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GCK Gene-Body Hypomethylation Is Associated with
the Risk of Coronary Heart Disease
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Objectives. Glucokinase encoded by GCK is a key enzyme that facilitates phosphorylation of glucose to glucose-6-phosphate.
Variants of GCK gene were shown to be associated with type 2 diabetes (T2D) and coronary heart disease (CHD). The goal of this
study was to investigate the contribution of GCK gene-body methylation to the risk of CHD. Design and Methods. 36 patients (18
males and 18 females) and 36 age- and sex-matched controls were collected for the current methylation research. DNAmethylation
level of the CpG island (CGI) region on the GCK gene-body was measured through the sodium bisulfite DNA conversion and
pyrosequencing technology. Results. Our results indicated that CHD cases have a much lower methylation level (49.77± 6.43%)
compared with controls (54.47± 7.65%, 𝑃 = 0.018). In addition, GCK gene-body methylation was found to be positively associated
with aging in controls (𝑟 = 0.443, 𝑃 = 0.010). Conclusions. Our study indicated that the hypomethylation of GCK gene-body was
significantly associated with the risk of CHD. Aging correlates with an elevation of GCK methylation in healthy controls.

1. Introduction

Diabetes and cardiovascular disease (CVD) are two common
diseases with close relationship [1]. At least 65% of diabetic
patients died from heart diseases or stroke. Even when glu-
cose levels are under control, diabetes would greatly increase
twofold of the risk of heart disease and stroke [2]. As a major
type ofCVD, coronary heart disease (CHD)has drawn a lot of
attention in its pathogenic mechanism. Evidence has shown
that variation in CHD incidence and mortality among differ-
ent populations may be explained by the interaction between
environmental and genetic factors [3]. Environmental factors
contributing to the development of CHD include diabetes,
hypertension, plasma lipid, smoking, and obesity [4, 5].

Aberrant epigenetic modifications may bridge the envi-
ronmental and genetic factors and thus lead to pathological
consequences such as diabetes and CVD [6]. Familial aggre-
gation of CHD, diabetes, and obesity can reflect epigenetic
processes that can be explained by common environmental
factors such as diet habits [3, 7]. By introducing or removing
CpG sites, some single nucleotide polymorphisms (SNPs)
may impact gene expression through the alteration of DNA
methylation level and contribute to the risk of disease [8].

DNA methylation is an important modification of epi-
genetics and often occurs at CpG dinucleotides in mam-
mals [9]. Hypermethylation in promoter regions has been
known to repress gene expression [10, 11]. However, DNA
methylation in gene-body shows a bell-shaped correlation
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with gene expression [12, 13]. Specifically, genes with middle-
level expression have higher levels of gene-body methylation
in plants and invertebrates [13]. Positive correlation between
expression and gene-body methylation is also presented in a
variety of human tissue types [12, 14]. Adrian Bird proposed
that gene-body methylation represented “orphan promoters”
that might be used at the early stages of development [15].
Methylation of gene-body may activate the transcription of
canonical gene, although the functions of the gene-body CGI
remain largely unknown [11].

As a candidate gene of type 2 diabetes (T2D) [16], GCK
encoded glucokinase that is a key enzyme of glucose phos-
phorylation [17, 18]. Studies have shown that the occurrence
of cardiovascular morbidity and mortality is positively asso-
ciated with the plasma glucose levels [19, 20]. Glucokinase is
able to facilitate hepatic glucose uptake during hyperglycemia
and determines the threshold for glucose-stimulated insulin
secretion [17, 21–23]. The specific molecular mechanisms
underlying the progression to hyperglycemic states remain
uncertain. A GCK promoter variant (−30G>A, rs1799884)
was shown to increase the risk of both T2D [24, 25] and
CHD[26, 27].Hypermethylation of hepaticGCK promoter in
aging rats contributes to diabetogenic potential [28]. Human
GCK CpG island (CGI) is located in the gene-body but not
near promoter. Here, we performed an association study of
GCK gene-body methylation with the risk of CHD in a well
matched case-control cohort.

2. Materials and Methods

2.1. Samples and Clinical Data. 36 CHD patients (18 males
and 18 females) and 36 age- and sex-matched controls were
collected from Ningbo Lihuili Hospital. The details of the
inclusion criteria were presented in our previous publication
[29]. All the collected individuals were Han Chinese from
Ningbo city in eastern China. All of the experiments were
approved by the Ethical Committee of Ningbo Lihuili Hospi-
tal, and written informed consent was obtained from all the
subjects.

2.2. Biochemical Analyses. Nucleic acid extraction analyzer
(Lab-Aid 820, Xiamen, China) was used to extract genomic
DNA from peripheral blood samples. The concentrations of
extracted DNAweremeasured by the ultramicro nucleic acid
ultraviolet tester (NANODROP 1000, Wilmington, USA).
Plasma levels of biochemical factors (includingTG,TC,HDL,
LDL, ApoA 1, ApoB, ApoE, Lp(a), hs-CRP, ALB, GLB, ALT,
AST, ALP and GGT) were measured using the methods
described in our previous study [30]. DNA methylation
was measured using the sodium bisulphite DNA conversion
coupledwith pyrosequencing [30].GenomicDNAwas chem-
ically modified by sodium bisulfite (EpiTech Bisulfite Kits;
Qiagen) to convert all unmethylated cytosines to uracils while
the methylated cytosines unchanged. The bisulfite converted
DNA and the polymerase chain reaction (PCR) primers
which were designed by PyroMark Assay Design software
were mixed and performed with PCR (Pyromark PCR Kit;
Qiagen).The PCR products were degenerated and released to
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Figure 1: The four tested CpG sites in GCK gene.

single strand products for pyrosequencing and the sequenc-
ing was conducted by Q24 machine and reagents (Pyromark
Gold Q24 Reagents; Qiagen). The forward primer sequence
was 5-TGGATGGTTTAGTGTATAAGTTGTATT-3. The
reverse primer sequence was 5-Biotin-CACCTCATCCTC-
CACATTCAT-3, and the sequencing primer sequence was
5-AAGTGGGGTTTAAAAAG-3.

2.3. Statistical Analyses. Statistical analyses were performed
using the SPSS package (version 16.0) to investigate the asso-
ciation ofGCK methylation with CHD and various biochem-
ical factors. Values of biochemical indicators deviated from
normality were corrected via a logarithmic transformation.
A more conservative nonparametric approach was used for
data which were unable to be normalized.The correlations of
DNA methylation with age and biochemical indicators were
performed using SPSS package and R statistical software. All
the 𝑃 values were adjusted for the history of age, smoking,
diabetes, and hypertension. Methylation levels were pre-
sented as means ± SD.The adjusted calculation was analyzed
by SPSS package with binary logistic regression. A two-tailed
𝑃 < 0.05 was considered to be significant.

3. Results

Two CGIs of GCK gene (hg19, chr7: 44183870-44229022)
were located in the gene-body. One of the CGIs was too short
(223 bp) to design the primers for bisulfite pyrosequencing.
Therefore, the other CGI was used for the methylation assay.
As shown in Figure 1, this CGI spans exon 9 and part of
exon 10 (hg19, chr7: 44184771-44185695). DNA methylation
percentages of four CpG sites were obtained using the
bisulfite pyrosequencing assay on a 210 bp fragment of intron
9 and exon 9 (hg19, chr7: 44184929-44185138). Significant
correlation of the DNA methylation levels was observed
among the four CpGs (Figure 1, 𝑟 = 0.6–0.8, 𝑃 < 0.0001).
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Figure 2: The methylation levels of four CpG sites on GCK gene-body of one sample.

The methylation levels of the four CpG sites on GCK gene-
body were measured using the Pyromark Q24 instrument
(Figure 2). In our study, the raw data of methylation levels
of the four CpG sites on GCK gene-body were presented in
Supplemental Table 1 (See Supplementary Material available
at http://dx.doi.org/10.1155/2014/151723). Mean methylation
level and each of the four CpG sites were used to compare the
differences between cases and controls, between males and
females, and the relationship between GCK methylation and
biochemical indicators.

As shown in Table 1 and Supplemental Figure 1, signifi-
cant difference was observed between CHD cases and healthy
controls. CHD cases have a significantly lower methylation
level (49.77 ± 6.43%) compared with controls (54.47 ± 7.65%,
𝑃 = 0.018). The similar trend was observed in three CpGs
(Table 1 and Supplemental Figure 2: CpG2: 43.42 ± 7.93%
versus 49.42 ± 8.26%, 𝑃 = 0.005; CpG3: 56.81 ± 8.74%
versus 62.06 ± 9.58%, 𝑃 = 0.036; CpG4: 48.86 ± 7.44%
versus 53.67 ± 7.11%, 𝑃 = 0.031). There was no difference
of GCK methylation level between males and females and no
significant interaction between gender and disease (Table 1,
𝑃 > 0.05). A significant difference of the CpG2 methylation
level with CHD was observed in males (Table 2, 𝑃 =
0.030). Mean GCK methylation was associated with aging
in controls (𝑟 = 0.443, 𝑃 = 0.010; Figure 3). No gender-
specific difference was found for the association between
GCK methylation and age (data not shown).

We explored the correlation of these biochemical indi-
cators and DNA methylation. As shown in Supplemental
Table 2, significant associations were observed for triglyc-
eride (TG, CpG2: 𝑃 = 0.044; CpG3: 𝑃 = 0.019), low-
density lipoprotein (LDL, CpG3: 𝑃 = 0.029), apolipoprotein
B (ApoB, CpG2: 𝑃 = 0.048), alanine amiotransferase (ALT,
CpG2: 𝑃 = 0.044), and 𝛾-glutamyl transpeptidase (GGT,
CpG1: 𝑃 = 0.020; CpG2: 𝑃 = 0.039, CpG3: 𝑃 = 0.006, CpG2:
𝑃 = 0.033).

4. Discussion

Type 2 diabetes (T2D) patients often have high risk of
developing cardiovascular diseases including CHD [31]. We
hypothesize that GCK gene as a candidate diabetic gene may
also contribute to the risk of CHD. Our results revealed that
CHD cases have a hypomethylation level in GCK gene-body
compared with controls. In addition, average GCK methyla-
tion level elevated along with increasing age in controls.

The methylation levels of both promoter and gene-
body are highly dynamic [32]. DNA methylation causes
gene silencing through blocking the binding of transcription
factors or methyl-binding proteins [33]. Genome-wide study
of DNAmethylation has identified that aberrant methylation
of gene bodies was able to contribute to the risk of heart
failure [34]. DNA methylation marks on gene bodies were
shown to regulate gene expression [11]. Positive correlation
between gene-body methylation and gene expression was
presented in a variety of human tissue types [12, 14]. Gene-
body methylation was shown to play an important role
in regulating cell context-specific alternative promoters in
human and mouse tissues [35].

In the present study, we found that there was no
specific CGI in the human GCK promoter. Evidence has
shown that transcribed regions tend to have higher levels
of methylation than intergenic or promoter regions [13, 36].
Hypermethylation of gene-body methylation often indicates
a higher level of gene expression in human tissue and cell
types [13, 35]. It can slow down the transcription elongation
and suppress the initiation of abnormal transcription [37].
Gene-bodymethylation represented “orphan promoters” that
might be used at the early stages of development [15].
DNA methylation can cause chromatin structure changes
of the corresponding region in the genome and change the
restriction endonuclease sites [38].Thereby we speculate that
the decrease ofGCKmethylation inCHDcasesmay influence
the transcription and gene expression.

The rat study has shown that GCK gene methylation
is important in the early development [39]. Reduced GCK
expression was shown in aged rats through the elevation of
GCK gene promoter methylation [28, 40]. Rat GCK mRNA
in hepatocytes increased 4-fold upon treatment with 5-Aza-
CdR, a cytosine methylation inhibitor [28]. Downregulation
ofGCK expression was reversed by the 5-Aza-CdR in the cell
model of steatosis [40].

Differences of age-dependent methylation have been
observed in multiple independent studies [41–43]. Aging
induces global and complex changes of DNA methylation in
humans [42]. Global methylation levels become more vari-
able between monozygotic twins during their lifetime [44].
Age-dependent gene hypermethylation was also observed
in human skin tissue [45]. In the present study, we also
found a significant association between GCK gene-body
hypermethylation and aging in healthy individuals.

Our study confirmed that humanGCK gene-bodymethy-
lation level was positively correlated with ageing in the
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Figure 3: Correlation between GCK gene DNA methylation and age. The P values were adjusted by age, history of smoking, diabetes, and
hypertension.
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Table 1: Comparison of GCK gene DNA methylation levels within subgroups and gender separately.

DNA methylation (%) Case Control Subgroup P Male Female Gender P Gender ∗ subgroup
Interaction P

CpG1 50.00 ± 8.34 52.72 ± 8.25 0.232 52.11 ± 8.01 50.61 ± 8.73 0.955 0.556
CpG2 43.42 ± 7.93 49.42 ± 8.26 0.005∗ 46.14 ± 9.16 46.69 ± 8.10 0.932 0.668
CpG3 56.81 ± 8.74 62.06 ± 9.58 0.036∗ 59.92 ± 9.04 58.94 ± 10.00 0.887 0.909
CpG4 48.86 ± 7.44 53.67 ± 7.11 0.031∗ 50.83 ± 7.48 51.69 ± 7.83 0.258 0.667
Mean 49.77 ± 6.43 54.47 ± 7.65 0.018∗ 52.25 ± 7.23 51.99 ± 7.67 0.842 0.658
The P values were adjusted by age, history of smoking, diabetes, and hypertension.
∗P < 0.05.

Table 2: Comparison of GCK gene DNA methylation levels between cases and controls in male and female separately.

DNA methylation (%) Male Female
Case Control P Case Control P

CpG1 50.17 ± 8.50 54.06 ± 7.19 0.321 49.83 ± 8.42 51.39 ± 9.20 0.674
CpG2 42.72 ± 9.52 49.56 ± 7.57 0.030∗ 44.11 ± 6.15 49.28 ± 9.12 0.067
CpG3 57.17 ± 8.99 62.67 ± 8.46 0.155 56.44 ± 8.73 61.44 ± 10.79 0.138
CpG4 48.06 ± 7.01 53.61 ± 7.06 0.085 49.67 ± 7.96 53.72 ± 7.36 0.228
Mean 49.53 ± 6.58 54.97 ± 6.98 0.063 50.01 ± 6.45 53.96 ± 8.44 0.168
The P values were adjusted by age, history of smoking, diabetes, and hypertension.
∗P < 0.05.

healthy controls. We speculated that GCK hypermethylation
might play an important role to protect people from cardio-
vascular diseases, although the exact mechanisms need to be
clarified in the future study.

There are some limitations of our results to be taken
with caution. Firstly, we explored only a part of CGI. Our
findings of these four CpGs may not represent the whole
CGI of GCK gene. Secondly, the sample size of our study
is small. Validations of our findings are needed in larger
samples and in other ethnic populations. Last but not least, we
cannot exclude a chance that variations in the administrated
drugs and diets may affect our findings onGCK methylation,
although our results have been employed with a strict adjust-
ment by multiple factors including hypertension, smoking
habit, and diabetes.

5. Conclusion

In conclusion, our results found that lower methylation level
of GCK gene-body was associated with the risk of CHD in
Chinese. Our results also confirmed that GCK methylation
level had a positive correlation with aging in humans.
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