a human surgeon would do [78]. A
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proper characterization model and standard evaluation metrics would probably be quite
useful in the procedure of legal approval.

The effect of automation on the surgeons’ performance is also a significant concern.
The utilization of autonomous functions in surgery may increase the reliance on them and
can lead to a decrease of skills for human surgeons. This lack of skills can be crucial and
even may risk the life of the patient in cases when the autonomous system fails and the
human surgeons need to take over—especially if such failure is infrequent.

The definitions and safety requirements of surgical robotics are established in the
standard IEC 80601-2-77 [40]. The future standardization of the SCAC model, metrics,
benchmarks, or even autonomous surgical applications could be initiated through the
following organizations:

• International Organization for Standardization (ISO);
• International Electrotechnical Commission (IEC);
• Institute of Electrical and Electronics Engineers (IEEE)
• Strategic Advisory Group of Experts (SAGE), advising World Health Organization

(WHO);
• European Society of Surgery (E.S.S.) in Europe;
• Food and Drug Administration (FDA) in the USA.

In addition to the medical ethics, like the Hippocratic oath of ”do no harm”, Artificial
Intelligence (AI) ethics are also touching on autonomous surgery, such as the FAST Track
Principles (Fairness, Accountability, Sustainability, and Transparency), and should be
considered during development. Ensuring fairness, like avoiding algorithmic or statistical
biases, is essential, since in the case of autonomous surgery those biases may lead to
fatal consequences. Additionally, for example, in the case of deep learning methods,
transparency could not be ensured; although the result of the network shows good accuracy,
what it learned could not be interpreted by humans, and no one could predict its output
from inputs yet unseen by the network [99].

Concepts such as sustainability, from roboethics, a research field, concentrating on
ethics in robotics [100], should also be applied to the development of autonomous surgical
systems. Moreover, regulations on safety and privacy must be followed, like the Medical
Devices Regulation (EU) 2017/745 (MDR) and the General Data Protection Regulation (EU)
2016/679 (GDPR) within the European Union. Furthermore, the contents of the recently
published standard IEEE 7007™ – Ontological Standard for Ethically Driven Robotics and
Automation Systems is also going to be of critical significance in the development of surgical
subtask automation.

8. Conclusions and Discussion

In this article, standard evaluation methods, metrics, and benchmarking techniques
were proposed for performance evaluation and validation of systems executing surgical
subtasks autonomously. A three-axis SCAC model is proposed to represent more detailed
characterization of the autonomous capabilities in RAMIS and also in the wider field of
surgery. This SCAC model uses the five and six grade scales of LoA, LoEC, and LoTC to
represent autonomous surgical systems from a broad view.

Based on the review of literature, a set of performance metrics are presented and
grouped by modality. After scoring the metrics by the aspect of usability of RAMIS
subtask automation, the metrics were ranked, their properties were discussed. In the
field of surgical subtask automation the most widely used, and also the most meaningful
metrics are the outcome and accuracy metrics. Outcome metrics like success rate are easy
to implement, but—especially as SCAC increases—specific outcome metrics can also be
defined to the given subtask. Accuracy metrics are also quite useful to validate components
of the autonomous system, as accuracy of pose estimation and accuracy of object detection, are
among the ones that could and should be used for the validation of almost any autonomous
surgical system, or their subsystems. The measurement of temporal metrics is very common,
but as long as it is similar to human execution, it is less informative, except in the case of
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benchmarks, where those become a good basis of comparison. Currently, in the field, the
utilization of force-based metrics is quite uncommon, but as LoEC increases, the validation
of delicate tissue handling will probably become a critical issue.

A recommendation for the universal list of metrics cannot be given, since the metrics
best represent the quality of the autonomous execution greatly depend on the task and the
validation environment. Instead, a methodology of choosing metrics for the validation of
certain autonomous applications was also proposed and illustrated in a flowchart (Figure 5).

A review of current and a proposal for further benchmarking techniques are presented
for surgical subtask automation. Benchmarks are going to have a significant role in the
future, during the introduction of subtask-level autonomy to the clinical practice by sup-
porting the authorities’ and the patients’ trust in the autonomous systems. At present, a
significant portion of research involves the automation of the peg transfer training task,
hence, it serves as an adequate model to act as a foundation for surgical subtask automation.
Additionally, the design files necessary for the 3D printing of the board and the pegs are
available online [27]. In terms of benchmark datasets and simulations, the materials for a
number of challenges are available, and even when the challenge is over, it could still serve
as a good benchmark for future research projects.

The matter of HMI quality, robustness, and legal and ethical questions were also
discussed in brief. One of the most serious concerns regarding autonomous surgical
systems—below LoA 5, full autonomy—is how a hand-over could be performed in the case
of an emergency or malfunction. This concern is further strengthened by the trends in other
areas, like self-driving vehicles, where automation has led to increasing reliance on those
autonomous systems by the human operator.

The mentioned numerous concerns and fears related to autonomous surgical systems
put an increasing need on the research community to perform through validation and
testing on their developed applications. The proposed methodologies and recommenda-
tions could help the community to quantitatively and soundly measure the quality of the
autonomous executions, and to provide a ground to compare the results of various research
groups. At the point, when surgical subtask automation will start to break into the clinical
practice, the proposed methodologies could also be used as the basis of emerging standards.
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