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ABSTRACT
The super-high strength of single-layer graphene has attracted great interest. In practice, defects resulting
from thermodynamics or introduced by fabrication, naturally or artificially, play a pivotal role in the
mechanical behaviors of graphene. More importantly, high strength is just one aspect of the magnificent
mechanical properties of graphene: its atomic-thin geometry not only leads to ultra-low bending rigidity,
but also brings in many other unique properties of graphene in terms of mechanics in contrast to other
carbon allotropes, including fullerenes and carbon nanotubes.The out-of-plane deformation is of a ‘soft’
nature, which gives rise to rich morphology and is crucial for morphology control. In this review article, we
aim to summarize current theoretical advances in describing the mechanics of defects in graphene and the
theory to capture the out-of-plane deformation.The structure–mechanical property relationship in
graphene, in terms of its elasticity, strength, bending and wrinkling, with or without the influence of
imperfections, is presented.
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INTRODUCTION
There exist many reviews on the synthesis, proper-
ties and applications of graphene, and it has not been
our purpose merely to add one to the many. Our
aim is to demonstrate the mechanics of graphene
as an integral part of materials and structures other
than the isolated domain of remarkable individu-
als. This purpose demands more account of gen-
eral mechanical analysis. We have found that this
is particularly necessary as a general reader cannot
be assumed to be comfortable with the applicability
of classical mechanics theories to the mechanics of
graphene.

Until the success of Geim and co-workers in
producing monolayer graphene by the mechanical
exfoliation of graphite [1,2], atomically thin ma-
terials were believed to be thermodynamically un-
stable under ambient conditions [3,4]. The emer-
gence of graphene leads to great attention being paid
to examining its specialty in contrast to other car-
bon allotropes including fullerene, carbon nanotube
(CNT) and graphite [5]. Among nearly 356 carbon
allotropes from 500 scientific reports [6], the afore-
mentioned carbon structures including fullerene,
carbon nanotube and graphene are composed of a
single layer of carbon atoms. As both carbon nan-

otubes and graphene are composed of sp2-bonded
carbon atoms packed in a honeycomb crystal lattice,
it is no surprise that graphene also has as extremely
high modulus and high strength as the well-studied
carbon nanotubes [7–9].What makes graphene dis-
tinct from carbon nanotubes is the 2D structure and
it can be synthesized as large-area flat sheets, which
opens up many applications for which carbon nan-
otubes cannot be conveniently utilized.

The atomic-thin nature of graphene leads to its
ultra-low bending rigidity, making it ‘soft’ for out-of-
plane deformation. Graphene can be easily bent to
form rich 3Dmorphology [10–12] under eitherme-
chanical or thermal undulation. The bending prop-
erties accounting for the rippling of graphene have
been investigated. Also, due to the increased surface
area, the interaction between graphene and other
materials has been studied. Typical mechanical be-
haviors involving surface interaction including ad-
hesion [13,14], peeling during transfer [15–17], as
well as frictional behavior [18–21] have drawn the
attention of broad engineering communities. Small
2D structures have edges, and those edges introduce
mechanical complications and excitements [22].
Large-area graphene usually consists of patches
of small-area graphene with different size and
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orientation, coupling with grain boundaries (GBs)
and other defects [23–27]. The mechanics of those
typical defects in graphene and their influence on
the strength are also covered in this review. In short,
the aim of this review article is to provide a com-
prehensive summary of the up-to-date progress on
the mechanics of graphene and, more importantly,
how to understand the relationship between struc-
tures and mechanical properties, with and without
defects.

There are already several review papers in the
literature covering different aspects of the mechan-
ics of 2D materials. For example, the fracture of
graphene has been reviewed by Teng et al. [28]
where the authors summarized the recent progress
in experimental and theoretical studies on the
fracture behaviors of graphene, and also presented
significant yet unresolved issues relating to the frac-
ture of graphene. In the review by Cao et al. [29],
the authors showed recent advances in the character-
ization of themechanical behavior of atomically thin
films. The review by Ivanovskii [30] generalized the
information on the modification of graphene-based
carbon materials through the creation of structural
defects, introduction of substitutive impurities,
adsorption of impurity atoms and mechanical de-
formations. Several mechanical properties including
elastic constants, strength, friction and fracture of
graphene have been included. A particular review
on the tribology of graphene was given by Penkov
et al. [31]. Recently, Akinwande et al. [32] reviewed
the mechanical properties of graphene and 2D ma-
terials. Penev et al. [33] reviewed the development
of theoretical and computational models on the role
of certain transcending concepts such as elastic in-
stabilities, dislocations and edges. CastroNeto et al.
published a review paper [34] on the unusual 2D
Dirac-like electronic behavior of graphene, where
the effects of electron–electron and electron–
phonon interactions in single-layer and multi-layer
graphene are presented. Ando [35] gave a review on
the characteristic features of electronic states and
electrical transport in both graphene and carbon
nanotubes. A series of review papers on the chemical
properties of typical 2D materials can be found in
[36–39] and references therein. Wu et al. [40]
reviewed up-to-date advances in graphene-based
micro-electrochemical energy-storage devices
that utilized the unique features of graphene and
foresaw the future development of graphene-based
micro-supercapacitors. The thermal conductivity of
2D materials was reviewed by Gu et al. [41], where
the effects of different physical factors, such as
sample size, strain and defects, on thermal transport
in 2Dmaterials are summarized.

ELASTICITY OF PRISTINE GRAPHENE
Because of the rich bonding types, different carbon
allotropes show a large variety of elastic properties.
Even being the same type of honeycomb lattice of
carbon atoms, graphene and carbon nanotubes can
exhibit quite different mechanical behaviors, as they
are categorized as typical examples of 2Dand1Dma-
terials, respectively. In particular, the difference in
the dimensionality of those allotropes gives rise to
different degrees of freedom in response to external
stimuli. For instance, while the in-plane elastic prop-
erties of pristine graphene could be largely inferred
from that of thewell-studiedCNTs, the out-of-plane
deformation mode in graphene requires a different
theoretical tool.Herewe introduce the available the-
oretical approaches to analyse the elastic response in
graphene.

2D long-range crystalline order
For a long time, 2D crystals have been conceived of
as structurally unstable because of long wavelength
fluctuations according to the Mermin–Wagner the-
orem [42]. 2D crystals are extremely flexible and
are prone to structural instability, which gives rise to
microscopic corrugations of a graphene sheet [3,4].
Nearly one century ago, Peierls [43] and Landau
[44] concluded that there can be no 1D or 2D
long-range crystalline order. The argument given by
Peierls is qualitative based on the harmonic interac-
tion of atoms in the 1D chain. Landau’s conclusion
on the non-existence of a 2D long-range crystalline
order is based on his general theory of second-order
phase transition [44], which is known to bemislead-
ing near the critical point. Alder and Wainright in-
vestigated a 2D system consisting of 870 particles
placed in a periodically rectangular array.Their com-
puter experiments, however, have indicated a tran-
sition to a 2D crystalline ordered state [45]. The
theoretical analysis by Mermin a few years later [3]
excluded a long-range crystalline order in two di-
mensions for power-law potentials of the Lennard-
Jones type, but it is inconclusive for other types of
potentials.The conclusion wasmade by deriving the
Fourier component of the density for each vector of
the reciprocal lattice. Considering a 2D crystalline
flake with the Bravais lattice ascribed by �a and �b
where the flake sides are defined by N1�a , N2 �b, an
arbitrary lattice point is defined by �r = m �a + n �b,
m = 0, 1, . . . , N1 and n = 0, 1, . . . , N2.The total
number of atoms in the flake is then N = c N1N2,
where c is the number of atoms in the unit cell de-
fined by �a and �b. The real space density distribution
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is simply given by

ρ̂
(�r) =

∑N

i=1
δ
(�r − �r i

)
. (1)

In the reciprocal space, the k-th component of the
Fourier’s transform of the real space is obtained as

ρ̂
(�k) = ∫ ρ̂

(�r) e−i�k·�rd �r =
∑N

i=1
e−i�k·�r i .

(2)
The integration is over all the atoms in the flake. By
defining the k-th Fourier’s component of the density

ρ�k = 1
N

〈
ρ̂
(�k)〉, (3)

with 〈· · ·〉 an averaging of density in the reciprocal
space

〈
ρ̂
(�k)〉=∫ ρ̂

(�k)e−U(�r 1,�r 2,...,�r N)/kTd �r 1 . . . d �r N
∫ e−U(�r 1,�r 2,...,�r N)/kTd �r 1 . . . d �r N

,

(4)

where kT is the product of the Boltzmann con-
stant and the absolute temperature with the unit
Kelvin (K). Atoms in the flake interact through the
pair potential �(�r), and we hence have the ex-
pression of internal energy U (�r 1, �r 2, . . . , �r N) =
1
2

∑
i �= j �(�r i − �r j ). For an entirely crystalline ob-

ject, it stands to reason that there is an array of
sharp peaks in the reciprocal space and ρ�k will
be non-zero. Mermin [3] adopted as a criterion
for the existence of thermodynamically periodic
arrangement of atoms in the flake the following:
limN1,N2→∞ ρ�k �= 0 if �k is a reciprocal-lattice vec-
tor, and limN1,N2→∞ ρ�k = 0 for other cases of �k.
He gave a proof that the first case cannot be satis-
fied in twodimensions for�(�r)of power-lawpoten-
tials of the Lennard-Jones type, but it is inconclusive
for other types of potentials [3]. In 2002, ab-initio
calculations showed that a graphene sheet is ther-
modynamically unstable if its size is less than about
20 nm and it becomes the most stable fullerene only
for molecules larger than 24,000 atoms [46].

The success of Geim and co-workers to pro-
duce monolayer graphene by the mechanical
exfoliation of graphite [1,2] ended the theoretical
controversy on thermodynamically stable 2D
crystals under ambient conditions. Now many one-
atom-thin and multi-atom-thin 2D materials were
discovered with exploded literature studying their
synthesis, physical properties and applications.
While large-area pristine graphene may not be flat
under thermal undulation [11], it can resist bending
and remains 2D, in particular when the size of a
graphene flake is small. It should be pointed out

that sp2 bonding among carbon atoms in graphene
certainly deviates from the power-law inter-atomic
potential assumed in the theoretical analysis by
Mermin [3]. In that sense, Mermin’s analysis does
not exclude the existence of stable 2D crystals
with interactions significantly different from the
Lennard-Jones type of potentials.

Very recently, Kumar and Parks [47] further
analysed the latticedynamic stability of grapheneun-
der straining and deduced a general continuum cri-
terion for the onset of various kinds of lattice in-
stabilities in graphene: an instability appears when
the magnitude of the deviatoric strain γ reaches a
critical value γc , which depends on the mean nor-
mal strain and the directionality θ of the principal
deviatoric stretch with respect to the reference lat-
tice orientation. The criterion could be employed
to distinguish fundamentally different mechanisms
of lattice instabilities in graphene, such as structural
versus material instabilities and long-wave (elastic)
versus short-wave instabilities.

In-plane elasticity
Given the atomic-thin nature, how 2D crystals re-
sist deformation is of paramount interest. In this sub-
section, we first examine the in-plane elastic proper-
ties of single-layer graphene. As imagined, graphene
is the mother element of some carbon allotropes in-
cluding CNTs [48,49]. Naturally, the same lattice in
graphene and CNTmay be expected to have similar
elasticity. The distinction originates from the struc-
tures.The elastic modulus of CNT is normally effec-
tive from the structure level: the stress is typically av-
eragedover the circular cross-sectionof the tube. It is
an effective modulus that may depend on the chiral-
ity of the CNT. For graphene, we consider the most
general case regarding the mechanical response of
graphene with the honeycomb lattice.

It is known that the change in the free energy F in
an anisotropic crystal under small deformation can
be described by a quadratic function of the strain (in
the Cartesian coordinate) [5]:

F = 1
2
c i j klεi j εkl , (5)

where i, j, k and l are integers ranging from 1 to 3,
and εi j are strain components. The coefficient c i j kl
is the rank-four elastic modulus tensor, including a
maximum of 21 independent components for the
triclinic system, but fewer in the crystals possess-
ing symmetry. For hexagonal systems like graphene,
their normal plane is the sixth-order axis: rotating
through an angle of π/3 about the plane normal
results in the exact same lattice. The free energy is
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Figure 1. The stress–strain response of pristine 2D materials with the hexagonal lattice. (a) Graphene lattice. (b) Continuum
approximation of a honeycomb structure. (c) Sketch of using nano-indentation to measure the strength of graphene GBs. The
top shows the indenter on a polycrystalline graphene; bottom left shows the top view of a dent with graphene on the top and
bottom right shows a graphene GB. Adapted from [9], with permission of Springer Nature. (d) Indenting load versus depth.
The two sets of data demonstrated that the force-displacement response is independent of the tip radius of an indenter,
and the breaking force marked at each point corresponds to different loading conditions. Adapted from [7], with permission
of American Association for the Advancement of Science. (e) The stress–strain behavior of graphene loaded with different
angle θ with respect to the zigzag edge. Adapted from [58], with permission of American Chemical Society Publications.

hence simplified as

F = 1
2
c 3333ε233 + 2c 1212(ε11 + ε22)2

+ c 1122
[
(ε11 − ε22)2 + 4ε212

] + 2c 1233ε33

× (ε11 + ε22) + 4c 1223
(
ε213 + ε223

)
. (6)

FromEquation (6),we can see that five independent
elastic moduli are needed to describe the elastic de-
formation of a hexagonal crystal. When only the in-
plane deformation is considered, namely εi3 = 0 for
i = 1 · · · 3, the free energy is determined by the two
elastic constants c 1212 and c 1122 in Equation (6). It
hence suggests that the elastic behavior of 2Dhexag-
onal crystals like graphene is isotropic in nature, con-
sistently with other explorations [50].

The isotropic elastic property of a hexagonal lat-
tice canbe alternatively understoodat amacroscopic
level if we take an analogy between the lattice and
the honeycomb structure [51]. In the most general
case, deformation in the X1 − X2 plane in a honey-
comb composed of unit cells shown in Fig. 1a and
b is described by five moduli: two Young’s moduli
E 1 and E 2, the shear modulus of G 12 and two Pois-
son’s ratios ν12 and ν21. But there are only four in-
dependent ones as the reciprocal relation requires

E 1 ν21 = E 2 ν12.The twomoduli are thus given, re-
spectively, as

E 1

Ew

=
(
t
L

)3 cos θ
(h/L + sin θ) sin2θ

(7a)

and

E 2

Ew

=
(
t
L

)3 h/L + sin θ

cos3θ
, (7b)

where Ew is the Young’s modulus of the wall mate-
rial. It is convenient to see that, for a hexagonal lat-
tice, we have E 1 = E 2.The Poisson’s ratio, for load-
ing along the X1-direction, is given as

ν12 = cos2θ
(h/L + sin θ) sin θ

, (7c)

and that is

ν21 = (h/L + sin θ) sin θ

cos2θ
(7d)

when loading along the X2-direction.
Again in a hexagonal lattice, we see ν = ν12 =

ν21 = 1 for θ = 30◦ and h/L = 1. The shear
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modulus of the honeycomb is thus

G 12

Ew

=
(
t
L

)3 h/L + sin θ

(h/L)2 (2h/L + 1) cos θ
.

(7e)
In the case of an ideal hexagon lattice, we also have
the relation of G 12 = E/2(1 + ν), which generally
applies for isotropic solids. While there are appar-
ent discrepancies between the hexagonal lattice like
graphene and the hexagonal honeycomb as bend-
ing is considered to be the primary mechanism for
elastic deformation for honeycombs, the compari-
son of the two systems can help us understand the
isotropic nature of the in-plane mechanical prop-
erties in graphene under small deformation. When
the deformation becomes large and the unit cell is
severely distorted, changes in θ and h/L would con-
sequentially render the system to be anisotropic.
This observation may explain the non-linear behav-
ior of graphene during the elastic stage [52] and the
slight anisotropic mechanical properties reported in
the literature.

Aside from the topological difference, single-wall
carbon nanotubes have the same lattice structure
as that of graphene. Hence, the tensile behavior of
graphene can essentially be deduced from those of
carbon nanotubes, as long as the tube radius is not
too small. For example, Van Lier et al. reported the
Young’s modulus and the Poisson ratio for a num-
ber of closed single-wall carbon nanotubes using
the first all-electron ab-initio calculation [53]. The
results agree well with those of graphene. Typical
theoretical analysis predicts a Young’s modulus of
graphene to be higher than 1 TPa. The Poisson ra-
tio in graphene is found to be small, close to 0.1 in a
broad range of temperatures [54]. Liu et al. [52] cal-
culated the phonon spectra of graphene as a function
of the uniaxial tension by the density functional per-
turbation theory (DFPT) to assess the first occur-
rence of phonon instability on the strain path, which
controls the strength of a defect-free crystal at 0 K.
They obtained a Young’s modulus E = 1050 GPa
and Poisson’s ratio v = 0.186 from small-strain cal-
culations.

In-plane nonlinearity
In the first effort to measure the break strength of
graphene (Fig. 1c), Lee et al. [7] employed the in-
dentation tests and found that the maximum stress
attained in the film agreed well with an analytical so-
lution [55] when a linear stress–strain curve is em-
ployed.Tomatch the load-deflection curve as shown
in Fig. 1d, however, the strains in the graphene near
the indenter had to be set to values well over 0.2,

which is far beyond the linear elastic regime. The
stress–strain curves along different loading direc-
tions do show nonlinearity and large break strain
(seeFig. 1e).Therefore, a non-linear elastic constitu-
tive behavior [56] has to be adopted by counting the
higher-order strain terms in the strain energy density
formula [55]:

F = 1
2
c i j klεi j εkl + 1

2
Di j klmnεi j εklεmn , (8)

where Di j klmn are the third-order elastic moduli.
Casting this relationship in a uniaxial strain context,
Lee et al. [7] wrote the stress, σ , and strain, ε, re-
lationship as σ = E ε + Dε2. Such a relationship
captures reasonably well the non-linear response of
the indentation force versus depth curves from their
experiments. The same technique was also adopted
later for measurement of the strengths of the GBs in
graphene [9] andgrapheneoxide [8].Cadelano et al.
[57] discussed the physical meaning of the effective
non-linear elastic modulus. The authors developed
the constitutive non-linear stress–strain relation for
graphene and predicted its value to be in good agree-
ment with available data in the literature. It is es-
sential to use a physically sound constitutive model
to capture the non-linear region in the stress–strain
curves, although another issue—the anisotropic fail-
ure strength of graphene [58]—has been largely ig-
nored in the existing analysis.

Out-of-plane deformation
In contrast to its in-plane deformation, the out-of-
plane deformation that is peculiar to the one-atom-
thin graphene is of importance. Carbon atoms re-
stricted to a finite-sized surface closure such as a
sphere (fullerene) or a tube (CNT) can behave
very differently from graphene flakes that are es-
sentially flat. Free-standing graphene can easily be
bent under thermal undulation [11]. Pivotal to this
are the two mechanical parameters—bending rigid-
ity and Gaussian bending stiffness—which govern
the morphology of graphene under external stimuli.
The structure andmorphologymanipulation, on the
other hand, are broadly investigated for the potential
applications of graphene in biological systems and
stretchable electronics [59].

Bending stiffness
A reliable characterization of the bending rigidity
and Gaussian bending stiffness of graphene is of sig-
nificance for both thedesign and themanipulationof
graphene morphology for engineering applications.
It may be interesting to see first the prediction from
the continuummechanics, although there are always
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Figure 2. Governing parameters and modes of out-of-plane deformation of graphene.
(a) The two governing material properties—bending rigidity and Gaussian bending
stiffness—were deduced from single-wall carbon nanotubes and fullerenes of differ-
ent sizes. Adapted from [59], with permission of American Chemical Society Publica-
tions. (b)–(d) Morphology of graphene nanoribbons resulted from edge stress-induced
warping. Adapted from [91], with permission of American Physical Society. (e) Various
complex folding structures. Adapted from [90], with permission of American Physical
Society. (f)–(h) Mechanical vibrations in suspended graphene sheets. Adapted from
[101], with permission of American Chemical Society Publications.

concerns about the applicability of the continuum
theories for predicting the mechanical properties of
graphene or carbon nanotubes (CNTs). Based on
the Kirchhoff–Love theory, the bending stiffness of
thin plates is determined as

BM = ν12 = E H 3

12 (1 − ν2)
, (9)

where E is the Young’s modulus, ν is the Poisson’s
ratio and H is the thickness of the thin plate. For
graphene, we have E = 1050 GPa and υ = 0.186
[60–62]. The thickness H is where most contro-
versies originated from. If one extrapolates the
graphene thickness by counting its stacking in the
crystalline graphite, we have H = 0.34 nm. Substi-
tuting this number H = 0.34 nm into Equation (9)
yields BM = 22.3 eV, which is significantly larger
than the measured value [63]. The breakdown of
the applicability of the continuum theory to predict
the bending properties in graphene suggests that H
may not be 0.34 nm for single-layer graphenewhile a
smaller effective thicknessmight reconcile the differ-
ence for BM between the prediction by the contin-
uummechanics theory and the experimental value.

Instead of applying the continuum mechanics
theory to calculate the bending stiffness of the low-
dimensional carbon nanostructures, atomistic sim-
ulations have also been broadly used to predict the
mechanical behaviors of small structures and sys-
tems. Wei et al. [59] applied the density functional
theory (DFT) calculations to obtain the energies of
0D fullerenes and 1D single-wall carbon nanotubes
(SWCNTs) of different radii and then derived both

the bending rigidity and the Gaussian bending stiff-
ness of free-standing single-layer graphene (Fig. 2a).

By combining the DFT calculations of energies
of fullerenes and SWCNTs with the configurational
energy of membranes determined by the Helfrich
Hamiltonian [64,65], Wei et al. [59] designed a the-
oretical approach to accurately determine the bend-
ing rigidity and Gaussian bending stiffness of single-
layer graphene. For a membrane with 3D topology,
the configurational energyψH described by theHel-
frich Hamiltonian [64,65] as

ψH = ∫S
[
γ + 2BM (CM − C0/2)2 + BGCG

]
ds ,

(10)

where γ is the energy for unitary flat surface, BM
is the flexural stiffness (bending rigidity), BG is the
Gaussian bending stiffness, CM = (k1 + k2)/2 is
the mean curvature whereas k1 and k2 are the two
principal curvatures of a 3D surface, CG = k1 k2 is
the Gaussian curvature, and C0 is the spontaneous
curvature, which disappears for symmetrical mem-
branes. The integral in Equation (10) extends over
the whole surface.

Considering single-layer graphene as a mem-
brane, the surface energy γ remains constant during
pure bending. By utilizing the fact that a SWCNT
can be rolled up from a graphene [5], in graphene,
the term associated with the Gaussian curvature dis-
appears. By varying the radius of SWCNTs, one
would thenfind that the energyper atom inSWCNT
can be related to the energy per atom in graphene
with the radii of SWCNTs by

E CNT
atom = E 0 + S0

BM

2r 2
, (11)

where r is the radius of SWCNTs, E CNT
atom is the en-

ergy per atom in a SWCNT, E 0 is the energy of
an atom in a flat graphene and S0 = 3

√
3d 2/4 =

2.63 Å2 is the planar footprint (area) of a carbon
atom in graphenewith dbeing theC–Cbond length.
By calculating the energy per atom in SWCNTs
with different radii, it is straightforward to derive the
bending rigidity of graphene using Equation (11).
To determine the Gaussian bending stiffness BG , a
series of spheroidal fullerenes with total atom num-
bers from 60 to 540 are considered, which have a
corresponding radius variation from 1.86 to about
11 Å. Using Equation (10), the energy per atom in
fullerenes can be given as

E F
atom = E 0 + S0

2BM + BG

r 2
. (12)

With BM known using Equation (11), BG in Equa-
tion (12) could then be determined. The bending
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rigidity and Gaussian bending stiffness of single-
layer graphene are 1.44 (2.31 × 10−19 Nm) and
−1.52 eV (2.43 × 10−19 Nm), respectively. The
bending rigidity from this model is close to the mea-
sured result.

Correlation between the two stiffnesses
The relationship between the bending rigidity and
theGaussian bending stiffness in graphene is intrigu-
ing. The graphene sheet may be treated classically
as an elastic plate and the solutions to the bending
deformation of thin plates can be adopted. Assum-
ing isotropic and homogeneous, and following Tim-
oshenko andWoinowsky [66], the differential equa-
tion of the deflection z of a graphene sheet is given
as

∂4z
∂x4

+ 2
∂4z

∂x2∂ y 2
+ ∂4z

∂ y 4
= q

BM
, (13)

where q is the distributed load normal to the surface.
By neglecting the contribution of the shearing stress
on the deflection of the graphene, its total energy is
then given as

ψ = 1
2
BM ∫

{(
∂2z
∂x2

+ ∂2z
∂ y 2

)2

− 2 (1 − ν)

×
[

∂2z
∂x2

∂2z
∂ y 2

−
(

∂2z
∂x∂y

)2
]}

dxd y , (14)

where the integration is extendedover the entire sur-
face of the graphene.

Recognizing that

(k1 + k2) = −
(

∂2z
∂x2

+ ∂2z
∂ y 2

)
(15a)

and

(k1k2) = ∂2z
∂x2

∂2z
∂ y 2

−
(

∂2z
∂x∂y

)2

, (15b)

we may split the energy terms in Equation (14) into
the bending and the twisting contributions, respec-
tively. By substituting the two terms in Equation
(15) into Equation (14) and thenmaking a compar-
ison with Equation (10), the following relationship
between BM and BG for thin plates is obtained:

BG

BM
= ν − 1. (16)

Recalling that the Poisson ratio in graphene is found
to be small, approximate to 0.1 in a broad tempera-
ture range [54], we will have a BG

BM
ratio of about –

0.9. If Equation (16) is applied to graphene, we find

that the prediction roughly matches the results from
DFT calculations [59].

In the classical theory, the value of an acceptable
Poisson ratio should be positive. Yu and Ru [67]
showed that, when the ratio of theGaussian bending
rigidity to the common flexural rigidity falls within
the non-classical range, the actual mechanical be-
havior of such a membrane with two independent
bending rigidities could be very sensitive to the ex-
act values of the two independent bending rigidi-
ties and hence the Poisson ratio. Recently, Davini
et al. [68] considered a discrete model of a graphene
sheet with inter-atomic interactions governed by the
harmonic approximation of the second-generation
Brenner potential, which depends on bond lengths,
bond angles and two types of dihedral angles. The
authors proposed an analytical expression for the
Gaussian stiffness, which turns out to be in good
agreement with the DFT calculations. It was re-
vealed recently [69] that the thermal fluctuations of
elastic sheets can affect the effectivebending stiffness
at finite temperatures. Zhang et al. [70,71] demon-
strated controllable out-of-plane wrinkles by utiliz-
ing the ultra-low bending stiffness of graphene and
topological defects. Boddeti et al. [72]demonstrated
that graphene blisters with switchable shapes could
be realized by controlling pressure and adhesion,
where both stiffnesses play a governing role for mor-
phology stability.

Edge effects
One of the most significant geometrical features
of graphene is the unprecedented surface-area-to-
volume ratio owing to the nature of one-atom thick-
ness. The ultra-low bending resistance of such thin
layers makes it difficult to control their morphol-
ogy. Furthermore, the presence of edges in graphene
nanostructures gives rise to richmorphology change
due to the non-equilibrium edge atoms. With an
aberration-corrected transmission electron micro-
scope with both atomic-scale spatial resolution and
1-second temporal resolution, Girit et al. [73] ob-
served the dynamics of carbon atoms at the edge
of single-layer graphene. The detailed edge recon-
struction and the stability of the ‘zigzag’ edge con-
figuration were reported. The results of the ab-initio
calculations of the effect of reconstruction and passi-
vation of zigzag edges demonstrated that hydrogen-
passivated ideal zigzag edges are more energetically
favored than the pentagon–heptagon zigzag edges.
However, the reconstructed edge is more stable in
the absence of hydrogen [74]. At high tempera-
ture and low (quasi-static) mechanical loading rate
[75], it is possible to obtain fully reconstructed
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zigzag edges through sequential reconstructions at
the crack tip during the fracture of graphene.

The success inmaking graphene ribbons (GNRs)
with nanoscale widths on the order of tens of
nanometers [76–80] boosts the research in under-
standing the morphologies of those nanostructures
[81], in addition to the theoretical predictions that
the edge states in GNRs lead to the size effects on
the electronic state of graphene for being metallic,
insulating or semiconducting [82,83]. Point defect
annealing and edge reconstruction during the edge-
reconstruction process lead to ribbon morphology
patterning and distinct physical properties resulting
from the local edge structure [80]. When the elec-
tron and phonon mean free paths are comparable
to or even greater than the ribbon widths, electron
and phonon transport can be altered dramatically
[84–86]. A number of studies reported ballistic, hy-
drodynamical and even rectified phonon transport
in graphene nanoribbons after Hu et al. [87]. Rit-
ter and Lyding [88] used tunneling spectroscopy
to show that the electronic structure of GNRs with
2- to 20-nm width varies on the basis of graphene
edge lattice symmetry. GNRs with a higher fraction
of zigzag edges exhibit a smaller energy gap than
a predominantly armchair-edge ribbon of a simi-
lar width. Zhang et al. [89] reviewed the chemical
properties in graphene edges, especially the catalyst-
passivated graphene edges and their role in graphene
chemical vapor deposition (CVD)growth.Kim et al.
[90] experimentally demonstrated that folded struc-
tures in graphene could be realized by introducing
anisotropic surface curvature during graphene syn-
thesis or material transfer processes, and this conse-
quentially modifies the electronic band structure of
graphene.

Distinct bonding characteristics of atoms at the
free edges of GNRmay introduce excessive edge en-
ergy and edge force that are also chiral-dependent
[91–96]. Shenoy et al. [91] demonstrated that edge
stresses could introduce intrinsic ripples in a free-
standing graphene sheet even in the absence of any
thermal effects. Compressive edge stresses along
the zigzag and the armchair edges of the sheet can
cause out-of-plane warping to attain several degen-
erate shape modes. Cranford and Buehler [97] de-
veloped a mesoscopic 2D model for a graphene
sheet utilizing coarse-grain bead-spring elements
with rotational-spring potentials. The authors used
their mesoscopic model to study the structure and
conformational behavior of twisted ultra-longmulti-
layer graphene ribbons with lengths of hundreds of
nanometers.They even revealed a distinct transition
from a twisted (saddle-like) configuration to a heli-
cal (coil-like) configuration as a function of the im-
posed rotation and number of graphene layers.

Deformation of GNRs is driven by the excess en-
ergy in the presence of edges and the subsequent
edge stress. The mechanical deformation of a free-
standing GNR could be modeled as a long mem-
brane, with edges represented by elastic strings ei-
ther in an elongated or compressed state and glued
to the long edges of the membrane. Taking an ana-
logue between the edge stress of a 2D membrane
and surface stress of a 3D bulk solid, Shenoy et al.
[91] wrote the energy per unit length of a GNRwith
widthW as

F (w, ε) = 1
2
EWε2 + 2�eε + Eeε

2 + F0,

(17)
where �e denotes the edge stress, Ee is the elastic
moduli of the edges and F0 is the reference energy
state. To understand the edge-stress-driven warping
in graphene nanoribbons, Shenoy et al. [91] con-
sidered a 2D half-space,−∞ < x1 < +∞ and 0 ≤
x2 < +∞. The authors used the perturbation strat-
egy by assuming the out-of-plane deflection z is in
the form of

z = As i n (kx1) e−x2/ l , (18)

where k is the wave number and the characteristic
wave penetration depth is l . In the edge (x2 = 0),
the periodic rippling size is λ = 2π/k and the am-
plitude of the ripples is A. The strain components of
the GNR could hence be given as [98]

εi j = 1
2

(
∂ui
∂x j

+ ∂u j

∂xi

)
+ 1

2
∂z
∂xi

∂z
∂x j

. (19)

It is noted that the first term of the right-hand side
in Equation (19) comes from the in-plane displace-
ment (u1, u2) and this part is usually neglected
due to its relatively small contribution to the over-
all deformation and the strain energy. For com-
pressive edge stresses, warping in the edges is a
favorable configuration with lower free energy. The
free-energy density associated with different defor-
mation modes, as seen in Equation (17), could then
be deduced.The wave penetration depth is then de-
duced by using the energy-minimization criterion
and is related to λ as l = 0.23λ and the most prob-
able amplitude of edge ripples is [91]

A =
⎡
⎣ −λ�e(

π
√
20 + 14

√
7
)

E
18(1−ν2) + 3π2

2λ Ee

⎤
⎦

0.5

.

(20)
Indeed,molecular dynamics simulationswith the

Adaptive Intermolecular Reactive Empirical Bond
Order (AIREBO) potential [99] as implemented in
the software package LAMMPS [100] have been
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used to predict the compressive edge stresses in
GNR. The values are 10.5 and 20.5 eV nm–1 in the
armchair and zigzag edges, respectively. The pre-
dicted penetration depth and rippling amplitude are
in good agreement with the corresponding results
fromMDsimulations, as shown inFig. 2b–d. A com-
bination of edge stress and the low bending resis-
tance of GNR could be utilized to make complex
folding structures, as demonstrated in Fig. 2e by
Kim et al. [90]. Figure 2f–h shows cutting-edge ex-
periments to monitor mechanical vibrations in sus-
pended graphene sheets [101].

It is worth pointing out that several important
factors were not considered in the theoretical anal-
ysis summarized in Equations (17)–(19). (i) In re-
ality, a GNR is of finite width. The finite width, in
particular when aGNR is only several nanometers in
width, couldnotbe capturedby the analysis basedon
semi-infinite 2D space. As revealed byLu andHuang
[102], for graphene nanoribbons of width less than
the intrinsicwavelength, the interaction between the
two free edges becomes significant, leading to anti-
phase correlation of the buckling waves. (ii) Tem-
perature is found to play an important role in the
rippling of graphene, which is called thermal undu-
lation. The edge stress is also a function of tempera-
ture. (iii)The competition of rippling by thermal un-
dulation with edge stress-driven rippling would lead
to some more interesting phenomena. Dewapriya
and coauthors revealed that temperature, in combi-
nation with free edges, influences significantly the
mechanical properties of graphene [103].

Strength and fracture of pristine
graphene
We discuss in previous sections the elastic re-
sponse of graphene. Beyond the elastic limit, pristine
graphene breaks in response to further tension. The
stress at which graphene is torn apart characterizes
the strength of graphene and is another extraordi-
nary property of this class of amazing 2Dmaterials.

Strength
Given the same chemical nature, the strength of
single-layer graphene is expected to be the same as
that of carbon nanotubes if the edge effect is ne-
glected, as confirmed by the very first experimen-
tal measurement of the strength of graphene. Lee
et al. [7] measured the intrinsic strength of mono-
layer graphene by nano-indentation in an atomic
force microscope. While it is not a standard ten-
sile test to characterize the stress–strain response
of materials, the authors extracted the stress–strain
curve from the force-depth curve obtained from
the indention tests. The inferred Young’s mod-

ulus of E = 1.0 TPa and intrinsic strength of
130 GPa for monolayer graphene match reason-
ably well with the strength of single-wall carbon
nanotubes [10,104,105]. These experiments estab-
lished the foundation that graphene is the strongest
material ever measured. The measured strength of
130 GPa for graphene is about 20% higher than the
calculated value by the DFPT at 0 K.

The inferred strain in the graphene sheet directly
beneath the diamond indenter at the measured fail-
ure load is anomalously large compared to the frac-
ture strains predicted by both the soft-mode and
the acoustic analyses. Liu et al. [52] calculated the
phonon spectra of graphene as a function of uniaxial
tension by theDFPT to assess the first occurrence of
phonon instability on the strain path, which controls
the strength of a defect-free crystal at 0 K.The failure
strength to break the zigzag plane (loading along the
armchair direction) and the armchair plane (load-
ing along the zigzag direction) are 110 and 121GPa,
respectively. This discrepancy, as further elaborated
on by [106], may originate from the strain-shielding
effect initiated by mechanochemical interactions at
the graphene–indenter interface.Transmission elec-
tron micrographs and a molecular model of the di-
amond indenter’s tip together suggest that the tip
surface contains facets comprising crystallographic
{111} and {100} planes.

A more systematic study on the ideal tensile
strength of pristine graphene as a function of the
loading orientation by using the DFT and energy-
minimization calculations was given by Yin et al.
[58]. The detailed computational procedure has
been described in [107]. By defining θ as the angle
between the tensile loading direction (along the x-
axis) and the zigzag edge andσb the strengthof an in-
dividual C–C bond, the critical stresses to break the
zigzag plane is defined as

σc = σb

cos (60◦ + θ)
. (21a)

Similarly, the critical stresses to break the armchair
plane are

σc = 2σb

cos θ[cos (30◦ + θ) + cos (30◦ − θ)]
.

(21b)
The required stress to break the zigzag plane and
that to break the armchair plane at different angle θ

differ significantly, with the latter being larger than
the former. From the energy perspective, however,
the zigzag plane should be harder to break, as it has
greater edge energy than that of the armchair plane
[108]. This difference implies that one may need to
distinguish the brittle fracture governed by the ideal
strength from that by the edge energy.
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Fracture
In the presence of cracks, graphene sheets typically
break along the initial crack. A comprehensive re-
view on the fracture behavior of graphene has been
given by Teng et al. [28]. As there is no perceivable
macroscopic plastic deformation in the stress–strain
response of a graphene, graphene is believed to be
brittle in nature—that is, single-layer graphene frac-
tures at the nominal peak stress. It exhibits negligible
plasticity until its failure at room temperature [8].
As discussed in the ‘2D long-range crystalline order’
section above, its elastic response is isotropic at small
strain. Here we focus on the directionality of frac-
ture in graphene and its fracture toughnessmeasure-
ment.

According to the Griffith criterion, the criti-
cal fracture stress σ f beyond which a pre-cracked
isotropic stripe under mode I loading would extend
is given as [109]

σ f = 1
F (φ)

√
E�

πa
, (22a)

where E is Young’s modulus and � is the apparent
fracture resistance of the crack plane. In brittle ma-
terials, � is regarded as the surface energy for 3D
materials and the edge energy for 2D materials. In
Equation (22), F (φ) is a geometrical factor given by
[110]

F (φ) = (
1 − 0.025φ2 + 0.06φ4)√

sec
(

πφ

2

)

and φ = W
2a

, (22b)

where W is the width of the stripe with a central
crack of length 2a.

Both � and the critical crack size are of practical
importance. Zhang et al. [111] measured the frac-
ture toughness using a nanomechanical device in a
scanning electron microscope. The fracture tough-
ness of graphenewasmeasured by obtaining the crit-
ical stress intensity factor of pre-cracked graphene
and then deducing its critical strain energy release
rate to be� = 15.9 Jm−2. In contrast, themeasured
fracture toughness of the CVD-grown graphene
by Hwangbo et al. [112] is about KC = 10.7 ∼
14MPa

√
m) and this number is higher than that

from Zhang et al. [111]. Note that the two groups
used different testing techniques: Zhang et al. [111]
tested free-standing graphene using amicromechan-
ical system while Hwangbo et al. [112] employed
a pressure-bulge testing setup. Whether the differ-
ence came from the geometrical effects (e.g. pos-
sible rippling in the graphene during bulge tests

Table 1. Crack/loading angle, crack chirality and the appar-
ent fracture resistance �G predicted by the Griffith criterion
(obtained through fitting the strength versus crack length
curve by using Equation (22)) and�M D fromMD simulations
by calculating the energy of free edges along those particu-
lar chiralities.

Crack angle θ 0o 7.5o 15.9o 22.5o 30o

Chirality Ch (m,n) (1,1) (5,8) (2,5) (2,11) (1,0)
�G 15.9 15.1 14.0 13.5 11.0
�MD 11.7 12.7 13.1 13.4 11.0

will enlarge the apparent fracture resistance) re-
mains to be explored with well-controlled experi-
ments. Via comparative in-situ fracture toughness
testing on single-edge V- andU-notchedmulti-layer
graphenes and boronitrenes BN in a high-resolution
transmission electron microscope (HRTEM), Wei
et al. [113] reported the fracture toughness of multi-
layer graphene and boronitrene to be K IC = 12 ±
3.9 and KC = 5.5 ± 0.7MPa

√
m , respectively.

More recently, numerical simulations have
shown that the fracture behavior in graphene is
orientation-dependent [114]. Table 1 gives the
fracture resistance of graphenewhen the initial crack
is along different chirality. Here the orientation of
single-layer graphene is described by two vectors a 1
and a 2, and the crack edge is described by a chiral
vector C h = na 1 + ma 2. The armchair and the
zigzag directions correspond to C h = (1, 1) and
C h = (1, 0), respectively. It is seen that the differ-
ence in �G (predicted by the Griffith criterion) or
�MD (from direct MD simulations) along different
orientations is rather small. However, a crack prefers
to extend along the zigzag edge in graphene, which
is due to the local strength-based failure rather than
energy-based Griffith criterion [58].

DEFECTS IN GRAPHENE AND
MECHANICS OF DEFECTED GRAPHENE
It is generally known that many properties of mate-
rials and structures are strongly affected or even de-
termined by either intrinsic or extrinsic defects or
their combination.This ismore evident inone-atom-
thick graphene and its derivatives such as carbon
nanotubes, fullerenes and so on. Indeed, it seems
unavoidable for the presence of defects from ge-
ometrical necessity [115]. A typical fullerene, for
example, is composed of 12 pentagons (see Fig. 3a).
Understanding the mechanical properties of defects
is a key challenge but also of particular importance
for graphene. In this section, we summarize com-
monly seendefects in graphene and theirmechanical
description from up-to-date literature.
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Figure 3. A variety of defects in single-layer carbon allotropes. (a) Pentagons in a fullerene. (b) Stone-Thrower-Wales defect. Adapted from [122], with
permission of Elsevier. (c) Observation of 5–7 defects. Adapted from [123], with permission of Springer Nature. (d) GBs in polycrystalline graphene.
Adapted from [24], with permission of Springer Nature. (e) Pentagon–heptagon rings in the edge. Adapted from [80], with permission of American
Association for the Advancement of Science. (f) and (g) 5–8 defects. Adapted from [126], with permission of American Physical Society. (f) The HRTEM
image of 5–8 defects. Scale bar is 1 nm. (g) DFT-optimized structure of the defect for comparison with (f). (h) STM image of a linear defect (chain
of two 5-rings with one 8-ring) formed in graphene epitaxial layer on Ni (111) substrate. Adapted from [127], with permission of Springer Nature. (i)
Graphene-based membranes with artificial vacancies for molecular separation. Adapted from [128], with permission of American Chemical Society
Publications.

Typical defects
Defects in graphene may be categorized into
three types if we differentiate how they are usu-
ally produced: thermally dynamically resultant,
deformation-introduced and artificial ones. The
thermally activated defects are generally of low
energy level, such as point vacancy and 5-7-7-5
rings, and 5-8-5 rings. Those defects are seen in
graphene fabricated by different methods [116]
and they also exist in other carbon allotropes such
as fullerene, carbon nanotube and graphite. In
particular, in GBs of polycrystalline graphene, such
defects are a geometrical necessity to accommodate
the incoherent lattice structure at lower energy.
However, so far, there have been no reports regard-
ing how frequently a typical thermal dynamic defect
may appear. Identifying such defects like vacancy
and non-hexagonal rings requires high-resolution
tools, which renders a statistic analysis very time-
consuming and costly. External deformation could
also introduce such kinds of defects; and it may
even result in nanoscale cracks and nanoscale pores.
Thosemechanically triggered defects could be either
transient or permanent in response to the removal of
the deformation. Furthermore, to achieve a specific
functionality, many groups have employed chemical
strategies and high-energy bombing methods such
as irradiation to generate defects as well. We now
introduce in detail those commonly seen defects
and explain how they affect the nanomechanics of
graphene.

The simplest example of a topological disorder in
graphene and other sp2-hybridized carbon systems
is the Stone-Thrower-Wales defect, usually called

Stone-Wales, which results from rotating a C–C
bond by 90◦ with regard to the midpoint of the
bond—referred to as the SW transformation—so
that four hexagons are turned into two pentagons
and two heptagons [117,118] (see Fig. 3b, c). Sev-
eral derivatives had been identified, including the
so-called inverse SW defect [119–122] and the di-
vacancy defect [123], which is formed by the re-
moval of two adjacent carbon atoms (Fig. 3i). It
has been seen that GBs are dominantly composed
of pentagon–heptagon pairs to accommodate the
lattice mismatch of pristine graphene flakes at dif-
ferent orientations, which is an important way to
realize large-area but polycrystalline graphene, as
seen in Fig. 3d. Reconstructed zigzag edges in GNR
are also composed of pentagon–heptagon pairs, as
provedby Jia et al. [80] (Fig. 3e).More recently,Kim
et al. [124] demonstrated reversible and extended
pentagon–heptagon (5–7) reconstruction at zigzag
edges, and explored experimentally and theoretically
the dynamics of the transitions between the edge
configuration states.

By utilizing cutting-edge techniques, Warner
et al. [125] determined the atomic structure, includ-
ing the bond length and charge density variations
of edge defects within extended arm chair defects in
graphene, as well as bond elongation within a pair of
5-8-5di-vacancies. Irradiation-induced5-8-5defects
[126] and GBs formed by a group of 5-8-5 defects
[127] had also been observed, as shown in Fig. 3f–h,
respectively. There is also growing interest in mak-
ing nanoscale defects in graphene for special applica-
tions, such as nanopores (Fig. 3i) in graphene-based
membranes for molecular separation [128].
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Figure 4. Stress field induced by a 5–7 defect. (a) The structure of a 5–7 ring and its equivalence to a disclination dipole. (b)–
(d) The stress contours of σ xx, σ yy and σ xy predicted by the disclination dipole model; and (e)–(g) the corresponding contours
for σ xx, σ yy and σ xy calculated using MD simulations. (h) Experimentally measured shear strain introduced by a 5–7 ring.
Adapted from [133], with permission of American Association for the Advancement of Science. (i) and (j) The structure used
for DFT calculation and the local weakest bond (shared by the 6–7 ring) in the 5–7 defect. Adapted from [27], with permission
of Elsevier.

Pentagon–heptagon ring
Among all those different types of defects, the most
commonly seen pentagon–heptagon pairs deserve
further consideration. Pentagon–heptagon pairs are
analogous to dislocations in bulk crystalline mate-
rials and are the most important defects in a 2D
hexagonal lattice. From a geometrical perspective,
a pentagon–heptagon pair resembles a disclination
dipole [129–132], which consists of two disclina-
tions of opposite signs. In view of this,Wei et al. [26]
constructed the stress field of a pentagon–heptagon
pair by using the disclination dipole model. The
stress components induced by a disclination dipole
with a positive disclination residing at (0, –d) and a
negative one at (0, d) (see Fig. 4a) are given as

σxx

σ0
= 1

2
ln
x2 + (y + d)2

x2 + (y − d)2
+ x2

x2 + (y − d)2

− x2

x2 + (y + d)2
, (23a)

σy y

σ0
= 1

2
ln
x2 + (y + d)2

x2 + (y − d)2
+ x2

x2 + (y + d)2

− x2

x2 + (y − d)2
, (23b)

τxy

σ0
= x (y + d)

x2 + (y + d)2
− x (y − d)

x2 + (y − d)2
. (23c)

The stress contours of σxx , σy y and τxy pre-
dicted by the disclination dipole model, as seen in
Fig. 4b–d, agreewell with the large-scaleMDsimula-
tions (Fig. 4e–g) produced by a pentagon–heptagon
pair using a 1000 × 1000-nm graphene sample
in a vacuum. Warner et al. [133] measured the
strain fields of individual pentagon–heptagon pairs
and showed how the defect deforms graphene by
elongation and compression of C–C bonds, shear
and lattice rotations.The experimental result shown
in Fig. 4h agrees well with the theoretical predic-
tion. The stress fields described by Equation (23)
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Figure 5. Grain-boundary structure in a graphene sheet. (a) The two degrees of freedom in a GB in 2D materials—the mis-orientation θ and the GB
rotation ψ . (b) Atomic structures of GBs with constant θ but different ψ from 0 to 27.5o. (c) GB structures with constant ψ but θ varying from 4.7 to
27.5o. Adapted from [27], with permission of Elsevier. Note GB defect density depends on θ but is insensitive to ψ . (d) and (e) Topographic images
of rotational GBs. Adapted from [142], with permission of American Physical Society. (d) Four rotational GBs of different sizes (1 to 4) and (e) STM
observation of type 1 GB in the epitaxial graphene on SiC. (f) The relationship of the strength versus tilt angle (mis-orientation) of symmetrical GBs.
Adapted from [26], with permission of Springer Nature.

significantly differ from those of a dislocation within
the core, although they are similar for the region far
away fromthecore.Theaccumulatedeffectby the lo-
cal difference is important for understanding grain-
boundary strength, as explained below.

Grain boundary
With the stress fields of individual pentagon–
heptagon pairs known, in particular the weak bond
associatedwith the defect (see Fig. 4j and k), it is im-
portant to understand its influence on the strength
of graphene. Accompanied with the development
of synthesis techniques capable of generating large-
area graphene, GBs were found to exist in most
as-fabricated graphene [134–138] and those GBs
are composed of pentagon–heptagon defects. In-
deed, understanding how GBs primarily composed
of pentagon–heptagon defects in graphene alter its
physical properties is of both scientific and techno-
logical importance [24,25,138–143]. Recently, Biro
and Lambin [144] reviewed the literature onGBs in
graphene, with a focus on the experimental findings
on graphene grown byCVDunder a very wide range

of experimental conditions (temperature, pressure
hydrogen/hydrocarbon ratio, gas flow velocity and
substrates for growth).Herewe summarize the theo-
retical advances on constructing the grain-boundary
and mechanical-strength relationship.

The formation of 2D GBs
Geometrically, a general GB in 3D polycrystalline
materials is characterized by five degrees of freedom:
three from the relative rotation of adjacent grains
and two due to the angular directions of the planar
GB. For 2D polycrystalline graphene, only two rota-
tional degrees of freedomare needed to define a gen-
eral GB: the mis-orientation of the two grains (θ)
and the rotation of the boundary line itself (ψ), as
shown in Fig. 5a. For here and in what follows, we
refer to θ as grain mis-orientation andψ as GB rota-
tion. Figure 5b shows the atomic structures of GBs
with constant θ but differentψ from 0 to 27.5o.The
GB structures with constant ψ but θ varying from
4.7 to 27.5o are shown in Fig. 5c [27]. It is interest-
ing to note that the density of GB defects depends
strongly on grainmis-orientation but is not sensitive
to GB rotation.
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The kinetic mechanisms leading to the type of
GBs have been broadly investigated. Cockayne et al.
[142] presented a class of topological defects in
graphene, composed of a rotating sequence of dis-
locations that close to themselves, forming grain-
boundary loops that either conserve the number of
atoms in the hexagonal lattice or accommodate va-
cancy or interstitial reconstruction, while leaving no
unsatisfied bonds. Such a grain-boundary loop re-
sembles a ‘flower’ pattern in scanning tunneling mi-
croscopy(STM)studiesof epitaxial graphenegrown
on SiC(0001), as shown in Fig. 5d and e.

Theoretically, Seymour and Provatas [145] de-
veloped a new structural phase-field crystal (PFC)
model that allows the stabilization of graphene, as
well as its coexistence with a disordered phase. The
model is adopted for efficient simulations for the
nucleation and growth process of polycrystalline
2D materials, which shows the defect structures
produced in CVD-grown polycrystalline graphene.
Ophus et al. [146] then characterized the structure
of many different GBs in single-layer graphene us-
ing HRTEM, and introduced a new algorithm for
generating grain-boundary structures for a class of
hexagonal 2Dmaterials.The authors found excellent
agreement between the simulated and experimen-
tally observed GBs.

Strength of an individual GB
The formation of GBs would affect the strength
of materials. The theoretical efforts in studying the
strength of GBs began with the exploration by
Grantab et al. [25], who found that moreGB defects
could counter-intuitively give rise to higher strength
in tilt GBs. A more comprehensive analysis by Wei
et al. [26] demonstrated that GB strength can ei-
ther increase or decrease with the tilt, and the be-
havior can be well explained by the stress fields in-
troduced by pentagon–heptagon pairs as shown in
the ‘Pentagon–heptagon ring’ section above. It is
not just the density of defects that affects the me-
chanical properties, but also the detailed arrange-
ment of defects is important. Well-stitched high-
angle GBs in graphene would only slightly degrade
its strength.

In the special case that GBs are symmetrical
tilt ones, the strengths of tilt GBs increase as the
square of tilt angles if pentagon–heptagon defects
are evenly spaced [26]. In that scenario, the resid-
ual stress Sxx in an infinitely long tilt GB with
tilt angle θ (or equivalently GB mis-orientation) is
given as

Sxx
σ0

= −2π2�d
3h2d

θ 2

ω2 , (24)

Table 2. The geometrical and material parameters used for
Equation (24) to obtain the theoretical curves shown in Fig. 6f
for both armchair and zigzag tilt GBs.

Name units ω (degree) � (a) hd (a) d (a) σy0 (GPa)

Zigzag 21.8 1.5 4.7 0.8 76
Armchair 27.8 3.2 6.3 1.5 33

where �, d and hd are geometrical parameters as-
sociated with the defects and their arrangement, ω
is the rotational strength of the disclinations and
σ0 = Eω/4π , where E is the Young’s modulus.
The negative sign in Equation (24) suggests that the
residual stress introducedby theneighboringdefects
in the GB is compressive, which could compensate
for the exerted tensile stress and lead tohigh strength
in the absence of interaction from other defects. No-
tably, the compressive stress at positive � (above
the origin, on the side of the negative disclination) is
proportional to θ2. It is also important to know that
ω is notπ/3 from simple geometrical consideration,
but a value depending on the type of GB. Table 2
lists the corresponding geometrical and material pa-
rameters for both armchair and zigzag tilt GBs [26].
An excellent agreement between theoretical analysis
and molecular dynamics simulations was found, as
shown in Fig. 5f.

In parallel to the theoretical analysis, two groups
reported the strengths of individual GBs experi-
mentally. Lee et al. [8] combined the structural
characterization by means of transmission electron
microscopy with nano-indentation tests to study
the mechanical properties of CVD-grown graphene
films with different grain sizes. They found that the
strength of graphene films is only slightly reduced
despite the existence of GBs. Indentation tests di-
rectly on GBs confirmed that they are almost as
strong as the pristine ones. Rasool et al. [9] mea-
sured the strengths of suspended bi-crystal graphene
membranes with different GB mis-orientations, and
revealed that GBs with large mis-orientations in
polycrystalline specimens have higher strengths
than their low-angle counterparts. These high-angle
GBs even show strength comparable to that of
single-crystal graphene. The higher strength in GBs
of larger mis-orientations could be well explained
by the larger compressive residual stress intro-
duced by more neighboring pentagon–heptagon
defects.

Strength of polycrystalline graphene
Theunderstanding on the strength of individualGBs
paves the road for understanding the strength of
polycrystalline graphene containing abundant GBs,
which is of significance in engineering practice.
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Suk et al. [147] studied the failure of CVD-grown
polycrystalline graphene by nano-indentation test-
ing in a scanning electron microscope. Their mea-
surement indicates that graphene membranes with-
out any GBs had a failure strength of 45.4 ±
10.4 GPa, compared to 16.4 ± 5.1 GPa for those
with GBs. A large variation in strength is seen.
Shekhawat and Ritchie [148] investigated the statis-
tical fluctuations in the toughness and the strength
of polycrystalline graphene containing inherent
nanoscale line and point defects—GBs and grain-
boundary triple junctions.They showed that the sta-
tistical variation in the toughness and the strength
can be understood with ‘weakest-link’ statistics, and
elucidated the origins of the grain-size dependence
of its strength and toughness. Such ‘weakest-link’
statistics may be employed to explain the contro-
versial observations fromMD simulations. Sha et al.
[149] showed that the breaking strength and aver-
age grain size in graphene follow an inverse pseudo
Hall–Petch relation, in agreement with experimen-
tal measurements [9]. They also explained this in-
verse pseudo Hall–Petch relation by reasoning that
the weakest-link determines the failure behavior of
brittlematerials.On the other hand, Song et al. [150]
reported a pseudo Hall–Petch strength reduction in
polycrystalline graphene where samples of smaller
grains exhibit higher strength. The observed crack
localization and strength behavior were interpreted
by a dislocation-piled-upmodel.The insensitiveness
of flaws in nanocrystalline graphene could be orig-
inated from the statistical nature of defective GBs
in competition with pre-existing flaws [151]. An in-
teresting observation was made by Lin et al. [152]
on the fracture behavior of the two-layer stacked
graphene membranes using nano-indentation per-
formed with atomic force microscopy. The authors
observed distinctly different fracture force distribu-
tion of stacked graphene from that of monolayer
graphene: the stackedgraphenemembranebecomes
less sensitive to the defects during nano-indentation,
improving the overall performance of the graphene
membranes.

It is worth noting that the original Hall–Petch re-
lation is only strictly applicable to crystalline metals
inwhich their strength is governedby thedislocation
activities. It describes the strengthening mechanism
resulting fromGBs by retarding dislocationmotion;
smaller grains in bulk polycrystalline materials im-
ply more GBs to serve as barriers to dislocation
motion. Considering that no plastic deformation
carrier is found in graphene at room temperature,
applying the Hall–Petch relation in graphene might
be a wrong shot. The ‘weakest-link’ statistics could
be better suited to describe the grain-size-dependent
strength in graphene. The strength–grain-size rela-

tionship is all governed by the coherence of GBs and
triple junctions in graphene.

Defect engineering
As every coin has two sides, defects in graphene
could be engineered to realize particular structure
configuration or certain exciting properties. Or-
likowski [153] discussed the possibility of employ-
ing a combination of ad-dimers and strain to form
nanotube-based quantum dots. By using the DFT
calculations, Lust and Carr [154] reported a set of
stable domain structures including blisters, ridges,
ribbons and meta-crystals. Through such a treat-
ment, graphenewith some particular chemical prop-
erties or ultra-fine pore could be also realized, while
the latter could be utilized for specialized filtering
and selective membranes for chemical and biologi-
cal applications [155,156].

For free-standing graphene, defects may intro-
duce local compression given the graphene is flat.
The compressive state is unstable, which leads to
out-of-plane bulging fromwhich the local high stress
is relaxed by warping [10,26,157,158]. Such me-
chanical deformation may be described by the gen-
eralized Föppl-Von Karman equation for a flexi-
ble solid membrane [70] and be utilized to design
topological surfaces [70,71,159,160], given that pat-
terned defects could be synthesized.

Instead of changing graphene layers, Wang and
Crespi [161] explored a way to engineer GBs
in 2D crystals by controlling the substrate. They
demonstrated that depositing graphene on a sub-
strate of non-zero Gaussian curvature may facili-
tate the growth of finite-length GBs that terminate
abruptlywithin amono-crystalline domain. Byprop-
erly designing the substrate topography, these GBs
can be placed at desired locations and at speci-
fied misfit angles. New properties specific to certain
grain-boundary geometries, including magnetism
andmetallicity, can thus be engineered into 2D crys-
tals through topographic design of their growth sub-
strates.

Defect motion
The pentagon–heptagon defects–dislocations in the
hexagonal 2D lattice have been investigated for mo-
tion possibility with the aim to make the strongest
material to deform plastically.

The Stone-Wales defect has received a consider-
able amount of attention, as it has the lowest for-
mation energy among all intrinsic defects in the
graphene system. As proposed by Yakobson [162],
a pentagon–heptagon defect presumably plays an
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Figure 6. Motion of defects in single-layer carbon allotrope. (a) Illustration to show
the ductile versus brittle deformation mechanisms by the motion of 5–7 rings, (II) to
(IV) for brittle and (II) to (III’) and (IV’) for ductile deformation. Adapted from [162], with
permission of American Institute of Physics Publishing. (b) Molecular dynamics sim-
ulations to show plastic deformation mechanism in CNTs. Adapted from [163], with
permission of American Physical Society. (c) In-situ observation of kink motion in a
SWCNT under tension. Adapted from [165], with permission of American Physical So-
ciety. Sketches in the figures show the change in the shape and position of the kinks.
(d) In-situ observation of defect formation, transformation and separation of a single-
layer graphene. Adapted from [168], with permission of Springer Nature.

important role in plastic deformation of carbon nan-
otubes (CNTs) under tension by accommodating
the strain, as detailed in Fig. 6a. Molecular dynam-
ics simulations by Ding et al. [163] recaptured the
deformation scenarios, as seen in Fig. 6b. Such sim-
ulations could also help to shed light on the dif-
fusion, coalescence and reconstruction of vacancy
defects in graphene layers at elevated temperatures
[164]. The suggested plastic deformation and kink
formation in CNTs seem to agree well with the ex-
perimental observation [164]. Huang et al. reported
that kink motion, reminiscent of dislocation motion
in crystalline materials, contributed to plastic defor-
mation in all carbon nanotubes when being tensile
loaded at high temperatures [165].Thedeformation
mechanism proposed by Yakobson [162] describes
the main route of mechanical relaxation in a series
of 2D nano-crystals, suggesting a brittle cleavage at
low temperatures, but plastic flow is likely at high
temperatures or under electron radiation [166]. In
both cases, deformation starts with diatomic rota-
tion, which produces a dislocation dipole with the
pentagon–heptagon cores. Under high stress, the
defects depart from each other, leaving behind a per-
manent shearing [162,167–169].

HRTEM have been widely employed to exploit
the motion of defects in graphene. Warner et al.
[133] reported the stepwise dislocation movement
along the zigzag lattice direction mediated either by
a single bond rotation or through the loss of two car-

bon atoms.The strain fields were determined, show-
inghowthedislocationsdeformgraphenebyelonga-
tion and compression of C–C bonds, shear and lat-
tice rotations. A cutting-edge aberration-corrected
TEM study by Lehtinen et al. [168] demonstrated
how the impinging energetic electrons stimulate
atomic-scale morphological changes in graphene.
The full life cycle of transformations from birth to
annihilation was seen in situ and atom by atom (see
Fig. 6d). Also with an aberration-corrected TEM,
Kurasch et al. [169] used the energy of imaging elec-
trons to stimulate individual bond rotations in the
GB core region. They then observed in-situ atom-
by-atom GB migration and its dependence on GB
curvature. STM was also broadly used to examine
the growth of graphene on the Si-terminated facet of
6H-SiC (0001) [170].The initial stages of ultrahigh
vacuumgraphitization resulted in the growthof indi-
vidual graphene sheets on SiC terraces. The authors
demonstrated that multi-layer thickness resulted in
a high density of defects, located predominantly be-
low the first layer of graphene.

The aforementioned research advances our un-
derstanding on the mobility of defects in graphene.
The plastic deformations revealed so far, however,
are contingent upon the assistance of the imping-
ing energetic electrons or the help of high tem-
peratures. At room temperature, graphene sheets,
either single-layer or multiple-layer, is brittle in na-
ture. Even at high temperatures or under irradiation,
there is no literature reporting perceivable plastic-
ity in graphene. While the mechanical performance
of graphene at high temperatures is very appealing,
there seems to be a long way to go before achieving
macroscopic plasticity in graphene.

GRAPHENE ON A SUBSTRATE
Monolayer graphene exhibits rich morphology, in-
cluding rippling in free-standing graphene intro-
duced by stresses (see Fig. 7a) or thermal undu-
lation. The mismatch of the coefficient of thermal
expansion (CTE) between graphene and the sub-
strate could induce strong compressive strain (ε =
�T(αg − αCu)) for a temperature drop�T in the
graphene film (see Fig. 7b–i).Mechanically, two fea-
tures are important to describe a graphene layer on
a substrate: the adhesion energy and wrinkling. The
wrinkling in graphene on a substrate is highly sensi-
tive to the adhesion energy between graphene and
the substrate [171,172].

Adhesion
The adhesion between the graphene layers (in
the case of multi-layer graphene [18,173] or that
between graphene and the substrate [13,174–178])
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Figure 7. Wrinkling of graphene on a substrate (experiments and simulations). (a) Scanning electron microscopy (SEM)
images of a membrane before annealing (left), after annealing to 425 K (middle) and to 475 K (right). Notice the increase in
wavelength and amplitude of the ripples with the annealing temperature. Adapted from [183], with permission of Springer
Nature. (b) SEM image of graphene with wrinkles on SiO2/Si substrate. Adapted from [181], with permission of American
Chemical Society Publications. (c)–(h) Morphology of graphene on Cu substrate of different crystallographic planes. (c)–(e)
Morphology at 300 K after initial relaxation, (c) Cu (100), (d) Cu (110), (e) Cu (111). The morphology of graphene on (f) Cu (100),
(g) Cu (110), (h) Cu (111) after a sufficiently long period. Color reflects the height of wrinkles. (i) The dependence of binding
energy and wrinkle height on Cu crystallographic planes. Adapted from [181], with permission of American Chemical Society
Publications.

is critical for the transfer of the graphene layer aswell.
A number of experiments have been performed to
obtain the adhesion energy of graphene on differ-
ent substrates [13,175–178]. There are two striking
observations that are worth noting: (i) the values of
graphene-substrate adhesion energy are greater than
those of similar micromechanical systems, and one
may attribute this characteristic to the low bending
resistance of graphene, which promotes conforming
contact of graphene with the substrates of arbitrary
topography; and (ii) the adhesion energy between
single-layer graphene and a substrate is significantly
higher than that ofmulti-layer graphene on the same
substrate. For graphene of more than two layers,
the adhesion energy on the same substrate remains
nearly the same. For example, the adhesion energy of
monolayer graphene and silicon oxide was found to
be 0.45 and 0.31 J m−2 for samples containing two
to five graphene layers [13,171,172].The secondob-
servation reminds us to exercise caution when dis-
cussing the interaction of graphene with substrates.

Wrinkling
Once the strain energy resulting from thermal mis-
match during cooling of the graphene-substrate sys-
tem is large enough to overcome their adhesion, the
graphene layer buckles to form wrinkles, relaxing its
in-plane compression at the expense of interfacial
energy due to delamination and bending energy in

the wrinkles. The wrinkles can form during both the
growth and the transfer processes, and are very hard
to release.

The wrinkling of graphene could be described
using the continuum theory for thin elastic sheets.
Cerda and Maha [179] deduced a general theory
of wrinkling using elementary geometry and the
physics of bending and stretching.Theirmain results
include the scaling laws between the wavelength of
the wrinklesλwith stiffness K due to an ‘elastic sub-
strate’ effect, withλ ∼ K −1/4, and the amplitude of
the wrinkle A ∼ λ. Given different crystallographic
planes have distinct density of atomic packing and
surface energy, there is a strong dependence of wrin-
kling patterns on the substrate on which graphene is
grown [180,181].

For simplicity but without the loss of general
physics, we may describe the out-of-plane displace-
ment z of the wrinkles by a sinusoidal function:

z = As i n (2π y/λ), (25a)

where A is the amplitude and λ the wavelength.
Wang andDevel [182] showed that the dependence
of the ripple structureon the compressive edge strain
ε should be governed by

λ4 = 4π 2νL2t2

3 (1 − ν2) ε
. (25b)
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Bao et al. [183] reported the very first di-
rect observation and controlled creation of 1D
and 2D periodic ripples in suspended graphene
sheets, using both spontaneously and thermally gen-
erated strains (see Fig. 7a). They demonstrated
that the ripple orientation, wavelength and am-
plitude are tunable by controlling the boundary
conditions and making use of the negative ther-
mal expansion coefficient of graphene. Such ma-
nipulation of wrinkles may lead to advanced ap-
plication of graphene-based nanoelectronics [184].
Under the influence of substrate, Tapasztó et al.
[185] observedperiodic rippling of nanometer-scale
wavelength in the suspended graphene membranes
under thermal strain using STM. The observed
nano-rippling mode differs significantly from the
predictions of the continuum mechanics model,
which indicates the breakdown of applying the plate
theory for graphene.

PERSPECTIVES
Regardless of the tremendous progress that has been
achieved on the deformation behavior of graphene
in response to mechanical or thermal undulation,
there are still compelling needs on several key is-
sues that cannot be satisfactorily addressed using
the existing theories or computational tools. We
comment below on three mechanically related is-
sues that are of significance for the morphology ma-
nipulation of graphene in contact with substrates
or under thermal undulation. Those issues call for
further development in theory and computational
tools for better predicting the mechanical behavior
of graphene.

Interlayer van der Waals interaction
The stacking of multiple layers of graphene forms
graphite.The interlayer bond nature and its effective
description are important for multi-layer graphene
as well as interactions of graphene with other struc-
tures. From a recent perspective by Geim and Grig-
orieva [186], research on graphene and other 2D
atomic crystalsmade layer by layer in aprecisely cho-
sen sequence, often referred to as ‘van der Waals’
heterostructures, may result in unusual properties
and new phenomena. Such interaction, not sur-
prisingly, would have a significant influence on the
physical properties of those layered 2D structures
[187–189]. Van der Waals interaction could also be
used for epitaxy, which is often limited by the need
for lattice matching between the two material sys-
tems. This strict requirement is relaxed with epitaxy
on layered 2Dmaterials, which is mediated by weak

van der Waals interactions, and also allows facile
layer release from 2D surfaces [190]. The mechan-
ical behavior of multiplayer graphene is fully deter-
mined by the interlayer van der Waals force. The in-
terlayer shearing and rigidity affect the stiffness of a
‘van derWaals’ heterostructures [173].The strength
and fracture toughness also rely on howmonolayers
are bonded together.

While the in-plane deformation in graphene
could be well captured by the all-electron DFT
calculations, popular density functionals for most
first-principles-based calculations are unable to de-
scribe correctly van der Waals interactions resulting
from the dynamical correlations between fluctuating
charge distributions [191]. In most atomistic simu-
lations, practitioners chose the empirical Lennard-
Jones (L-J) potentials to represent the interlayer in-
teraction. Now the development is moving towards
using the empirical correction for dispersion (van
der Waals) effects (DFT-D method) by adding a
semi-empirical dispersion potential to the conven-
tional Kohn-Sham DFT energy to work around the
limitation of the DFT method and give better accu-
racy in contrast to theL-J approximation [191–193].
Different versions of the correction have then been
developed. In a recent study by Grimme et al.
[194,195], more complicated, geometry-dependent
dispersion coefficients and Becke-Jonson damping
were taken into account. Cooper et al. [196–198]
developed an exchange functional that is compati-
ble with the nonlocal Rutgers-Chalmers correlation
functional (van der Waals density functional, vdW-
DF). This functional, when employed with vdW-
DF, demonstrates remarkable improvements on
intermolecular separation distances while further
improving the accuracy of vdW-DF interaction en-
ergies.

TheDFT-Dmethod and its derivatives have been
broadly employed to capture the physics and me-
chanics of multi-layer graphene [199–202] and the
interaction of graphene with metal substrate [203].
It should be noted that the superlubricity in graphite
[204] and weak shear strength [205] in graphene
ought to be connected with the vdW characteris-
tics between carbon layers. So far, even the DFT
method and its derivatives are semi-empirical. They
may work well in capturing one or several physical
properties but are not justified to be accurate in gen-
eral or other properties. A consensus on a reliable
interaction formula to capture the vdW interaction
in graphene is far frombeing reached.Another grow-
ing field of graphene is the interaction of graphene
with other materials where an accurate atomic po-
tential is desired for the commonly known fact that
the accuracy of an atomistic simulation is by far no
better than the potential one uses.
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Limitation of thermal–mechanical
coupling
At high temperatures, ripples are formed in free-
standing graphene due to thermal fluctuations. The
amplitude of ripples may be approximated from the
free energy of the interface by a surface tension γ . If
we consider the crumpled graphene surface, free en-
ergy in termsof surface tension times the surface area
can be written as [206]

(ψ) = γ ∫
√
1 +

∣∣∣ �∇h
∣∣∣2dxd y

≈ ψ0 + 1
2
γ ∫

∣∣∣ �∇h
∣∣∣2dxd y , (26)

where h is the height of the graphene at each 2D
position �r = (x, y); the height–height correlation
function may then be written as

(h(�r ) − h(�0))2 =
∫ D(h(�r )|h(�r ) − h(�0)|2e−ψ/kT

∫ D(h(�r )e−ψ/kT . (27a)

The integral of the above equation leads to

(h(�r ) − h(�0))2 ≈ kT
πγ

ln(r/a), as r → ∞,

(27b)
where a is a microscopic length. Equation (27) sug-
gests that there is a divergent height–height cor-
relation. The large r behavior is the signature of
a rough surface at high temperature. In contrast,
(h(�r ) − h(�0))2 ≈ const, as r → ∞ at low tem-
perature, and we might expect a ‘smooth’ interface.
How such a transition from smooth to rough sur-
face influences the phononic thermal conductivity
of a suspended 2D material remains unclear. Ratio-
nales may help to shed light on the increase in ther-
mal conductivity of GNR with the sample size even
when the size is beyond tens of microns.

Scale-up
In its 2D form, graphene is thought to be the
strongest of all known materials. It is desirable
to use such low-dimensional carbon structures as
building blocks to realize 3D engineering materials
and structures that may inherit their superb prop-
erties. There is much past and ongoing research
aiming to utilize the amazing mechanical proper-
ties of graphene and other carbon allotropes as
strengthening agent in 3D structures [207,208] or
composites [209–213].

In reality, the scale-up leads to a substantial
degradation of properties that we desire to re-

tain. The realized mechanical and thermal proper-
ties of 3D carbon materials, by staggering graphene
sheets or vertically grown carbon nanotube ar-
rays, are significantly lower than those of individ-
ual graphene sheets or individual CNTs [211]: the
strongest graphene paper reported in the litera-
ture has a strength 2∼3 orders of magnitude lower
than that of graphene [210,212]. The huge gap in
the thermal and mechanical properties between the
low-dimensional carbon allotropes and their 3D
derivatives originates from the dissimilar bond-
ing characteristics between carbon atoms within
graphene orCNTs and the architected 3D engineer-
ing materials: the intra-structure bonding is cova-
lent in nature, while van der Waals bonding dom-
inates between different layers/tubes or with other
materials [212]. Such heterogeneous bonding leads
to property inheritance as a mission impossible.

The interest in finding 3D carbon structures has
lasted for decades. Recent success in the synthesis
of carbonhoneycomb(C-honeycomb) [214] shows
great potential in scaling up the low-dimensional
carbon allotropes to 3D engineering materials and
structures while retaining strong covalent bonding.
Such a C-honeycomb structure may circumvent the
change of bonding while using graphene as basic
building blocks. Pang et al. [215] reported the atom-
istic structure of a stable 3D C-honeycomb struc-
ture. The authors demonstrated that a combination
of sp2 bonding in the wall and sp3 bonding in the
triple junction stabilizes the C-honeycomb. The de-
tailed stable structures and their phonon dispersion
are given in Fig. 8. Due to the low density in such
a stable 3D-architectured C-honeycomb with cova-
lent bonding, its specific strength of C-honeycomb
could be the best in structural carbon materials, and
its specific thermal conductivity is also much better
thanmostmetal andhigh thermal conductivity semi-
conductors, as clearly seen in Fig. 8g.

Summary and outlook
Since the successful peeling of graphene by
Novoselov et al. [1], the mechanical properties of
graphene have attracted great attention from the
research community. Examining the applicability
of the classical mechanics theories to the materials
with extreme aspect ratios of large in-plane dimen-
sions over one-atom-thick limits, revealing new
mechanical behaviors and developing new theories
to capture the nanomechanics of graphene, has been
of paramount interest. In this work, we reviewed the
current progress in the in-plane and out-of-plane
mechanics of graphene. The structure–mechanical
property relationship in graphene, in terms of its
elasticity, strength, bending, with or without the
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Figure 8. Stable C-honeycomb structure. (a) Atomistic structure of C-honeycomb and the coordinate system defined based
on the honeycomb. (b) Local atomistic structure at the zigzag triple junction of a C-honeycomb. (c) The electron density at
the junction region. (d) The phonon dispersion of the stable C-honeycomb with cell size of 5.8 Å where all phonons are with
positive frequencies. (e) Local atomistic structure at the armchair triple junction of C-honeycomb. (f) The phonon dispersion
of the stable C-honeycomb with cell size of 5.2 Å where all phonons are with positive frequencies. (g) Specific strength of
C-honeycomb of different cell sizes and other carbon-based materials. Adapted from [215], with permission of American
Chemical Society Publications.

defects, is presented. Although derived and vali-
dated at the macroscopic scale, several continuum
theory formulae have been successfully applied to
describe the elasticity of single-layer graphene. It is
also suggested that the currently developed theories
and modeling tools for the deformation of graphene
are probably applicable to other members in the
growing family of 2D materials. At the end, we also
commented that several mechanics-related issues
need to be addressed in the near future for better
understanding the fascinating 2D carbon allotrope.

The exploration of the extraordinary properties
of graphene is strongly mechanically relevant: the
original theory of structural instability in 2D crys-
tals is a pure mechanics concept; the very first way
of obtaining single-layer graphene is through me-
chanical exfoliation by utilizing its ultra-small ad-
hesion. We indeed would expect that mechanics
may continue to play a pivotal role for the synthesis
and the application of graphene. When graphene is
functionalized as a critical component, intrinsic de-
fects, pre-straining and morphology evolution due
to lattice mismatch would all affect the final per-

formance of the graphene-based system. For in-
stance, wrinkles in graphenemay lead to anisotropic
electrical mobility [216], local charge accumula-
tion [217], corrosion-resistance degradation [218]
and mechanical-strength and thermal-conductivity
reduction [217,219]. In contrast, we may also use
graphene as a building block for further devel-
opment of composite materials and heterostruc-
tures. In the latter circumstance, the properties of
graphene including strength, fracture toughness and
adhesion at the microscopic level will play impor-
tant roles for the macroscopic properties of the hi-
erarchically architectured materials. In addition, the
rich morphology, abundant defects, as well as the
defect–defect interaction and morphology–defect
coupling give rise to further challenges to obtain
the structure–property relationship of graphene-
based macroscopic materials. Given the attraction
of graphene for nanomechanical systems [220] and
composite materials [210,212], many of the me-
chanical issues that are responsible for reliability and
durability need tobe addressedbefore real-world ap-
plication.
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191. Dion M, Rydberg H and Schröder E et al. Van der Waals density functional for
general geometries. Phys Rev Lett 2004; 92: 246401.

192. Harl J and Kresse G. Accurate bulk properties from approximate many-body
techniques. Phys Rev Lett 2009; 103: 056401.

193. Harl J, Schimka L and Kresse G. Assessing the quality of the random phase
approximation for lattice constants and atomization energies of solids. Phys
Rev B 2010; 81: 115126.

194. Grimme S, Antony J and Ehrlich S et al. A consistent and accurate ab initio
parametrization of density functional dispersion correction (DFT-D) for the 94
elements H-Pu. J Chem Phys 2010; 132: 154104.

195. GrimmeS, Ehrlich S and Goerigk L. Effect of the damping function in dispersion
corrected density functional theory. J Comput Chem 2011; 32: 1456–65.

196. Cooper VR. Van der Waals density functional: an appropriate exchange func-
tional. Phys Rev B 2010; 81: 161104(R).
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