
Raphe-mediated signals control the hippocampal
response to SRI antidepressants via miR-16
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Serotonin reuptake inhibitor (SRI) antidepressants such as fluoxetine (Prozac), promote hippocampal neurogenesis. They
also increase the levels of the bcl-2 protein, whose overexpression in transgenic mice enhances adult hippocampal
neurogenesis. However, the mechanisms underlying SRI-mediated neurogenesis are unclear. Recently, we identified the
microRNA miR-16 as an important effector of SRI antidepressant action in serotonergic raphe and noradrenergic locus
coeruleus (LC). We show here that miR-16 mediates adult neurogenesis in the mouse hippocampus. Fluoxetine, acting on
serotonergic raphe neurons, decreases the amount of miR-16 in the hippocampus, which in turn increases the levels of the
serotonin transporter (SERT), the target of SRI, and that of bcl-2 and the number of cells positive for Doublecortin, a marker of
neuronal maturation. Neutralization of miR-16 in the hippocampus further exerts an antidepressant-like effect in behavioral
tests. The fluoxetine-induced hippocampal response is relayed, in part, by the neurotrophic factor S100b, secreted by raphe
and acting via the LC. Fluoxetine-exposed serotonergic neurons also secrete brain-derived neurotrophic factor, Wnt2 and
15-Deoxy-delta12,14-prostaglandin J2. These molecules are unable to mimic on their own the action of fluoxetine and we show
that they act synergistically to regulate miR-16 at the hippocampus. Of note, these signaling molecules are increased in the
cerebrospinal fluid of depressed patients upon fluoxetine treatment. Thus, our results demonstrate that miR-16 mediates
the action of fluoxetine by acting as a micromanager of hippocampal neurogenesis. They further clarify the signals and the
pathways involved in the hippocampal response to fluoxetine, which may help refine therapeutic strategies to alleviate
depressive disorders.
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Introduction

Adult neurogenesis in the hippocampus is enhanced
by antidepressant therapies.1–5 This hippocampal response
to antidepressants likely involves multiple effectors, whose
identification and roles are the focus of intense research.2,6

Recently, we identified the microRNA miR-16, which
targets the serotonin transporter (SERT), as an important
effector of serotonin reuptake inhibitor (SRI) antidepressant
action in raphe and locus coeruleus (LC).7 In particular, we
showed that systemic fluoxetine treatment can promote either
decreases or increases in the level of miR-16 depending upon
the region of the brain. In serotonergic raphe, the level of miR-
16 is low and increases in response to fluoxetine. On the other
hand, upon fluoxetine treatment, raphe promotes a decrease
in miR-16 in the noradrenergic LC.7 This action of fluoxetine
on the LC is relayed by the neurotrophic protein S100b, which
is released by raphe in response to SRI treatment.7

Another well described target of miR-16 in tumors is the
bcl-2 (B-cell chronic lymphocytic lymphoma 2) protein.8

Beyond its well-established anti-apoptotic role, bcl-2 also
exerts neurotrophic functions.3 Accordingly, overexpression

of bcl-2 in transgenic mice results in increased adult
hippocampal neurogenesis.9 Moreover, antidepressant thera-
pies do increase the levels of bcl-2 protein in the hippocam-
pus.3,10 However, the link between antidepressants, bcl-2
expression and neurogenesis remains unclear.

Because the hippocampus is highly innervated by raphe-
and LC-originating fibers11 and bcl-2 is a known target of miR-
16, we hypothesized that SRI antidepressants such as Prozac
(fluoxetine) enhance neurogenesis in the hippocampus by
regulating the level of bcl-2 via miR-16. Using two different
experimental paradigms, that is, local infusion into raphe or
systemic injection, we obtained evidence that fluoxetine
downregulates miR-16 in the hippocampus, which promotes
neurogenesis. Further, we have examined the impact
of a neutralization of hippocampal miR-16 in behavioral tests.
Finally, using serotonergic neuronal cells, we have screened
the signaling molecules that are secreted in response to
fluoxetine and that participate in the miR-16-mediated
hippocampal changes induced by this antidepressant.
The relevance of our findings was assessed by investigating
these signaling factors in the cerebrospinal fluid (CSF) of mice
and depressed patients exposed to fluoxetine.
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Materials and methods

Materials. Dibutyryl cyclic AMP and cyclohexane carboxylic
acid were purchased from Sigma-Aldrich (St Louis, MO,
USA). [3H]-paroxetine (0.98–1.01 TBq mmol�1) was from NEN
Life Science Products (Boston, MA, USA). Fluoxetine was
kindly provided by Dr M Bouhassira (Eli Lilly, Indianapolis,
IN, USA). S100b siRNA oligo was from Invitrogen (Carlsbad,
CA, USA). Recombinant mouse brain-derived neurotrophic
factor (BDNF) was from R&D systems (Minneapolis, MN,
USA). 15-Deoxy-delta12,14-prostaglandin J2 (15d-PGJ2) was
from Cayman Biochemical (Ann Harbor, MI, USA).

Intracerebroventricular injections. Adult 6–8 week-old
male Swiss-Kunming mice (25–30 g), were housed at
22±0.5 1C with food and water ad libitum and a reversed
12:12 h light cycle. All animal procedures were performed in
accordance with National Institutes of Health guidelines
for care and were approved by the Animal Care and Use
Committee at Basel University.

CMA/11 microdialysis guide cannulas (CMA Microdialysis,
Stockholm, Sweden) were stereotaxically implanted into the
raphe or the hippocampus of avertin-anaesthetized mice as in
Baudry et al.7 They were connected to syringe pumps and
perfusion was performed at a rate of 2 ml min�1 with a solution
of artificial CSF containing 1 mM fluoxetine as in Baudry et al.,7

1 nM S100b, BDNF (1–100 ng ml�1), Wnt2 (0–5 ng ml�1) or
15d-PGJ2 (0–1 mM). miR-16 or anti-miR16 (1ml, 2mM) or
S100b siRNA (2 mg, 1 mg ml�1) were directly injected at 36 h
intervals as in Baudry et al.7 S100b antibodies were injected at
1mg ml�1. After 1 day (S100b antibodies, S100b protein,
BDNF, Wnt2 or 15d-PGJ2), 20 days (S100b siRNA) or 3 days
(other treatments), mice were anesthetized with isoflurane,
decapitated and the hippocampus was collected for RNA
extraction and miR-16 expression analysis by real-time PCR
as well as radioligand binding and western blot experiments.

Lesion of the noradrenergic system. Selective
degeneration of LC noradrenergic fibers was carried out with
two intraperitoneal injections of DSP4 (N-(2-chloroethyl)-N-
ethyl-2-bromobenzylamine)12 (50 mg kg�1 each at an interval
of 7 days).

RNA isolation and quantitative real-time analysis. Total
RNA was isolated and mature miR-16 expression was
detected as in Baudry et al.7

Radioligand binding studies. Binding experiments
were performed on cell membranes as described in
Launay et al.13

Immunoblot analysis. Hippocampal extracts were lysed
in a buffer containing 50 mM Tris HCl pH 8, 150 mM NaCl,
0.1% SDS, 1% nonidet P40, 0.5% sodium deoxycholate,
0.02% sodium azide, 100mg ml�1 phenylmethylsulfonyl
fluoride and 1 mg ml�1 aprotinin. The protein concentration
was measured using the bicinchoninic acid method (Pierce,
Rockford, IL, USA). Proteins (80 mg) were resolved by 12%
SDS–polyacrylamide gel electrophoresis and transferred
onto nitrocellulose membrane. Immunoblotting was carried

out using antibodies to Bcl-2 (1:200; Santa Cruz, Santa Cruz,
CA, USA).

Immunostaining. Mice were anesthetized with avertin
and perfused transcardially with 4% paraformaldehyde in
phosphate-buffered saline. After overnight postfixation and
cryoprotection in 30% sucrose for at least 4 h, serial cryostat
sections (40 mm) were cut through the entire hippocampus
and stored in phosphate-buffered saline. Sections were
processed with a standard immunohistochemical procedure
as in Baudry et al.7 to visualize Doublecortin (Dcx) (Santa
cruz; 1:500), SERT (1:1000; Millipore, Temecula, CA, USA),
V-GLUT-1 or V-GLUT-2 (both from Synaptic Systems,
1:2000, Goettingen, Germany). Biotinylated or fluorescent
secondary antibodies (Jackson ImmunoResearch, West
Grove, PA, USA) was used. Images were obtained with
a Zeiss LSM 510 Meta confocal microscope (Zeiss,
Goettingen, Germany). For Dcx, results are expressed as
the mean number of Dcx-positive cells per hippocampus as
in Egeland et al.14 For double-label immunohistochemical
imaging, the two channels were collected separately with
single wavelength excitation and then merged to produce the
composite image.

Behavioral tests. The forced swimming test was carried
out as in Baudry et al.7 In unpredictable chronic mild stress
experiments, male mice were repeatedly subjected to various
socio-environmental stressors according to a ‘random’
schedule for a total period of 6 weeks.7,15 Treatment was
administered for the last 5 weeks, as in Baudry et al.7

Patients. In all, 11 medication-free outpatients with major
depressive disorder (mean±s.d. age 35.3±11.4 years, body
mass index 26.7±6.5 kg m�2, seven men) gave informed
consent to participate in the study, using ethical procedures
approved by the Assistance Publique—Hôpitaux de Paris,
Comité de Protection des Personnes. Patients were
physically healthy, had received no psychotropic
medications for at least 6 weeks before the lumbar
puncture, and did not meet the criteria for alcohol or
substance abuse or dependence for at least 6 months
before the study. The study was conducted between January
2009 and August 2010. Major depressive disorder diagnosis
was established using the Structured Clinical Interview or
DSM-IV Axis I Disorders, Clinical Version (SCID-CV).
Severity of depressive and anxiety symptoms was
assessed using the Inventory of Depressive Sympto-
matology and Hamilton Anxiety Rating Scale. Raters were
experienced mental health research professionals, who
served as the case-managing clinicians. All patients were
offered a 12-week course of open-label treatment
with fluoxetine, and agreed to participate. Of these 11,
9 completed the treatment course. Treatment was started at
a dose of 20 mg per day and increased to 40 mg per day if
clinical improvement was not satisfactory after 1 month of
treatment (mean±s.d. fluoxetine dose¼ 33.3±6.5 g per
day). All completers were responders and achieved
remission with a 64% decrease in Inventory of Depressive
Symptomatology score. In all, 2 of the 9 completers refused
the second, post-treatment, lumbar puncture procedure.
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Cell culture. 1C11 cells were grown and induced to
differentiate toward the serotonergic pathway, as described
previously.16

Determination of BDNF, Wnt2 and 15d-PGJ2 levels.
BDNF levels were determined through enzyme-linked
immunosorbent assay quantification (Insight Genomics,
Nashville, TN, USA), according to the manufacturer’s pro-
tocol. Wnt2 was identified in cell culture medium and in CSF
(collected (from mouse cisterna magna and via lumbar

puncture of depressed patients) and frozen at �80 1C until
batch assayed) through liquid chromatography-electrospray
ionization mass spectrometry on time-of-flight instruments.
Briefly, cell supernatant or CSF were filtered through low
speed centrifugation on a 0.45mm BAS polyacetate filter
(Bioanalytical Systems, West Lafayette, IN, USA) and
separated through high-pressure liquid chromatography.
Chromatographic fractions were freeze-dried and analyzed
by fast-atom bombardment mass spectrometry, using a VG
instruments Model ZAB-E spectrometer (VG Analytical,
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Figure 1 Infusion of fluoxetine into raphe decreases miR-16 in the hippocampus, which in turn, increases serotonin transporter (SERT) and bcl-2 levels, promotes
neurogenesis and exerts an antidepressant effect. (a–e) Mice received a chronic perfusion of fluoxetine into raphe (1mM, 2ml min�1, 3 days) in combination (n¼ 11) or not
(n¼ 6) with direct injection of miR-16 (1ml, 2mM, every 36 h) into the hippocampus. Alternatively, a direct injection of anti-miR-16 (1ml, 2mM, every 36 h, n¼ 6 mice) alone into
the hippocampus was performed. Scrambled miRNAs (n¼ 7) or anti-miRNAs (n¼ 10) were used as controls. Control values were obtained in n¼ 13 mice. All measurements
were made on hippocampus samples: miR-16 level (real-time PCR) (a), SERT expression ([3H]-paroxetine binding) (b), Bcl-2 protein expression (western blot) (c) and
neurogenesis (Doublecortin (Dcx) immunolabeling) (d, e). (f) Immunolabeling of SERT (red) in hippocampal cells positive for V-GLUT 1 (bottom) or V-GLUT-2 (top) (green)
after infusion of fluoxetine into raphe for 3 days. (g) Injection of fluoxetine into raphe or anti-miR16 into the hippocampus similarly reduced the time of immobility in the forced
swimming test. (h–j) Six-week unpredictable chronic mild stress (UCMS)-induced deterioration of the coat state score (h) and reductions in body weight gain (i) and sucrose
preference (j) were alleviated by injection of fluoxetine into raphe or anti-miR16 into the hippocampus (n¼ 9 mice in each group). Values are means±s.e.m. *Po0.01 and
**Po0.05 vs control, #Po0.01 and ##Po0.05 vs vehicle UCMS.
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Manchester, UK). 1H and 13C NMR spectra were obtained
with a Varian model 300XL spectrometer (Agilent Tech-
nologies, Foster City, CA, USA). Following identification,
the levels of Wnt2 were quantified as above. Calibration
curves were established with mouse recombinant Wnt2
produced in NIH3T3 cells stably transfected with a pCEV/

WNT-2-HFc plasmid as previously described.17 15d-PGJ2
levels were determined by liquid chromatography coupled to
mass spectrometry, as in Bell-Parikh et al.18 using pure
standards from Cayman Biochemical. Combined injections
were carried out using concentrations selected according to
the combination index method.19

a d

e

f

b

c

1.2

**

*

§

§

§

*

*

*

*
* *

*

*

*

*

*
*

** ** **

#

*#*#

*#

## ##

*

1.0

m
iR

16
 le

ve
ls

R
el

at
iv

e 
ex

pr
es

si
on

m
iR

16
 le

ve
ls

R
el

at
iv

e 
ex

pr
es

si
on

B
cl

-2
 p

ro
te

in
R

el
at

iv
e 

ex
pr

es
si

on

B
cl

-2
 p

ro
te

in
R

el
at

iv
e 

ex
pr

es
si

on

0.8

0.6

0.4

0.2

0.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

2.5

2.0

1.5

[3 H
]-

pa
ro

xe
tin

e 
bi

nd
in

g
(p

m
ol

es
/m

g 
pr

ot
ei

n)

[3 H
]-

pa
ro

xe
tin

e 
bi

nd
in

g
(p

m
ol

es
/m

g 
pr

ot
ei

n)

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.5

2.0

3.0

1.5

1.0

0.5

0.0

2.5

2.0

1.5

1.0

0.5

0.0

Control

Con
tro

lBasal
Bas

al

+ 
DSP4

Fluoxetine in Raphe

Fluoxetine i.p.

Fluoxetine in Raphe

+siRNA
S100β in

raphe + 
S10

0β i
n

Lo
cu

s c
oe

ru
leu

s

+ 
Ab 

an
ti-

S10
0β

in 
Hipp

oc
am

pu
s

+ 
Ab 

an
ti-

S10
0β

in 
Lo

cu
s c

oe
ru

leu
s

Con
tro

l

Bas
al

+ 
DSP4

+ 
S10

0β i
n

Lo
cu

s c
oe

ru
leu

s

+ 
Ab 

an
ti-

S10
0β

in 
Hipp

oc
am

pu
s

+ 
Ab 

an
ti-

S10
0β

in 
Lo

cu
s c

oe
ru

leu
s

Fluoxetine in Raphe

Con
tro

l

Bas
al

+ 
DSP4

+ 
S10

0β i
n

Lo
cu

s c
oe

ru
leu

s

+ 
Ab 

an
ti-

S10
0β

in 
Hipp

oc
am

pu
s

+ 
Ab 

an
ti-

S10
0β

in 
Lo

cu
s c

oe
ru

leu
s

+siRNA
scramble
in raphe

Control Basal

Fluoxetine i.p.

Fluoxetine i.p.

+siRNA
S100β in

raphe

+siRNA
scramble
in raphe

Control Basal +siRNA
S100β in

raphe

+siRNA
scramble
in raphe

Figure 2 S100b released by raphe upon fluoxetine treatment does not act directly on the hippocampus but partially relays the fluoxetine response via the locus coeruleus.
(a–c) Mice were chronically exposed to fluoxetine for 20 days (daily intraperitoneal injection, 5 mg kg�1, ‘basal’ n¼ 7). During the treatment, two groups of mice also received
stereotaxic injection into the raphe of S100b-siRNA (2 mg, 1 mg ml�1, n¼ 8) or scrambled oligonucleotides every 36 h (n¼ 9). Control values were obtained in n¼ 13 mice.
The downregulation of miR-16 (real-time PCR) (a) and the upregulation of SERT ([3H]-paroxetine binding) (b) and bcl-2 protein levels (western blot analysis) (c) in the
hippocampus after a 20-day intraperitoneal injection of fluoxetine in mice were partially abolished by siRNA-mediated knockdown of S100b in raphe. (d–f) Mice received a
stereotaxic injection of S100b (1 nM, 2 ml min�1, 1 day, n¼ 7) in the locus coeruleus (LC). Alternatively, fluoxetine was perfused into the raphe either alone (‘basal’ n¼ 8)
or combined with injection of S100b antibodies (1 mg ml�1) into the hippocampus (n¼ 8) or the LC (n¼ 7), or with degeneration of noradrenergic fibers with the DSP4
neurotoxin (n¼ 7). Control values were obtained in n¼ 12 mice. Hippocampal extracts from these different groups of mice were collected to quantify the miR-16 level (d),
SERT (e) and bcl-2 (f) protein expression. The values are the means±s.e.m, *Po0.01 and **Po0.05 vs control, yPo0.05 vs scramble, #Po0.01 and ##Po0.05 vs basal
fluoxetine in raphe.
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Statistics. The results are reported as the means±s.e.m.
Due to the small sample size avoiding to test the
distributions, non-parametric (Wilcoxon and Kruskal–Wallis)
tests were used for comparisons. A P-value o0.05 was
considered significant.

Results

miR-16 mediates the hippocampal response to
fluoxetine. To investigate whether fluoxetine could
regulate the level of miR-16 in the hippocampus, we
collected hippocampal extracts from mice after a 3-day
stereotaxic injection of fluoxetine in raphe. We found that
infusion of fluoxetine into raphe resulted in a decrease in the
endogenous level of miR-16 in the hippocampus (Figure 1a).
This change was accompanied by an increase in the
expression of SERT (fivefold) and bcl-2 (2.2-fold) proteins
(Figures 1b and c). The fluoxetine-induced SERT molecules
were mainly implemented on glutamatergic neurons of
the hippocampus20 (V-GLUT-positive cells) as revealed by
confocal microscopy (Figure 1f). Injection of fluoxetine into
raphe also increased (1.5-fold) the number of hippocampal
cells immunoreactive for Dcx, a marker for cells undergoing
neuronal maturation21,22 (Figures 1d and e). Neutralization of
endogenous miR-16 by direct injection of anti-miR-16 in the
hippocampus increased the levels of SERT and bcl-2 and the
number of Dcx-positive cells, similarly to fluoxetine injection

in the raphe (Figures 1b–e). Conversely, the hippocampal
changes induced by fluoxetine were eliminated under
concomitant exposure of the hippocampus to miR-16
(Figures 1b–e).

Further, in behavioral tests, the injection of anti-miR-16 in
the hippocampus reduced the time of immobility in the forced
swimming test (Figure 1g). It also alleviated, to the same
extent as chronic infusion of fluoxetine into raphe, the
deterioration of coat state (Figure 1h) and the reductions in
body weight gain (Figure 1i) and sucrose preference
(Figure 1j) that were observed following a 6-week regimen
of unpredictable chronic mild stress. These results indicate
that the fluoxetine-induced downregulation of miR-16 in the
hippocampus has an antidepressant effect.

S100b released by the raphe in response to fluoxetine
partly relays the action of this SRI on the hippocampus
via the LC. Similar to local infusion of fluoxetine into raphe,
systemic fluoxetine treatment (20 days) promoted a
decrease in miR-16 in the hippocampus and an increase in
SERT and bcl-2 proteins (Figures 2a–c). The fluoxetine-
induced downregulation of miR-16 in the hippocampus is
reminiscent of that monitored in the LC.7 Because the action
of fluoxetine on the LC is mediated by the secretion of the
neurotrophic S100b protein by the raphe,7 we investigated
whether the fluoxetine-induced secretion of S100b by raphe
acts on the hippocampus. The fluoxetine-induced changes in
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hippocampal miR-16, SERT and bcl-2 were partly reversed
(40–50%) upon siRNA-mediated knockdown of S100b in the
raphe (Figures 2a–c), whereas insensitive to injection of
S100b antibodies in the hippocampus (Figures 2d–f). One

explanation that may account for these observations is that
the LC relays, in part, the action of fluoxetine onto the
hippocampus. We tested this hypothesis by directly infusing
S100b at the LC, to mimic the effect of fluoxetine treatment
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on this brain region, without acting at the raphe. The
stereotaxic injection of S100b at the LC triggered in the
hippocampus a decrease in miR-16 and an increase in SERT
and bcl-2. These changes were, however, weaker than those
measured upon injection of fluoxetine at the raphe (Figures
2d–f). Further, upon selective degeneration of noradrenergic
fibers using the DSP4 neurotoxin,12 there was only a partial
(about 50%) effect of fluoxetine on hippocampal miR-16,
SERT and bcl-2 levels (Figures 2d–f). Concomitant infusion
of fluoxetine at the raphe and anti-S100b antibodies at the
LC also reduced by 50% the hippocampal response
(Figures 2d–f). We conclude that the action of fluoxetine on
the hippocampus is relayed, in part, by S100b via the
noradrenergic neurons of the LC. Other signal(s) emanating
from the raphe must thus account for the LC-independent
effect of fluoxetine on the hippocampus.

BDNF, Wnt2 and 15d-PGJ2 synergize to relay the action
of fluoxetine from the raphe onto the hippocampus. To
address the question of the raphe-released signal
molecule(s) that account for the S100b-independent effect
of fluoxetine on the hippocampus, we exploited the 1C11 cell
line, which was instrumental in uncovering the functional
interplay between S100b, miR-16 and the SERT.7.A mass
spectrometry-wide analysis of cell culture media indicated
that 1C115�HT serotonergic cells exposed to fluoxetine
(50 nM) for 2 days released BDNF, the frizzled ligand Wnt2
and the anti-inflammatory 15d-PGJ2 (Figures 3a–c). These
three molecules were also found to be increased in the CSF
of mice receiving a systemic fluoxetine treatment (20 days)
(Figures 3d–f) and that of naive depressed patients after a
12-week fluoxetine treatment (Figures 3g–i). Both BDNF and
Wnt2 are known to be secreted in response to neuronal
activity23,24 and to exert an antidepressant-like effect in the
hippocampus.25–27 15d-PGJ2 is an endogenous ligand of
the nuclear receptor PPARg, the agonists of which exert
beneficial effects in neuropsychiatric diseases.28

We next evaluated the impact of an infusion of these signaling
molecules into the hippocampus, at concentrations encompass-
ing those foundwith 1C115�HT cells (seeMaterialsandmethods).
Administration of one or two out of these three molecules had
null or weak effects. In contrast, if all three molecules were
injected simultaneously, hippocampal miR-16 markedly
decreased, with ensuing pronounced induction of SERT and
bcl-2 (Figures 4a–c). Under the optimal conditions, which were
obtained with a combination of 50 ng ml�1 BDNF, 1.5 ng ml�1

Wnt2 and 0.25mM 15d-PGJ2, the changes recapitulated those
measured upon infusion of fluoxetine into the raphe.

Discussion

In this study, we identify miR-16 as the missing link between
SRI treatment and hippocampal neurogenesis. Indeed, the
reduction of miR-16 in the hippocampus is sufficient to trigger
increases in bcl-2 and SERT levels as well as in the number of
Dcx-positive cells and to exert beneficial effects in a mouse
model of depression. On another hand, neutralizing the
decrease in miR-16 directly in the hippocampus counteracts
all the above changes induced by fluoxetine. These experi-
ments establish that miR-16 behaves as a micromanager that

sustains the hippocampal response to SRI antidepressants.
On this basis, miR-16 can now be viewed as a readout for the
action of SRIs in the hippocampus, which may help design
new strategies or refine existing therapeutic protocols.

This work also shows that the release of S100b by the raphe
induces significant changes at the hippocampus by mobilizing
the LC. Indeed, degeneration of the LC using the DSP4
neurotoxin, knockdown of S100b at the raphe, or antibody-
mediated neutralization of S100b at the LC, all reduce by
50% the hippocampal changes induced by fluoxetine. Such
observations may provide some molecular clue as to the
altered responses to antidepressant drugs reported in
norepinephrine-deficient mice.29

Finally, we establish here that the cooperation between
three molecules, BDNF, Wnt2 and 15d-PGJ2, secreted from
the raphe and acting on the hippocampus, is necessary
to relay the action of fluoxetine. The identification of this
combination of signals was rendered possible through
mass spectrometry-wide analysis of the culture medium of
1C115�HT serotonergic neurons exposed to fluoxetine. These
three factors are also increased in the CSF of mice treated
with fluoxetine. An important observation is that any factor on
its own is unable to mimic the action of fluoxetine on the
hippocampus. By showing that there is a synergy between
the three signaling molecules to sustain the hippocampal
response to fluoxetine, our work sheds some light on the
intricate interplay of signals that relay the action of anti-
depressants. From a translational research point of view, the
therapeutic relevance of the release by the raphe of BDNF,
Wnt2 and 15d-PGJ2 is substantiated by our observation that
these three factors systematically increase in the CSF of naive
depressed patients after a 12-week fluoxetine treatment.

To conclude, our study shows that fluoxetine treatment
induces the secretion of various signaling molecules from
raphe serotonergic neurons (Figure 4d). BDNF, Wnt2 and
15d-PGJ2 act cooperatively on the hippocampus, whereas
S100b controls the LC-dependent hippocampal response to
fluoxetine. These signals relay the action of fluoxetine by
downregulating miR-16 in the hippocampus. By providing an
integrated view of the pathways originating from the raphe that
are involved in the hippocampal response to fluoxetine, our
study may pave the way towards a better understanding of the
physiopathology of depression.
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