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Heritable variation in traits under natural selection is a prerequisite for evol-
utionary response. While it is recognized that trait heritability may vary
spatially and temporally depending on which environmental conditions
traits are expressed under, less is known about the possibility that genetic
variance contributing to the expected selection response in a given trait
may vary at different stages of ontogeny. Specifically, whether different
loci underlie the expression of a trait throughout development and thus pro-
viding an additional source of variation for selection to act on in the wild, is
unclear. Here we show that body size, an important life-history trait, is heri-
table throughout ontogeny in the nine-spined stickleback (Pungitius
pungitius). Nevertheless, both analyses of quantitative trait loci and genetic
correlations across ages show that different chromosomes/loci contribute
to this heritability in different ontogenic time-points. This suggests that
body size can respond to selection at different stages of ontogeny but that
this response is determined by different loci at different points of develop-
ment. Hence, our study provides important results regarding our
understanding of the genetics of ontogeny and opens an interesting
avenue of research for studying age-specific genetic architecture as a
source of non-parallel evolution.
1. Introduction
How predictable is evolution? This question has intrigued evolutionary biol-
ogists for over a century [1–4], and although much progress has been made
towards answering it, more remains to be learned about conditions and pro-
cesses influencing the degree of predictability in evolutionary responses [5–8].
Understanding when and why evolution is predictable is not only of pure aca-
demic interest but also of practical utility. For instance, when dealing with the
most pressing environmental problem of our times, global environmental
change, there is a need to predict and understand if and how different species
and populations will be able to adapt to changing environmental conditions [9].

Both empirical and theoretical work have established that when populations
repeatedly and independently adapt to similar environmental conditions from
the same pool of ancestral genetic variation, evolution is often (but not always) pre-
dictable: parallel adaptations evolve both at phenotypic and genetic levels [10]. A
prime example of this is the loss lateral armour plates in the three-spined stickle-
back (Gasterosteus aculeatus) in response to colonization of freshwater habitats from
marine environments; this adaptation is predictably underlined by parallel genetic
changes in the Ectodysplasin (EDA) gene [11–13]. Inspired by this success story,
the three-spined stickleback has become ‘the’ empirical model system to study
predictability of evolution (e.g. [14–17]). However, when populations repeatedly
and independently adapt to similar environmental conditions from different
pools of ancestral genetic variation, evolution becomes much less predictable as
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different sets of loci may underlie similar adaptive phenotypes
in the different populations (e.g. [8,17]).

While a decade of evolutionary genetics research has
explored factors influencing the probability of parallel evol-
ution (e.g. [1,3,7,10,16,18–21]), and even demonstrated that
phenotypic similarity can be underlined by different genes
(e.g. [8,22–26]), less attention has been paid to age-dependent
heterogeneity of genetic architecture as a potential source of
nonparallel evolution at the genetic level.

Studies of both domesticated/laboratory [27–31] and wild
populations [32–38] have shown that genetic variance of quan-
titative traits can change throughout development and that
such changes may also be underlined by changes in the loci
controlling trait expression [39,40]. This has potentially
important implications for the study of parallel evolution as
age-specific genetic architecture would constitute a hetero-
geneous pool of genetic variation for selection to act on.
Because temporal variation in selection is common in the
wild (reviewed in [41]) and that such selection can act on
age-structured populations [42,43], a simple concept can be
derived: if different genes control the expression of a quantitat-
ive trait at different ages and natural selection acts on the trait
at different stages of ontogeny, the probability of parallel evol-
ution would be lowered and by definition, so would the
predictability of evolution.

The main objective of this study was to explore this idea by
estimating genetic variance, heritability and the contributions
of different chromosomes to body size variation over ontogeny
in three nine-spined stickleback (Pungitius pungitius) crosses.
By combining quantitative genetic and QTL-mapping
approaches we tested the hypothesis that the genetic architec-
ture of body size of P. pungitius—an important life-history
trait—varies throughout ontogeny thus providing a hetero-
geneous source of genetic variation for selection to act on.
We tested this hypothesis by evaluating the following assump-
tions: (i) Significant additive genetic variance and heritability
of body size across ages would suggest that this trait can
respond to directional selection at different stages of the onto-
geny. (ii) Non-significant genetic correlations between sizes at
different ages would imply heterogeneous genetic basis for
this trait throughout development, and that selection acting
at a specific age should not affect size at another age. (iii) If
the same chromosomes contribute to body size variation at
different ages and in different crosses, this would suggest
that the evolutionary outcome of selection on body size
would be predictable irrespectively of population- or age-
specific selection. If on the other hand, different chromosomes
underline variation in the body size at different ontogenetic
stages and crosses, this would suggest that outcome of similar
selection pressure in respect to ontogeny and population
would be unpredictable at genetic level.
2. Material and methods
(a) Study species, phenotype and genotype data
The nine-spined stickleback is a teleost fish with a wide distri-
bution range across the Northern Hemisphere [44]. In Europe,
isolated pond populations of P. pungitius [45–47] have repeatedly
evolved extreme morphological [8,48] and behavioural [49] phe-
notypes, making them particularly interesting for the study of
parallel adaptive evolution [8,17,50]. Marine and freshwater
P. pungitius display also contrasting growth trajectories: while
the former ecotype shows fast growth to an early maturation at
small size, the latter exhibits prolonged growth and delayed
maturation at larger size [51].

Here, we analysed growth trajectories in three F2 marine-
freshwater crosses used in previous studies exploring the genetic
architecture of various quantitative traits [8,50–52]: HEL × RYT,
HEL × PYÖ and HEL × BYN. Briefly (but see electronic sup-
plementary material and [53]), grandparental (F0) individuals
were collected from the wild and mated in the laboratory to pro-
duce F1-offspring. F2-offspring were produced by mating single
randomly chosen pairs of F1 in each cross (see electronic sup-
plementary material) and in total, 274 F2 offspring were
obtained for the HEL × RYT cross, 278 for the HEL × PYÖ cross
and 307 for the HEL × BYN cross.

Growth data for all individuals was obtained by measuring
the body size of each fish at different time points throughout
development. Individuals from HEL × PYÖ and HEL × BYN
crosses were measured at nine time points at 4, 8, 12, 16, 20,
24, 28, 32 and 34 weeks post-hatching. Fishes from HEL × RYT
were measured at seven different time points 2, 6, 10, 14, 18, 22
and 26 weeks post-hatching. Body size was measured as the dis-
tance between the tip of the snout and the base of the posterior
end of the hypural plate for all individuals from digital photo-
graphs including a millimetre scale and using the tps.Dig
software [54]. All individuals were sequenced using the restric-
tion-site associated DNA approach (RADseq; [55]) to obtain a
panel of single nucleotide polymorphisms (SNPs) as described
in [56] (see electronic supplementary material). The final geno-
mic dataset consisted of 21 832 SNPs for HEL × RYT; 21 747
SNPs for HEL × PYÖ and 21 747 SNPs for HEL × BYN.
(b) Phenotypic variation in growth trajectories
We first investigated patterns of growth at the phenotypic level
within each cross to (i) determine whether individuals had
reached their adult size, and (ii) to describe the growth trajec-
tories explaining phenotypic variation in our datasets. To this
end, we first applied a von Bertalanffy growth curve model
[57] as

yt ¼ yinf(1� e�k(t�t0)), ð2:1Þ
where yt is the length of an individual at age t, k the intrinsic
growth rate, t0 is the estimated hypothetical length at age t = 0,
and yinf is the asymptotic length, corresponding to the estimated
final body size for each individual. Second, we applied an Infi-
nite Dimensional Model (IDM; [58,59]) using the InfDim R
package [59]. This approach uses the phenotypic covariance
matrix of age-specific body sizes to determine the main growth
trajectories underlying the phenotypic variation in the data (see
electronic supplementary methods for details). In other words,
the IDM allows to describe at the phenotypic level whether
growth is uniform among individuals (i.e. all individuals
increase proportionally in size with age) or if alternative
growth trajectories are found among individuals (e.g. large indi-
viduals at young age are small at old age). We used the
IDM.bootCI function on each cross separately to obtain the 95%
confidence intervals (CIs) around the estimated parameters via
bootstrapping.
(c) Quantitative genetic analyses: genetic variance
and heritability

Analytically, longitudinal data such as growth measurements
can be viewed either as a character taking on a different value
at each discrete age (character state trait), or time-dependent
observations describing a continuously varying trajectory (‘func-
tion-valued trait’; [58]). Here we used both approaches to analyse
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the data under a Bayesian framework and estimated the
quantitative genetic parameters of body size throughout growth.

First, we partitioned the phenotypic variance (VP) of age-
specific body size into its additive genetic component (VA) by
fitting an animal model of the form

y ¼ Xbþ Zgþ 1, ð2:2Þ

where y is the vector of phenotypic values for age-specific body
size, β is the vector of fixed effect, γ is the vector of random
effects, ε is the vector of residual errors and X and Z are the
design matrices relating to the fixed and random effects, and cor-
responding to the individual values of body size at one age and
the matrix of relatedness coefficients, respectively. The latter
describes the genetic relatedness among sampled individuals
and can be constructed from pedigree relationships (i.e. theo-
retical relatedness coefficients) or by estimating the proportion
of genome shared identically-by-descent among individuals
from SNP markers (i.e. realized relatedness coefficients) [53].
Here, we used the Genomic Relationship Matrix (GRM) con-
structed from SNP markers (see electronic supplementary
material, methods) in order to improve the accuracy of variance
component estimation [53].

Each animal model was fitted using the MCMCglmm R pack-
age [60] using flat priors (setting the degree of belief parameter
nu to 0) for 1 030 000 Monte Carlo Markov chain (MCMC) iter-
ations with a burn-in period of 30 000, thinning every 1000th
iteration and by adding sex of the individuals as a fixed effect.
Following the character state approach, body size was modelled
as a Gaussian response variable using the family option of the
MCMCglmm function and we fitted separate univariate animal
models for size at each age in all crosses. We calculated herita-
bility of age-specific body size from the posterior distribution
of the 1000 MCMC samples as

h2 ¼ VA

Vp
, ð2:3Þ

and computed the respective 95% highest posterior density
(HPD) intervals using the HPDinterval function in MCMCglmm.
To allow for meaningful comparison of the magnitude of addi-
tive genetic variance across ages, we calculated the coefficients
of additive genetic variation (CVA) [61] as

CVA ¼ 100 �
ffiffiffiffiffiffiffiffiffiffi
s2
BSA

q

BSA
, ð2:4Þ

where s2
BSA is the additive genetic variance for body size at age

(BSA) and the denominator BSA is the phenotypic mean of the
body size at a specific age. To compare these results to the ‘func-
tion-valued trait’ approach (see below), we applied a penalized
spline smoothing function in R to the full set of MCMC posterior
(the ‘character-state’ estimations) to infer the patterns of changes
in VA and h2 with age occurring among and between each time
point.

We then re-estimated VA and h2 following the ‘function-
valued trait’ approach by using the method described in [62]
implemented in the dynGP package (https://github.com/
aarjas/dynBGP).

This method differs from the ‘character-state’ approach by
considering the full distribution of trait values across all ages
rather than estimating parameters at each age separately. As
such, the method allows to model dynamic variance components
and h2 for longitudinal data. Similarly, to the animal models
described above, the dynGP analysis uses the GRM constructed
from SNP data to account for relatedness among individuals
and estimate VA and h2 under a linear mixed model framework
[62]. We followed the methodology of Arjas et al. [62] and ran
separate models for each cross for 1 000 000 MCMC-iterations
(see electronic supplementary material, methods for details).
As the model formulation in dynGP does not allow for fixed
effects we used vectors of residuals from linear regressions
of age-specific body size on sex as response variables in order
to have equivalent structures to the animal models described
above.
(d) Quantitative genetic analyses: genetic correlations
and G matrix

To estimate genetic correlations across different ontogenetic
time-points, we analysed body size across all ages by fitting a
multivariate version of the animal model described in equation
(2.2). Because our growth data correspond to repeated measure-
ments of the same individuals over time, we added a permanent
environment effect term in the animal model as a random effect
to represent the dependent part of the residuals (caused by
repeated measurements). From the multivariate models, genetic
correlations among body size across ontogeny were calculated as

rG ¼ CovAijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAi � VAj

p , ð2:5Þ

where CovAij is the additive genetic covariance between traits i
and j and VAi and VAj the additive genetic variances for traits i
and j, respectively [63]. These multivariate animal models further
allowed us to estimate the genetic (co)variance matrix (G) of
body size at different ages in each cross. The elements of G cap-
ture the additive genetic variance (diagonal) and covariance (off-
diagonal) underlying the expression of multivariate quantitative
traits [64]. In our case, G of age-specific body size summarizes
the additive genetic variance of body size at each age (similarly
to our univariate animal models) as well as the covariance
between them. Eigen-analysis of G allows identification of the
major axes of genetic variation in the data (the principal com-
ponents [PC] or eigenvectors of G) and the correlation between
the traits and these axes of variation (the trait loadings). Thus,
we performed a principal component analysis (PCA) on each
G estimated from the multivariate animal models for each
cross separately. This allowed us to (i) estimate the percentage
of variance explained by the first PC of each G (PC1 or gmax)
and thus, estimate the amount of additive genetic variance
underlying growth, and (ii) calculate the loadings of age-specific
body size on gmax. This in turn informs us of the correlational
structure of body size throughout ontogeny: positive loadings
of body size at each age on gmax would be indicative of positive
genetic correlations between age-specific sizes (integration of
body size ontogeny; [33]); conversely, a change in signs of the
loadings along gmax would be indicative of a modular ontogeny
and a loss of genetic correlations between age-specific body sizes
[33].

Due to the computational burden of MCMC sampling in
multivariate animal models using GRM, we reduced the
number of observations in HEL × PYÖ and HEL × BYN from
nine to seven by removing measurements from age at Week 24
and Week 32. For the same reason, models were run for 203 000
MCMC iterations with a burn-in period of 3000 and thinning
every 100th iteration. To confirm the results from univariate
models, VA and h2 of age-specific body sizes were also computed
directly from the multivariate models.
(e) QTL mapping
We used a single-locus mapping approach [65–67] to identify
the genomic regions underlying variation in body size at each
ontogenetic time point (see detailed models in electronic sup-
plementary material). In order to separate the dam and sire
alleles—and to obtain additional information of the origin of
the QTL effects—we incorporated parental phasing in our QTL
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model. To this end, we used the data produced in [8] for the
same three F2 crosses. Briefly, parental and gran-parental phase
were obtained from dense SNP data (see detailed description
in [8,65]) using LEP-MAP3 [68], and a linkage disequilibrium
(LD) network-based dimensionality reduction (LDna; [69]) was
applied to decrease redundancy in the data due to linkage. For
each LD-cluster comprising sets of highly correlated SNPs
genetic information was extracted using PCA and the PC-coordi-
nates from the first axes explaining the largest proportion of
variation were used for QTL mapping. For each cross, we applied
our QTL model separately to the phenotypic vectors of size at
each age and using the complexity reduced SNP panel after cor-
recting for the effect of sex and subsequently estimated the
proportion of variance explained (PVE) by all QTL (see electronic
supplementary material). We also applied the mapping model to
the two parameters k and Linf estimated from the Von Bertalanffy
growth curve model described in equation (2.1). This allowed us
to test whether or not there is any global QTL associated with
growth in multiple time points. For each QTL model, a permu-
tation procedure (10 000 permutations) was used to account for
multiple testing [65,70].
:20220352
3. Results
(a) Phenotypic variation in growth trajectories
The asymptotic sizes estimated from the Von Bertalanffy
growth curves were similar to the mean body size at the
oldest age in HEL × BYN and HEL × PYÖ crosses (electronic
supplementary material, figure S1 and table S1), suggesting
that the data accounted for most of the growth in the
measured individuals. By contrast, asymptotic size was
higher than mean size at the end of the experiment in
HEL × RYT (Linf = 55.657 [54.889–56.509]; Lmax = 48.589
[48.088–49.090]; electronic supplementary material, table
S1). Results from the IDM indicated that variation in onto-
geny of body size in all crosses was mainly explained by a
growth trajectory (i.e. an eigenvector of the phenotypic var-
iance–covariance matrix) predicting an increase in size with
age and accounting for 65–80% of the total variation (elec-
tronic supplementary material, figure S1). In all crosses, a
second growth trajectory described a negative correlation
between early and late growth (electronic supplementary
material, figure S1) indicating that some individuals that
were larger at an early age tended to be smaller later in life,
and vice versa.

(b) Quantitative genetic analyses: genetic variance
and heritability

In all crosses and at all ages through ontogeny, there was
additive genetic variance and heritability in body size
(figure 1; electronic supplementary material, figures S2–S5).
Additive genetic variance increased with age in all crosses
and VA for body size was significantly higher at the last
ontogenetic time-point compared to the first in HEL × PYÖ
and HEL × RYT crosses (electronic supplementary material,
figures S2–S5 and table S2). Phenotypic and residual variance
also increased with age in all crosses (electronic
supplementary material, figures S2–S5 and table S2), and
consequently, heritability of body size remained relatively
constant throughout ontogeny in all crosses and did not
significantly differ between ages (figure 1; electronic
supplementary material, figures S2–S5; table S2).
(c) Quantitative genetic analyses: genetic correlations
and G matrix

Genetic correlations between sizes at consecutive ages were
positive in all crosses: size at age n was positively correlated
to size at age n + 1 and n− 1 (figure 1). Genetic correlations
decreased with increasing distance between time-points in
all crosses (figure 1). In HEL × PYÖ, genetic correlations
were no longer statistically different from zero between the
size at Week 4 and size at Week 20 and onwards (figure 1).
In HEL × BYN, body size at first time-point was not geneti-
cally correlated to body size at the following time-points
(figure 1). In HEL × RYT genetic correlations decreased with
age and body size at the first time-point was not correlated
with body size at Week 14, and weakly correlated with
body size at Week 18 to 26 (figure 1).

In all crosses, the first principal component of G
explained most of the genetic variance in growth (table 1),
further confirming ample additive genetic variation for
body size throughout ontogeny in all crosses. In HEL ×
PYÖ, a sign change in the loading coefficients of gmax indicate
that early (Week 4, Week 8) and later (Week 16 onwards)
sizes are not genetically correlated and that ontogeny is mod-
ular between early and late growth. In HEL × BYN, the same
result was observed with a sign change of the loading coeffi-
cients of gmax at Week 20. In HEL × RYT loadings were
positive for all ages-specific sizes, indicating positive genetic
covariation between sizes throughout ontogeny. In HEL ×
PYÖ and HEL × BYN, a substantial amount of variance
(9.73% and 12.36% respectively; table 1) was also explained
by the PC2 where a sign change of the loading coefficients
was also observed.
(d) QTL-mapping
A total of 14 unique QTL associated with body size vari-
ation at different ontogenetic stages were detected
(figure 2; electronic supplementary material, table S3 and
figures S6–S8). We did not find any global QTL underlying
the growth parameters k and Linf in the HEL × BYN cross
(electronic supplementary material, figure S9). A single
QTL was detected in HEL × PYÖ for k on Chr. 1 (electronic
supplementary material, figure S9) and similarly for
HEL × RYT, a single QTL controlling for asymptotic size
(Linf ) was found on Chr. 7 (electronic supplementary
material, figure S9). This shows that different QTL under-
line expression of body size not only among the different
crosses but also between different ontogenetic stages
within the crosses (figure 2; electronic supplementary
material, table S2). Most of the QTL effects traced down
to the sire (M, in figure 2; electronic supplementary
material, table S2) indicating that the observed allelic
effects were segregating in the male F0 grandfather (pond
individual). One peak indicative of segregation in the F0
female (marine individual) on Chr. 18 (at age Week
24 in.HEL × BYN), Chr. 9 and Chr. 13 (at age Week
12 in.HEL × PYÖ; figure 3b), and another on Chr. 13 (at
ages Week 10 and 14 in.the HEL × cross; figure 2c) were
found in addition to the QTL for k and Linf in HEL ×
PYÖ and HEL × RYT, respectively. Dominance effects
were rare: only a single significant dominance allelic
effect on Chr. 1 at age Week 12 in.the HEL × PYÖ cross
was observed (figure 2b).
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Figure 1. Heritability and genetic correlations across ages. Strength of the genetic correlations (rG) of body size across ages is represented by the size and colour of
each tile of the heatmap. Significance of the genetic correlation estimates is indicated in bold white text and non-significant values in italic white text. The posterior
mode of the heritability for body size estimated from the multi-trait model (see ’Material and methods’ and electronic supplementary material, figure S3) at each
age is shown in the diagonal for each cross (black text). (Online version in colour.)
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4. Discussion
Heterogeneous genetic underpinnings for similar phenotypic
adaptations are evidence of redundancy of organismal gen-
etic architectures: similar phenotypic end-points can be
reached with diverse genetic mechanisms. Our results
demonstrate that the QTL contributing to size were different
across ages both within and among the three crosses studied
here. These results were supported by analyses of genetic cor-
relations across the age groups; early and late growth genetic
correlations were generally weak or not significantly different
from zero, and always significantly lower than one. These
results align with earlier findings from this study system
showing that heterogeneous genetic architectures underlie
similar phenotypic adaptations in different pond populations
[8]. The main novelty in the current results is that they
demonstrate how ontogenetic heterogeneity in genetic
architecture of an important life-history trait may influence
local adaptation: were selection to act on size at different
points of development, genes governing the expected selec-
tion responses would be very different. In the following, we
will discuss these and related points in more detail.

Within each of the three crosses, different QTL were often
associated with body size at different ages, and the significant
QTL effects were predominantly associated with alleles
derived from the pond grandparent, and seldom with alleles
from the marine grandparent. The latter finding makes sense
in the light of the fact that pond fish have been shown to be
consistently larger than marine fish throughout development
[52], and therefore, one would expect pond alleles to contrib-
ute to size more strongly than the marine alleles. This could
also indicate that most of the additive genetic variation
observed results from the segregation of pond alleles. In a
few cases, QTL effects tracing to both parents were observed,



Table 1. Percentage of variance explained and trait loadings on the two first eigenvectors of the principal components analysis of G. The percentage of genetic
variance in growth trajectories explained by the first two eigenvectors of the principal components analysis of the G matrix is shown for each cross. Trait
loadings on gmax are shown for each age-specific body size.

HEL × BYN HEL × PYÖ HEL × RYT

PC1 (gmax) PC2 PC1 (gmax) PC2 PC1 (gmax) PC2

% var. explained 81.76% 12.36% 87.37% 9.73% 95.48% 2.72%

age 1 −0.097 0.200 −0.065 0.050 0.015 −0.015
age 2 −0.191 −0.340 −0.036 0.471 0.134 −0.659
age 3 0.074 −0.627 0.137 0.621 0.185 −0.680
age 4 0.260 −0.489 0.263 0.480 0.295 −0.153
age 5 0.406 −0.321 0.415 0.198 0.450 0.153

age 6 0.570 0.113 0.556 −0.099 0.547 0.168

age 7 0.626 0.309 0.652 −0.334 0.599 0.166
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and only in one case was there evidence for dominance con-
tribution. Hence, these findings suggest that the contribution
of dominance effects is small and that most observed allelic
effects were additive, and mostly coming from pond genetic
background.

For polygenic traits, inherent pitfalls of QTL mapping
analyses include low statistical power to detect significant
QTL or conversely, detection of false positives [71]. Overall,
the effect sizes and amount of PVE by the age-specific QTL
within each cross were relatively low, suggesting that body
size remains a largely polygenic quantitative trait in P. pungi-
tius. Thus, the detection power of our QTL mapping analysis
could very well be limited by sample size and statistical
power to detect a sufficient number of causative loci at each
age. Although we cannot refute this possibility with the
data at hand, several results support an age-specific genetic
architecture of body size in this species.

First, we did not find evidence for a permanent QTL
affecting size at all ages within each of the three studied
crosses and this result was also evidenced by the absence
of significant QTL for the growth rate parameter k. Although
a QTL on Chromosome 9 seemed to underline body size vari-
ation in consecutive ages in the HEL × BYN and HEL × PYÖ
crosses, the allelic effects of these QTL were found to go in the
opposite directions (as reflected by a sign change of effect
sizes) suggesting this QTL is effectively different between
the two populations. Second, genetic correlations between
age-specific sizes tended to decay with time, and the
correlations between early and late sizes were weak or
non-existent. This was also manifested in the analyses of inte-
gration of the first eigenvector of G, which revealed evidence
for modular genetic architecture of growth in two of the three
crosses. This means that selection on size at any given age
would not necessarily affect size across the whole ontogeny
[58]. On the contrary, the results suggest that genes respon-
sible for early and late growth are acting independently,
and therefore, selection acting at early and later ages would
be acting on different sets of genes. This result is also in
line with previous findings from livestock studies showing
that growth-related traits can have different genetic under-
pinnings at early and late ages [39,72–74]. For instance, a
QTL mapping study using a F2-intercross between
phenotypically distinct chicken (Gallus gallus) lineages
revealed that largely different loci contributed to variance at
the start and endpoints of the growth curve [75].

Finally, our relatively large family sizes allowed us to
detect significant QTL explaining small amounts of genetic
variance (i.e. PVE less than 0.1), suggesting that the study
had reasonable statistical power. Furthermore, our LDn-
based QTL-mapping analyses are statistically powerful in
detecting QTL while avoiding false positives [65]. Hence,
despite the relatively small effect sizes of the detected QTL
there are strong ground to believe that the results reflect het-
erogeneity in genetic architecture among ages and crosses
rather than statistical noise.

We also observed among cross heterogeneity in the age-
specific QTL effects, suggesting that genetic architecture of
body size variability might differ among the pond popu-
lations similarly as shown earlier for pelvis reduction in
these populations [8]. However, some caution is warranted
in interpretation of the observed population differences in
QTL locations for at least two reasons. First, while exact
time-points of measurement were the same two of the three
crosses, fish in one of the crosses were measured in slightly
different time-points than in the two others. Given that we
picked up time-dependent variation in QTL effects, this
could have influenced which QTL were detected in one of
the crosses. However, the similarly measured crosses
showed different patterns of QTL expression. Second, it
should be kept in mind that all three crosses were established
from a single pond and a single marine (grand) parent, and
the crosses are therefore unlikely to carry all relevant allelic
variation present in the populations of origin. Hence, there
might be a large stochastic component to QTL detectable in
each of the three crosses. While we do not have data to
refute this possibility, an earlier study using empirical and
simulated data gave strong evidence for heterogeneous
genetic architecture underlying pelvic reduction in these
populations [8], thus suggesting that this stochasticity
might not be of great concern. Irrespective of what explains
heterogeneous QTL effects among different crosses, sampling
of allelic variation in parental populations is irrelevant to
interpretation of the heterogeneous QTL effects across
ontogeny.
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We found additive genetic variance and heritability for
body size across ages in all three crosses. Our results suggest
an increase in additive genetic variance with age as pre-
viously reported in several quantitative genetics studies of
ageing (e.g. [34,76–80]). However, the confidence intervals
around our estimates were large, precluding strong inferences
on changes in genetic variance with age but nevertheless
showing that body size is heritable throughout ontogeny in
P. pungitius. Thus, regardless of the patterns of change with
age, the heritable variation at each age in each cross suggests
that body size can respond to directional selection at different
stages of the ontogeny.

The variance component and heritability estimates in this
study were based on single full-sib family per cross using
variance in relatedness among sibs to estimate the causal
components of variance. This approach has been used in
earlier studies (e.g. [53,81]) and has the advantage that the
estimates are not subjected to additional variance attributable
to uncontrolled environmental effects [81,82]. Although other
sources of non-additive variance such as dominance and
maternal effects could influence our estimates [83], such
effects are expected to be minimal for body size in both fresh-
water and pond populations of P. pungitius ([53,84],
respectively). That said, since the analysed crosses are artifi-
cial F2 generation inter-population crosses, the estimated
quantitative genetic parameters may not be representative
of those in wild populations.

In conclusion, our results show that age is a potential
source of genetic heterogeneity for an ecologically important
trait in a wild species. Although such heterogeneity in the
genetic bases of quantitative traits had been observed in dom-
estic species and brought forward as a way to manipulate
and increase growth of livestock, its importance for local
adaptation in the wild was largely omitted. As such, age-
specific genetic architecture would decrease the predictability
of evolution by increasing the number of genomic regions
available for selection to act on and, consequently, decreasing
the probability of parallel evolution. In sticklebacks, popu-
lation-specific age structure and age-specific selection is
expected to occur in the wild [85–87] and more generally,
temporal variation in selection at different ages should be
pervasive in nature [41]. We thus propose that the age struc-
ture of natural populations constitutes a promising parameter
to account for in studies of parallel evolution, and that future
research on the pervasiveness of age-specific genetic architec-
ture in the wild should prove particularly useful in our ability
to predict evolution.
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