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Abstract

Background Cathepsin K (CatK) is a widely expressed cysteine protease that has gained attention because of its enzymatic
and non-enzymatic functions in signalling. Here, we examined whether CatK-deficiency (CatK�/�) would mitigate injury-
related skeletal muscle remodelling and fibrosis in mice, with a special focus on inflammation and muscle cell apoptosis.
Methods Cardiotoxin (CTX, 20 μM/200 μL) was injected into the left gastrocnemius muscle of male wild-type (CatK+/+) and
CatK�/� mice, and the mice were processed for morphological and biochemical studies.
Results On post-injection Day 14, CatK deletion ameliorated muscle interstitial fibrosis and remodelling and performance. At
an early time point (Day 3), CatK�/� reduced the lesion macrophage and leucocyte contents and cell apoptosis, the mRNA
levels of monocyte chemoattractant protein-1, toll-like receptor-2 and toll-like receptor-4, and the gelatinolytic activity related
to matrix metalloproteinase-2/-9. CatK deletion also restored the protein levels of caspase-3 and cleaved caspase-8 and the
ratio of the BAX to the Bcl-2. Moreover, CatK deficiency protected muscle fibre laminin and desmin disorder in response to
CTX injury. These beneficial muscle effects were mimicked by CatK-specific inhibitor treatment. In vitro experiments demon-
strated that pharmacological CatK inhibition reduced the apoptosis of C2C12 mouse myoblasts and the levels of BAX and
caspase-3 proteins induced by CTX.
Conclusions These results demonstrate that CatK plays an essential role in skeletal muscle loss and fibrosis in response to
CTX injury, possibly via a reduction of inflammation and cell apoptosis, suggesting a novel therapeutic strategy for the control
of skeletal muscle diseases by regulating CatK activity.
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Introduction

Age-related loss of skeletal muscle mass and function can
result in decreased quality of life.1 The causes of age-
associated muscle disease (i.e. sarcopenia) are multifactorial
and include biological and environmental factors.1–3 Skeletal
muscle cell apoptosis associated with various injuries has
been shown to contribute to muscle remodelling and fibrosis

in aged animals and humans.3 The pathogenesis of
injury-associated skeletal muscle disorder involves extensive
extracellular matrix (ECM) remodelling, which requires the
participation of extracellular proteases.1 The matrix metallo-
proteinase (MMP) family has been shown to participate in
muscle disease inception and progression.4–6 However,
genetic and pharmacological interventions aimed at MMP
family members resulted in incomplete prevention of muscle
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remodelling and fibrosis,7–9 suggesting that other proteases
may also contribute to such remodelling in injury-related
muscle disorders.

The cathepsins known as cysteine proteases were discov-
ered in the second half of the 20th century.10 In humans,
the cathepsin family consists of 11 members [i.e. cathepsin
K (CatK), CatS, CatL, CatB, etc.].11 Initially, cathepsins were
recognized to function as scavengers for protein recycling in
lysosomes and endosomes of mammalian cells under physio-
logical and pathological conditions.10–15 However, the recog-
nition of the cysteinyl cathepsins led to the exploration of
their functions in metabolic and inflammatory cardiovascular
disorders.16–20 Like the members of the MMP family, most of
the cathepsins have been shown to be regulatory
exoproteases that are widely expressed in various tissues or
cells by inflammatory cytokines and growth factors.21–24 CatK
is one of the most potent of the mammalian elastases and
collagenases.25 Previous studies have demonstrated that
CatK expression is increased in the atherosclerotic lesions of
animals and humans.26,27 In our own previous report, we
clearly showed that CatK deletion confers resistance to
carotid artery injury via a reduction in the levels of toll-like
receptors (TLR)-2/-4.28 Moreover, CatK has been shown to
control ischaemia-induced neovascularization via the modu-
lation of Notch-1 activation and a downstream signalling
pathway.29 Laboratory studies revealed that cathepsins are
involved in apoptosis and proliferation in cancer and
immune-inflammatory cells. Comprehensive review articles
have highlighted the functional significance of CatK in
growth-related tumours and cardiovascular disease.13,30

Despite this body of research, however, there is limited infor-
mation about the role of CatK in age-related and injury-
related skeletal muscle disorders.

In the present study, we used CatK-deficient (CatK�/�)
mice and an experimental skeletal injury model to test our
hypothesis that CatK activity controls muscle remodelling
and dysfunction in response to injury.

Materials and methods

Antibodies and reagents

The following commercially available antibodies were used:
Bcl-2 (#2870), BAX (#2772), cleaved caspase-8 (#9429),
cleaved caspase-3 (#9661), and caspase-3 (#9662) (all from
Cell Signaling Technology, Beverly, MA); CatK (#3368;
BioVision, Milpitas, CA); CD45 (clone 30-F11; Biolegend, San
Diego, CA); CD68 (clone KP1, ab955; AbCam, Cambridge,
UK); Laminin-5 (BS-7713R; Bioss, Woburn, MA); Desmin
(Clone 33; Dako, Carpinteria, CA); Zenon rabbit and mouse
IgG labelling kits (Molecular Probes, Eugene, OR); and GAPDH
(G8795) as loading controls (Sigma-Aldrich, St. Louis, MO).
Cardiotoxin (CTX) was from Sigma-Aldrich (Naja pallida,

L8102, Latoxan). CatK inhibitor (ONO-KK1-300-01) was pro-
vided by Ono Pharmaceutical (Osaka, Japan).

Pentobarbital sodium was from Dainippon Pharmaceutical
Co. (Osaka, Japan), and the RNA PCR Core kit was from
Applied Biosystems (Foster City, CA). The RNeasy Fibrous
Tissue Mini-Kit was from Qiagen (Hilden, Germany). The In
Situ Cell Death Detection Kit (reference no. 11684795910)
was from Roche Diagnostics (Mannheim, Germany). C2C12
mouse myoblasts were obtained from the American Type
Culture Collection (Manassas, VA). Dulbecco’s modified Eagle
medium (DMEM) was from GIBCO Life Technologies (Grand
Island, NY). Horse serum was also from GIBCO Life
Technologies (Auckland, New Zealand).

Animal care and use

The male CatK�/� and wild-type (C57BL/6, CatK+/+) litter-
mates used in this study had approximately the same body
weights (22–24 g).28 The animals were housed in a room with
a controlled temperature (22°C ± 2°C) and a 12 h light–dark
cycle, with ad libitum access to food and water. All mouse
experiments were performed with the approval of the
Institutional Animal Care and Use Committee at Nagoya
University and were in accordance with the U.S. National
Institutes of Health (NIH) Guide for the Care and Use of
Laboratory Animals.

Model of the skeletal muscle injury and tissue
collection

For evaluation of the role of CatK in muscle remodelling,
10 ± 2-week-old CatK+/+ and CatK�/� mice were used. The
hair of both legs was shaved, and CTX (20 μM/200 μL) was
injected into the left gastrocnemius muscle. For a separate
specific CatK inhibitor experiment, CatK+/+ mice that received
an injection of the CTX (20 μM/200 μL) were randomly
assigned to one of the three groups and administered (by oral
gavage) vehicle (200 μL of 0.5% carboxymethylcellulose;
Cont) or a low dose or high dose of a CatK inhibitor (ONO-
KK1-300-01: 3 mg/kg, low-dose CatK inhibitor; 30 mg/kg,
high-dose CatK inhibitor ; Ono Pharmaceutical) twice daily
from 2 days before the injury to 14 days after the injury.

At the indicated time points, all animals were anaesthe-
tized with an intraperitoneal injection of pentobarbital
sodium (50 mg/kg), and the tissue (muscles) and arterial
blood samples were collected. For the biological analysis,
the skeletal muscle was isolated and kept in RNAlater solu-
tion (for the gene assay) or liquid nitrogen (for the protein
assay). For the morphological analysis, after being immersed
in fixative at 4°C, the skeletal muscles were embedded in
optimal cutting temperature compound (Sakura Fine-
technical, Tokyo) and stored at �20°C. After the blood was
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poured into an EDTA-2Na blood collection tube (VenojectII;
Terumo, Kakamigahara, Japan), it was centrifuged, and the
plasma was collected and stored at �80°C.

Evaluation of muscle endurance capacity

A motorized rodent treadmill (S-Con Mini-Z: Tokyo Engineer-
ing, Tokyo) was used to determine the endurance capacity for
running, as described previously.31 In the preliminary training
sessions, mice at Day 1 before the CTX injection were made
to run on the treadmill at an inclination of 0° as follows:
warm-up (5 min), 7 m/min; exercise (35 min), 17 m/min; cool
down (5 min), 7 m/min. For the measurement of endurance
capacity, the mice at Days 3 and 14 after CTX injury were
placed on the treadmill, and the warm-up was started at
6 m/min with the treadmill’s tilt angle at 0°. After 5 min,
the tilt angle of the treadmill was set to 10°, and the speed
was gradually increased by 2 m/min every 2 min until
reaching the maximum speed of 20 m/min and then
maintained at the maximum speed.

During the running period, the mouse was prevented from
resting by a shock bar placed behind the treadmill, which was
set at 20 V. The calculations of the running distance and
workload were finished when the mouse stopped moving
for >10 s. The running distance was calculated as a product
of the running time and speed. The workload in the vertical
direction was calculated with consideration for the weight
of the mouse (=weight × gravitational acceleration × mileage
in the vertical direction). All items are expressed as the ratio
of the observed values to the data obtained on Day 0 before
the CTX injection.

Evaluation of grip strength

We also studied the animals’ grip strength by using a small
animal grip strength meter (Columbus, Largo, FL) as de-
scribed previously.31 The forelimb of the mouse was placed
on the limb grip of the meter, and its tail was gently pulled
in the opposite direction. We measured the maximum value
of the grip force that the mouse exerted before it released
its grip. The grip strength was measured over five times for
each mouse on Days 0, 3, and 14, and the values were
averaged as the grip strength value for each of these days.
To exclude the influence of exercise, the mice that
underwent the grip strength and endurance examinations
were not subjected to the histological or biological analyses.

Quantitative real-time gene expression assay

Total RNA was extracted from the tissue, or the cell extracts
with an RNeasy Fibrous Tissue Mini-Kit in accord with the
manufacturer’s instructions. The mRNA was reverse-

transcribed to cDNA with an RNA polymerase chain reaction
(PCR) Core kit. Quantitative gene expression was studied
using an ABI 7300 PCR system with Universal PCR Master
Mix (Applied Biosystems). All experiments were performed
in triplicate. The sequences of the primers used for CatK,
CatS, CatL, MMP-2, MMP-9, tissue inhibitor of MMP-1
(TIMP-1), TIMP-2, TLR-2, TLR-4, monocyte chemoattractant
protein-1 (MCP-1), tumour necrosis factor-alpha (TNF-α),
and GAPDH genes are shown in Table S1. The transcription
of target genes was normalized to GAPDH.

Morphometry and immunohistochemistry analyses

Serial cross-cryosections (4 μm thick) were collected at the
injured regions of the skeletal muscle at a rate of 3–4 sections
every 40 μm. The sections at Day 3 after injury were used to
evaluate the inflammation and cell apoptosis in response to
injury. For the immunohistochemistry, corresponding sections
on separate slides were treated with mouse monoclonal
antibodies against CD45 for leucocytes or CD68 for macro-
phages (1:50 for each).32 The sections were then visualized
with an ABC substrate kit (SK-4400; Vector Laboratories,
Burlingame, CA) in accordwith themanufacturer’s instructions.

Apoptotic staining was performed as follows: the sections
were subjected to terminal deoxynucleotidyl transferase-
mediated dUTP nick end labelling (TUNEL) using a Fluorescein
In Situ Cell Death Detection Kit (Sigma-Aldrich). The sections
at Day 14 were used to examine muscle remodelling and
fibrosis. Masson’s trichrome staining for fibrosis was per-
formed as described previously.33 The slides of the muscles
and the cells were mounted in glycerol-based Vectashield
medium (Vector Laboratories) containing the nucleus stain
4,60-diamidino-2-phenylindole.

For quantification of the positive cell staining, we took six
to seven images for one section using a ×20 objective, and
we counted the numbers of CD45+, CD68+, and TUNEL+ cells.
For the quantifications of muscle fibres and fibrosis, we took
seven to nine images at 90 000 μm2 for one section using a
×20 objective, and we measured cross-sectional area of a
muscle fibre with the central nucleus and the volumes of
interstitial fibrosis in this field by using a microscope
(BZ9000; Keyence, Osaka, Japan). For negative controls, the
primary antibodies were replaced with non-immune immu-
noglobulin G or Zenon-labelled rabbit or mouse IgG.

Immunofluorescence

To examine the changes in the muscle fibre structural proper-
ties and healing capacity, double immunofluorescence
labelling of the laminin and desmin was performed as
described previously.31 In brief, the muscle sections were
treated with a rabbit polyclonal antibody to laminin-5 and a
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mouse monoclonal antibody to desmin (1:100 for each).
Then, the sections were visualized using Zenon rabbit and
mouse IgG labelling kits (1:200) according to the manufac-
turer’s instructions. Staining sections were visualized with a
BZ-X700 microscope (Keyence, Osaka, Japan) using ×20 or
×40 objectives. We measured the average intensity of desmin
protein expression for six fibres in one section by using the
Image J software program.

Gelatin zymography

Gelatin zymography was performed as described previ-
ously.34 Each sample was mixed with an equal volume of
sample buffer without a reducing agent. Forty micrograms
of each muscle tissue protein extract was then loaded onto
a 10% SDS–polyacrylamide gel containing 1 mg/mL gelatin
as a substrate. After electrophoresis, the gels were washed
twice with 2.5% Triton X-100 and then incubated overnight
at 37°C with substrate buffer (pH 8.0, 50 mM NaCl, 50 mM
Tris, and 10 mM CaCl2). Finally, the gels were stained with
Coomassie Brilliant blue and bleached to reveal the
gelatinolytic activities as clear bands against a blue-stained
background. Quantitative data were obtained by
densitometry.35

Biochemical analyses

To evaluate the muscle and cell injuries, the lactate dehydro-
genase (LDH) levels in mouse plasma on Day 3 after injury
and the C2C12 cell-conditioned medium after treatment with
CTX at the indicated concentrations for 24 h were measured
at a commercial laboratory (SRL, Tokyo, Japan).

Simple western analysis

Simple western analysis is a well-known protein detection
method used in conjunction with the western blotting
assay.36 WES™ instrumentation is one of the SimpleWestern™

systems provided by ProteinSimple. We performed the WES™

analysis according to the ProteinSimple user manual. In brief,
samples were adjusted to an appropriate protein concentra-
tion in 4 μL with 0.1% sample buffer and further diluted 1:4
by adding 1.0 μL of ×5 fluorescent master mix (containing
20 μL of 10× sample buffer and 20 μL of 400 mM DTT). Five
microlitres of each final sample and Biotin ladder (containing
16 μL of deionized water, 2 μL of 10× sample buffer, and 2 μL
of 400 mM DTT) was heated at 95°C for 5 min, added to a 1:1
mixture of luminol-S and peroxide (150 μL), and stored in ice
until use. The primary antibodies (i.e. anti-cleaved caspase-8,
anti-caspase-3, anti-BAX, anti-Bcl-2, and anti-GAPDH) were
diluted 1:50 to 1:100 with antibody diluent II, and the
secondary antibody was used without dilution. After applying

the appropriate samples and reagents to each well, we
centrifuged the plate for 5 min at 150 g at room temperature,
and then set it and a capillary cartridge in WES™. The data
obtained by SimpleWestern™ assay were automatically
analysed to determine the molecular weight of the detected
protein and to subject it to quantitative analysis using the
attached Compass software. In addition, we also performed
a general western blotting assay to evaluate the levels of
cleaved caspase-3, caspase-3, and GADPH proteins in the
muscles.

Cell culture

C2C12 cells were grown in DMEM containing 10% foetal
bovine serum and antibiotics at 37°C with 5% CO2. At conflu-
ence, the myoblasts were induced to fuse by changing the
medium to medium containing 2% horse serum (called ‘dif-
ferentiation medium’ herein) as described previously.37 After
5–6 days of differentiation, when the myoblasts had length-
ened, fused, and become multinucleated myotubes, the
differentiated C2C12 cells were cultured with serum-free
DMEM for 6 h. Following pre-treatment with a CatK-specific
inhibitor (ONO-KK1-300-01) at the indicated concentrations,
the cells were cultured in the presence or absence of CTX
at the indicated concentrations and time points, and the
conditioned medium and the cells were subjected to the
biological analysis.

TUNEL staining

After the differentiation of C2C12 cells, the cells were
cultured in serum-free DMEM containing 0.5 μM CTX in the
presence and absence of the CatK inhibitor ONO-KK1-300-
01 for 24 h and then subjected to TUNEL staining as described
previously.31 The apoptotic cells in the muscles were also
evaluated by TUNEL staining.

Collagenase assay

After the differentiation of C2C12 cells, the cells were
cultured in serum-free DMEM containing 0.5 μM CTX in the
presence and absence of the CatK inhibitor ONO-KK1-300-
01 for 24 h and then subjected to collagenase assay used
FITC-Bovine Type I Collagen (Cat: #4001; Chondrex, Inc.,
Redmond, WA) as described previously.26

Statistical analysis

The data are expressed as the mean ± standard deviation.
Student’s t-test (for comparisons between two groups) or
one-way analysis of variance (for comparisons of three or
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more groups) followed by Tukey post hoc tests was used for
the statistical analyses. The muscle performance data were
subjected to two-way repeated-measures analysis of variance
and Bonferroni post hoc tests. SPSS software ver. 17.0 (SPSS,
Chicago, IL) was used. P values <0.05 were considered
significant.

Results

The changes in cathepsin expression in response to
cardiotoxin injection

Figure S1A illustrates the severe muscle damage (e.g. oedema,
haemorrhage, and muscle fibre loss). At first, we examined the
influence of CTX on cathepsin family expression. We isolated
total RNA from the muscles at the indicated time points after
injury and used it in a quantitative real-time gene assay to de-
termine the CatK, CatS, and CatL mRNA levels. We observed
that the CatK mRNA levels were significantly increased in

CTX-injured muscles throughout the follow-up period and
reached a 50-fold peak at Day 3 after injury (Figure S1B). Sim-
ilarly, the CatS and CatL mRNA levels had significantly increased
between 3 and 7 days after injury, with the highest expression
occurring at Day 3 (Figure S1B). We also observed that the in-
jured muscles had increased levels of MMP-2 and MMP-9
mRNAs and increased levels of their endogenous inhibitor
(TIMP-1 and TIMP-2) mRNAs compared with before the injury
(Figure S1C,D). The gelatin zymography revealed that the
gelatinolytic activities of MMP-2 and MMP-9 were increased
in the injured muscles compared with those in the non-injured
muscles at Day 3 after the CTX injection (Figure S1E).

Cathepsin K deficiency protects against
cardiotoxin-induced muscle damage

To explore whether CatK modulates muscle remodelling and
fibrosis in response to injury, we created a skeletal muscle
CTX injury model using CatK+/+ and CatK�/� mice to monitor

Figure 1 CatK deficiency (CatK
�/�

) alleviated the cardiotoxin-induced skeletal muscle remodelling and fibrosis at Day 14 after injury. (A) Representa-
tive images of haematoxylin and eosin (H&E) and Masson’s trichrome staining of the injured gastrocnemius muscle sections of wild-type (CatK+/+) and
CatK

�/�
mice. Scale bar, 100 μm. (B, C) Quantitative data showing the cross-sectional area of a muscle fibre and interstitial fibrosis (90 000 μm2

). (D, E)
Representative immunofluorescence images and quantitative data for the intensity of desmin protein expression in CatK+/+ and CatK�/� mice at Day
14 after injury. Scale bar, 50 μm. Results are the mean ± SD (n = 5–6). Significance was estimated using Student’s t-test (*P < 0.05, **P < 0.01).
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muscle morphological and functional changes in the gastroc-
nemius muscles. On post-injection Day 14, the histological
analysis revealed that the CatK�/� mice had better preserved
muscle fibre size (450 ± 115 vs. 308 ± 52 μm2, P < 0.05) and
lower levels of interstitial fibrosis (30661 ± 5077 vs.
45081 ± 4159 μm2, P < 0.01) compared with the wild-type
(CatK+/+) mice, respectively (Figure 1A and 1C). Desmin is
known to be an intermediate filament protein that is highly
expressed in immature muscle fibre during foetal life and re-
generation.38 To further visualize the healing process, we per-
formed double immunofluorescence labelling with desmin
and laminin-5. As shown in Figure 1D and 1E, CatK�/� mice
exposed to CTX injury had markedly higher intracellular in-
tensity of desmin expression (32.9 ± 3.4 vs. 12.8 ± 1.4,
P < 0.01) than CatK+/+ mice, which suggests that CatK dele-
tion preserved the structural properties of the muscle fibre
and restored tissue healing in response to CTX injury.38 The
quantitative analysis of muscle performance demonstrated
that except grip strength, CatK deletion prevented CTX-
induced impairment of running distance and workload at
Day 14 after injury (Figure 2A and 2B). We also observed that
the running time and distance were better preserved in the
CatK�/� mice compared with those in the CatK+/+ mice at
Day 14 after injury (Figure 2C and 2D), indicating that CatK
deficiency ameliorates muscle remodelling and dysfunction
because of CTX injury.

Cathepsin K deficiency mitigated the
cardiotoxin-induced cell apoptosis

The TUNEL staining showed marked TUNEL+ apoptotic cells
in the injured muscles of CatK+/+ mice on Day 3 after the
CTX injection, and this change was prevented by CatK de-
letion (Figure 3A and 3B). Plasma LDH levels have often
been used to predict muscle injury in humans and ani-
mals.39 To further examine the difference in muscle injury,
the plasma LDH levels were analysed by enzyme-linked im-
munosorbent assay. The quantitative biological analysis re-
vealed significantly lower levels of plasma LDH from the
CatK�/� mice compared with that from the CatK+/+ mice
(Figure 3C). To examine the possible participation of CatK
in the protection against CTX-induced cell apoptosis, we
assessed the levels of pro-apoptotic and anti-apoptotic
molecules by performing a simple western blotting analy-
sis. As anticipated, the levels of caspase-3, cleaved
caspase-8, the ratio of cleaved caspase-3 to caspase-3,
and the ratio of BAX to Bcl-2 proteins were all significantly
lower in the injured muscles of CatK�/� mice compared
with those in the CatK+/+ mice at Day 3 after injury
(Figure 3D–3G, Figure S2A,B). CatK deficiency thus exhibited
a muscle benefit via the reduction of CTX-induced cell
apoptosis in the mice.

Figure 2 CatK deficiency prevented cardiotoxin-induced muscle dysfunction. (A) Grip strength was measured. (B) Workload in the vertical di-
rection was calculated as described in the Materials and Methods. (C, D) Running time and distance were calculated from the results of the
running time and speed. All items are expressed as the ratio of observed values to the data obtained on Day 1 before cardiotoxin injection.
Results are the mean ± SD (n = 6). *P < 0.05, **P < 0.01 vs. the corresponding controls by two-way repeated-measures analysis of variance
and Bonferroni post hoc tests.
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Cathepsin K deficiency ameliorated inflammatory
actions in response to cardiotoxin

It is known that inflammation plays a fundamental role in all
stages of wound healing after injury. As inflammation activa-
tion seemed to be tightly associated with increased CatK
expression, we extended our examination to inflammatory
cell infiltration at Day 3 after the CTX injection. The results
demonstrated that CatK deletion ameliorated the macro-
phage and leucocyte infiltrations (CD68: 46 ± 10 vs.
111 ± 13; CD45: 94 ± 17 vs. 207 ± 13, cell numbers:
P < 0.01 for each) (Figure 4A–4C). The quantitative real-time
PCR data demonstrated that CatK deletion decreased the
levels of inflammatory genes such as TNF-α, TLR-2, TLR-4,
and MCP-1 in injured muscles compared with CatK+/+ mice
(Figure 4D–4G), suggesting that CatK deficiency-mediated
anti-inflammatory actions may contribute to the muscle ben-
efit in this CTX injury model.

To further examine the consequence of CatK silencing on
other cathepsin family members, we analysed the total
RNA extraction of the muscles in a gene expression assay.
The results indicated that CatK deletion had no effect on

the CatS or CatL expression not only in non-injured muscles
but also in injured muscles (Figure S3A). However, com-
pared with those of CatK+/+ mice, the injured muscles of
CatK�/� mice had decreased levels of MMP-2 and MMP-9
as well as their endogenous inhibitor TIMP-1 and TIMP-2
genes (Figure S3B,C). Consistently, we observed that CatK
deficiency reduced the gelatinolytic net activities of MMP-
2 and MMP-9 (Figure S3D,E).

Pharmacological cathepsin K inhibition suppressed
muscle remodelling and apoptosis

Figure 5A shows non-injured and injured muscle fibre size
(haematoxylin and eosin) and fibrosis (Masson’s trichrome)
of mice treated with vehicle (CONT), low-dose CatK inhibitor,
and high-dose CatK inhibitor. Similarly to the CatK deletion,
the pharmacological inhibition of CatK with ONO-KK1-300-01
preserved the muscle fibre size and the intracellular intensity
of desmin expression and reduced the interstitial fibrosis in a
dose-dependent manner (Figure 5B). Similarly, it also
prevented cell apoptosis in injured muscles in a dose-

Figure 3 CatK deletion mitigated cardiotoxin-induced apoptosis. (A, B) Representative images of terminal deoxynucleotidyl transferase dUTP nick end
labelling (TUNEL) immunofluorescence and combined quantitative data show the numbers of TUNEL+ apoptotic cells in the injured gastrocnemius of
wild-type (CatK+/+) and CatK deficiency (CatK�/�) mice at Day 3 after cardiotoxin injection. (C) CatK deletion reduced the plasma lactate dehydrogenase
(LDH) level. (D–G) Representative images of simple western blots and the combined quantitative data show the levels of caspase-3 and cleaved cas-
pase-8 proteins and the ratio of BAX protein to Bcl-2 protein in the injured muscles of CatK+/+ and CatK�/� mice. Results are the mean ± SD (n = 3–4).
*P < 0.05, **P < 0.01 vs. the corresponding control groups by Student’s t-test or one-way analysis of variance followed by Tukey post hoc tests.
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dependent manner (Figure 6A and 6B). Consistently, the CatK
inhibition suppressed plasma LDH levels (Figure 6C). Both
doses of CatK inhibitor reduced the expression of CatK protein
in the injured muscles (Figure 6D and 6E). Moreover, CatK in-
hibition improved the changes in the levels of caspase-3,
cleaved caspase-8, the ratio of cleaved caspase-3 to caspase-
3, and the ratio of BAX to Bcl-2 in a dose-dependent manner
(Figure 6D and 6F–H, Figure S2C,D). Thus, CatK inhibition also
exhibited a protective effect against CTX.

Cathepsin K inhibition mitigated the inflammatory
response to cardiotoxin

Representative immunostaining and the related quantitative
analysis demonstrated that the numbers of infiltrated macro-
phages and leucocytes were lower in the injured muscles of
the CatK+/+ mice administered a CatK inhibitor compared
with those of the non-treated control mice (Figure 7A–C). In-
terestingly, compared with the control mice, the CatK

inhibition also ameliorated the levels of TLR-2, TLR-4, TNF-α,
and MCP-1 mRNAs in the injured muscles of the CatK+/+ mice
(Figure 7D–G). Thus, the CatK inhibition-mediated anti-
inflammatory effects might have contributed to the muscle
protective actions in this mouse CTX injury model.

We next performed gene expression assays to examine
the effects of CatK inhibition on the cathepsin and MMP
gene expressions. Although there were no changes in the
CatS or CatL gene levels in the non-injured or injured mus-
cles among the three experimental groups, we observed
that CatK inhibition exerted a reduction of the CatK mRNA
expression of the injured muscles in a dose-dependent man-
ner (Figure S4A,B). Real-time PCR data showed that the
levels of the MMP-2/-9 and TIMP-1/-2 genes were lower
in the CatK+/+ mice that underwent CatK inhibitor treatment
in a dose-dependent manner (Figure S4C,D). Consistently,
the quantitative gelatin zymography assays revealed that
CatK inhibition suppressed the levels of MMP-2 and MMP-
9 gelatinolytic activities in the injured muscles of the
CatK+/+ mice (Figure S4E,F).

Figure 4 CatK deficiency (CatK
�/�

) ameliorated inflammatory actions in the injured muscles at Day 3 after cardiotoxin injection. (A) Representative
images of the immunostaining using CD68 antibody (for infiltrated macrophages) and CD45 antibody (for infiltrated leucocytes) in the injured gastroc-
nemius sections of wild-type (CatK+/+) and CatK�/� mice. Scale bars: A, 50 μm; B, 25 μm. (B, C) Quantitative data for CD68-positive and CD45-positive
cell numbers. (D–G) Quantitative real-time polymerase chain reaction data show the levels of TLR-2, TLR-4, TNF-α, and MCP-1 in the non-injured and
injured gastrocnemius muscles of CatK+/+ and CatK�/� mice. *P< 0.05, **P< 0.01 vs. the corresponding control groups by Student’s t-test or one-way
analysis of variance followed by Tukey post hoc tests.
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Cathepsin K inhibition mitigated impaired muscle
performance induced by cardiotoxin

We also investigated whether CatK inhibition could im-
prove CTX-induced muscle dysfunction at the indicated
time points. As expected, we observed that the muscle
performance (i.e. grip strength and change rate of work-
load, running time, and distance) was preserved in the
CatK+/+ mice subjected to CatK inhibitor treatment com-
pared with that in the control CatK+/+ mice at Day 14 after
injury (Figure S5).

Cathepsin K inhibition prevented
cardiotoxin-induced C2C12 cell injury

Figure 8A shows the morphological changes of the differen-
tiated C2C12 mouse myoblasts cultured in the presence and

absence of CTX (0.5 μM) and CTX + CatK inhibitor ONO-KK1-
300-01 (25 μM, CTX + CatK-I). As anticipated, CatK inhibition
suppressed the levels of conditioned medium LDH in
response to CTX (Figure 8B). We also observed that CatK
inhibition prevented CTX-induced C2C12 cell apoptosis
(Figure 8C). The western blotting assays showed that CatK
inhibition improved the changes in the levels of BAX and
caspase-3 proteins as well as the CatK protein levels
(Figure 8D and 8E), indicating that CatK inhibition can pro-
tect against differentiated C2C12 apoptosis via a reduction
of apoptosis-related targeted protein expressions. In addi-
tion, we observed that CTX stimulated CatK gene expression
in a time-dependent and dose-dependent manner, whereas
the serum-free medium had no effect on CatK gene expres-
sion (Figure S6). Moreover, quantitative collagenasse assay
revealed that CatK inhibitor significantly suppressed CTX-
induced collagenolytic activity (14 896 ± 228 vs.
15 527 ± 246 intensity, P < 0.01).

Figure 5 Cat K inhibition alleviated cardiotoxin-induced skeletal muscle remodelling and fibrosis at Day 14 after injury. (A) Representative image of
haematoxylin and eosin (H&E) and Masson’s trichrome staining of the injured gastrocnemius sections of the mice treated with vehicle (200 μL of
0.5% carboxymethylcellulose; CONT mice) or with a low dose or high dose of CatK inhibitor [ONO-KK1-300-01: 3 mg/kg, low-dose CatK inhibitor
(LKI) mice; 30 mg/kg, high-dose CatK inhibitor (HKI) mice] at Day 3 after injury. Scale bar, 100 μm. (B, C) Quantitative data showing the cross-sectional
area of a muscle fibre and interstitial fibrosis (90 000 μm2). (D, E) Representative immunofluorescence images and quantitative data show the intensity
of desmin protein expression in the three groups. Scale bar, 50 μm. Results are the mean ± SD (n = 6). *P < 0.05, **P < 0.01 vs. the controls by one-
way analysis of variance followed by Tukey post hoc tests.
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Discussion

Skeletal muscle apoptosis has been shown to participate in
muscle weakness and wasting in response to injury. The
identification of novel targets to prevent maladaptive skele-
tal muscle remodelling and fibrosis will contribute to thera-
peutic strategies to pre-empt muscle mass wasting and
dysfunction in response to various injuries. The significant
finding of the present study is that mice lacking the CatK
gene were resistant to acute CTX injury-induced skeletal
muscle loss and remodelling and the decline in muscle
strength. At the molecular level, CatK deletion reduced
CTX-induced TLR-2/-4 and their downstream inflammatory
gene expressions as well as inflammatory cell infiltrations
(macrophages and leucocytes) and changes in apoptosis-
related molecules (i.e. caspase-3, cleaved caspase-3, cleaved
caspase-8, and the ratio of BAX to Bcl-2). Our pharmacolog-
ical intervention targeting CatK also resulted in a skeletal

muscle protective action via the reduction of inflammation
and cell apoptosis. In vitro, the specific CatK inhibitor atten-
uated the apoptosis of differentiated C2C12 muscle cells
associated with the reductions of caspase-3 and BAX
proteins. To the best of our knowledge, this is the first
study to provide evidence that genetic and pharmacological
interventions targeting CatK confer skeletal muscle protec-
tion against acute CTX injury.

Cysteinyl cathepsins can degrade the basement membrane
and surrounding ECM of cardiovascular walls.13–15 Cathepsin
family members such as CatK and CatS have been shown to
play a critical role in metabolic and inflammatory cardiovas-
cular disorders.15–17 Several clinical studies reported that
there is relationship between plasma CatK levels and cardio-
vascular disease stages and progression.18–20 Our research
and studies by other groups have demonstrated the in-
creased expression and activity of CatK in cardiovascular tis-
sues in response to various injuries.15–17 The ability of CTX

Figure 6 Pharmacological CatK inhibition mitigated apoptosis in the injured muscles of CONT (vehicle), LKI (low-dose CatK inhibitor), and HKI (high-
dose CatK inhibitor) mice at Day 3 after injury. (A, B) Representative images of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)
immunofluorescence and combined quantitative data show the numbers of apoptotic cells in the injured gastrocnemius of the three experimental
groups (n = 6). (C) CatK inhibition suppressed the plasma lactate dehydrogenase (LDH) levels in response to cardiotoxin injury in a dose-dependent
manner (n = 6). (D–H) Representative images of simple western blots and combined quantitative data show the levels of caspase-3 and cleaved cas-
pase-8 proteins and the ratio of BAX protein levels to Bcl-2 protein levels in the injured muscles of the three experimental groups (n = 3). Results are
the mean ± SD. *P < 0.05, **P < 0.01 vs. the controls by one-way analysis of variance followed by Tukey post hoc tests.
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injury to increase CatK expression and activity probably
contributed to the muscle repair under our experimental con-
ditions. In agreement with reports that CatK deletion reduced
cardiovascular remodelling in response to various inju-
ries,24,28 we observed that skeletal muscle loss and fibrosis
and dysfunction after injuries are mitigated by CatK�/�. Our
present findings showed that a pharmacological intervention
targeting CatK also exhibited beneficial effects on skeletal
muscle under the same experimental conditions. Collectively,
these observations suggest that CatK may act as a key player
to modulate skeletal muscle remodelling, fibrosis and dys-
function in response to CTX injury.

The engagement of TLRs on the cell surface by their
specific ligands leads to an increase in the expressions of
inflammatory chemokines and cytokines (e.g. MCP-1,
interleukin-1β, and TNF-α).40–42 In the present study, the in-
jured muscles of CatK�/� mice contained much lower levels
of TLR-2 and TLR-4 genes as well as TNF-α and MCP-1 genes
compared with the control CatK+/+ mice. CatK deletion re-
tarded the macrophage accumulation of the injured skeletal
muscle tissues. The pharmacological inhibition of CatK also im-
proved the inflammation-related expressions of those genes
and the inflammatory cell infiltration to the CTX injury in the
CatK+/+ mice. Our previous study demonstrated a genetic or

pharmacological inhibition of CatK ameliorated injury-related
vascular remodelling via the reduction of TLR-2/-4-mediated
inflammatory in the carotid artery.28 Thus, CatK�/� appears
to mitigate macrophage infiltration and activation and inflam-
matory chemokine expression in injury-stress states through
its ability to reduce TLR-2 and TLR-4 expressions.

It is well established that among the members of the MMP
family, MMP-2 and MMP-9, which are expressed and
secreted mainly by inflammatory cells (i.e. macrophages
and leucocytes), participate in muscle dystrophy and ECM
remodelling.4–6 The ability of CTX injury to also increase both
of these genes and their activities is likely to have contributed
to the muscle interstitial fibrosis and dysfunction observed in
the CTX-treated mice in the present study. Data from the
present and previous studies show that CatK inhibition by a
genetic or pharmacological approach ameliorates not only
MMP-2 and MMP-9 expression and activities but also
targeted tissue/organ damage and dysfunction under condi-
tions of ischaemic, surgical, and CTX injuries.28,29 TLR-2 and
TLR-4 have been shown to modulate monocyte/macrophage
activation and inflammatory responses in animals.28 Other
studies have demonstrated that both membrane-type recep-
tor activations are involved in the regulation of the CatK and
MMP-2/-9 expressions in macrophages and endothelial cells

Figure 7 CatK inhibition ameliorated the inflammatory actions of the injured muscles of the CONT (vehicle), LKI (low-dose CatK inhibitor), and HKI
(high-dose CatK inhibitor) mice at Day 3 after cardiotoxin injection. (A–C) Representative images of the immunostaining and combined quantitative
data show the numbers of infiltrated macrophages (CD68+ cells) and leucocytes (CD45+ cells) in the injured gastrocnemius of the three experimental
groups. Scale bar: A, 50 μm; B, 25 μm. (D–G) Quantitative real-time polymerase chain reaction data show the levels of TLR-2, TLR-4, TNF-α, and MCP-1
in the non-injured and injured muscles of the three experimental groups. Results are the mean ± SD (n = 6). *P < 0.05, **P < 0.01 vs. the correspond-
ing control groups by Student’s t-test or one-way analysis of covariance followed by Tukey post hoc tests. NS, not significant.
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by several intracellular signalling pathways.43,44 Our present
experiments revealed that the increased levels of TLR-2 and
TLR-4 gene expression induced by CTX were alleviated by
CatK inhibition in vivo. Thus, the ability of CatK inhibition to
abolish TLR-2/-4-mediated MMP-2/-9 expression and activi-
ties is attributable to the contribution of CatK inhibition to
the muscle benefits in CatK�/� mice or ONO-KK1-300-01-
treated CatK+/+ mice under our experimental conditions.

Given that the comprehensive reviews have focused on
the roles of a cathepsin/cystatin system in cardiovascular
and inflammatory cell events,11,13 it is notable that CatK
seems to be of particular importance for cell apoptosis in
the cardiovascular repair process. Among the members of
the lysosomal cathepsin family, CatC has been shown to facil-
itate lysosomal rupture and necrotic cell death.45 In addition,
in vitro and in vivo experiments revealed that silencing of

CatK inhibited cardiac cell apoptosis via reductions of mito-
chondrial cytochrome c production and proapoptotic mole-
cule expression.24 Sun et al.43 showed that aneurysm
lesions from CatK�/� mice contained fewer TUNEL+ apoptotic
cells than did CatK+/+ mice.46 They also reported that a defi-
ciency in the endogenous cathepsin inhibitor cystatin C re-
sulted in epidermal hyperplasia via the modulation of
epithelial apoptosis.47 Our present results showed that the
muscle lesions in CatK�/� mice had lower numbers of TUNEL+

apoptotic cells compared with the muscle lesions of the con-
trol mice. ONO-KK1-300-01 treatment also suppressed the
cell apoptosis of the injured skeletal muscle tissues in the
CatK+/+ mice. In vitro, CatK inhibition suppressed the CTX-
induced apoptosis of matured C2C12 cells. Because CTX in-
jury induces CatK expression and activation in vivo and
in vitro, we propose that CatK modulates skeletal muscle

Figure 8 CatK inhibition prevented cardiotoxin (CTX)-induced C2C12 cell apoptosis. (A) Representative images of morphological change of the differ-
entiated C2C12 cells cultured in the presence and absence of cardiotoxin (0.5 μM) alone and in combination with the CatK inhibitor ONO-KK1-300-01
(25 μM) for 24 h. (B) CatK inhibition suppressed the C2C12 cell-conditioned medium lactate dehydrogenase (LDH) levels in response to CTX (n = 6). (C)
Representative images of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) immunofluorescence and combined quantitative data
for the TUNEL+ cell numbers (n = 5). Scale bar, 100 μm. (D, E) Representative images of the simple western blots and combined quantitative data show
the levels of CatK, caspase-3, and BAX proteins in the lysates of the experimental groups (control, CTX, and CTX + CatK-I; n = 3 per group). Results are
the mean ± SD. *P < 0.05, **P < 0.01 vs. the corresponding controls by one-way analysis of covariance followed by Tukey post hoc tests.
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remodelling/loss and dysfunction in a CTX-injury state
through its ability to activate muscle apoptosis. BAX/Bcl-2
and caspase-3/-8 molecules have been widely accepted as
the critical modulators of various types of cell apoptosis.
Our present findings indicate that genetic and pharmacologi-
cal inhibitions of CatK reduced the protein levels of cleaved
caspase-3 and cleaved caspase-8 and the ratio of BAX to
Bcl-2 in the muscle lesions. We also observed that the expres-
sions of the TLR-4 and TLR-2 genes were decreased in injured
muscles of CatK�/� mice and CatK+/+ mice treated with CatK-
I. In C2C12 cells, we have shown that CatK inhibition sup-
pressed CTX-induced BAX and caspase-3 protein expressions.
Several previous lines of investigation have demonstrated
that TLR-2 and TLR-4 are required for cell apoptosis via the
activation of the caspase-8 and nuclear factor-κB signalling
pathway.48,49 Further, it has been shown that TLR-2/-4 defi-
ciency prevents oxygen-induced endothelial apoptosis and
vascular degeneration50 Caspase-8 has been shown to be a
key mediator in the interaction between the TLR-2/-4 axis.51

Taken together, these findings suggest that the attenuation
of cell apoptosis by CatK inhibition via the improvement of
TLR-2/-4-mediated pro-apoptotic and anti-apoptotic mole-
cule expressions may represent a common mechanism un-
derlying the reduction of injury-induced skeletal muscle
remodelling and fibrosis under our experimental conditions.

Several limitations should be considered. First, the in vitro
model used in the present study is not a proper model to rep-
resent CTX-induced muscle fibre injury in vitro, especially
considering that muscle fibres in vivo are generally replaced
by fibrotic/connective tissue and show a high level of inflam-
matory cells that interact with muscle cells to reduce muscle
cell function. Thus, our C2C12 cell experiments may not fully
mimic all the muscle changes to address the related
molecular mechanism in vivo. Second, CTX-induced muscle
injury model is not closely relevant to aging-related muscle
disease but rather to acute injury-related muscle disease.
Third, here, 10-week-old young male CatK+/+ and CatK�/�

mice were applied to the CTX-induced muscle injury
model to study the role of CatK in age-related muscle dis-
ease (i.e. sarcopenia/dynapenia). Aged both genotype mice
will be more suitable to investigate our hypothesis. Fourth,
we could not to deign to confirm our findings in generalizabil-
ity to aging. Further studies should be look at aged animals
and humans. Additionally, in 2015, Fry and colleagues demon-
strated that inducible depletion of satellite cells in adult, sed-
entary mice impairs muscle regenerative capacity without
affecting sarcopenia.52 Thus, injury-induced muscle apoptosis
appears to be one obvious contributory mechanism to age-
related muscle loss but not the be-all and end-all. Fifth, little
or nothing is known about muscle in pycnodysostosis—the
human disease caused by CatK deficiency. Sixth, it has been
reported that ONO-KK1-300-01, N-{3-[(2Z)-2-(3-methyl-1,3-
thiazolidin-2-ylidene)hydrazino]-2,3-dioxo-1-tetrahydro-2H-
pyran-4-ylpropyl}cycloheptanecarboxamide hydrochloride,

and ONO-5334, N-((1S)-3-{(2Z)-2-[(4R)-3,4-dimethyl-1,3-
thiazolidin-2-ylidene]hydrazino}-2,3-dioxo-1-(tetrahydro-2H-py-
ran-4-yl)propyl)cycloheptanecarboxamide, were synthesized in
ONO Pharmaceutical Co., Ltd. (Osaka, Japan).53,54 The former
is hydrochloride, and the latter has one more methyl group.53,54

Both CatK inhibitors have shown to ameliorate bone density
and/or bone resporption in several animal metabolic bone dis-
ease models.53,54 Similarly, the data from a small scale clinical
studies reported that ONO-5334 mitigated bone mineral den-
sity without the change in bone size.55 However, we have
pointed out one large clinical LOFT trial (the Long-Term
Odanacatib Fracture Trail) that was started to treat with ONO-
5334 post-menopausal osteoporosis.56 Unfortunately, this trial
has led to discontinuation of the development of odanacatib
for the treatment of osteoporosis due to cardiovascular side
effects.56 These negative data of CatK inhibitor prompt clini-
cians to look at some muscle/sarcopenia endpoints in existing
clinical trial data.

Conclusions

The ability of injury to increase skeletal muscle apoptosis
have been shown to contribute to the age-associated muscle
weakness and wasting in a wide range of mammals. However,
the molecular mechanisms by which injury causes muscle cell
apoptosis and remodelling are poorly understood. The ex-
pressions of the CatK gene and protein are known to be in-
creased in injured muscle tissues. Here, CatK deletion was
shown to prevent acute CTX-induced muscle apoptosis, re-
modelling and fibrosis and muscle dysfunction. The pharma-
cological inhibition of CatK mimics the protective effects of
genetic CatK ablation on skeletal muscle. It seems that selec-
tive CatK inhibitors may have potential utility in the treat-
ment or control of injury-related skeletal muscle apoptosis,
remodelling and dysfunction in age-associated muscle disor-
ders. However, it remains to be determined whether pharma-
cological CatK inhibition has muscle benefits in humans, and
whether or not, this will not be hampered by other unwanted
side effects. Further studies will be also needed to investigate
these issues.
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Table S1. Primer sequences for mice used for quantitative
real-time PCR
Figure S1. Expressions of matrix metalloproteinase (MMP)
and cathepsin family genes in the muscles of CatK+/+
mice at the indicated time points after cardiotoxin (CTX)
injection. A: Photos of both gastrocnemius mass and rep-
resentative microscopy images of H&E staining of the
non-injured and injured muscles of CatK+/+ mice on days
3 and 14 after injury. B–D: Quantitative real-time PCR data
show the levels of CatK, CatS, CatL, MMP-2, MMP-9, tis-
sue inhibitor of metalloproteinase (TIMP)-1, and TIMP-2
at days 0, 3, 7, and 14 after injury. Results are the
mean ± SD (n = 6). E: A representative result of gelatin
zymography shows the levels of MMP-2 and MMP-9
gelatinolytic activities of the non-injured and injured mus-
cles of CatK+/+ mice at day 3 after CTX injection.
*p < 0.05, **p < 0.01 vs. the corresponding day 0 by
one-way ANOVA followed by Tukey post hoc tests.
Figure S2. Effects of CatK inhibition on the levels of cas-
pase-3 and cleaved caspase-3 in the muscles. A-B: Repre-
sentative images of Western blots and the combined
quantitative data show the ratio of cleaved caspase-3 to
caspase-3 band intensities in the injured muscles of CatK+/
+ and CatK�/� mice. C-D: Representative images of Western
blots and the combined quantitative data show the ratio of
cleaved caspase-3 to caspase-3 band intensities in the in-
jured muscles of CONT, LKI (low-dose CatK inhibitor) and
HKI (high-dose CatK inhibitor) mice.
Figure S3. The gene expressions of cathepsin and MMP
families in the skeletal muscles of mice of both genotypes
at day 3 after injury. A–C: Quantitative real-time PCR data
show the levels of CatS, CatL, MMP-2, MMP-9, TIMP-1,
and TIMP-2 genes in the non-injured and injured gastrocne-
mius muscles of mice of both genotypes. Results are the
mean ± SD (n = 5). D,E: Representative images of gelatin
zymography and combined quantitative data show the
gelatinolytic activities of MMP-2 and MMP-9 in the non-in-
jured and injured gastrocnemius muscles of mice in both ex-
perimental groups. Results are the mean ± SD (n = 5).
*p < 0.05, **p < 0.01 vs. the corresponding control groups
by Student’s t-test or one-way ANOVA followed by Tukey
post hoc tests. NS: not significant.
Figure S4. Evaluation of cathepsin and MMP gene expres-
sions in the non-injured and injured gastrocnemius muscles

of CatK+/+ mice treated with vehicle (0.5% carboxymethyl-
cellulose; CONT mice) or a low or high dose of the specific
CatK inhibitor ONO-KK1–300-01 (3 mg/kg, LKI mice;
30 mg/kg, HKI mice) at day 3 after CTX injury. A–D: Quanti-
tative real-time PCR data show the levels of CatS, CatK,
CatL, MMP-2, MMP-9, TIMP-1, and TIMP-2 in the non-in-
jured and injured muscles of the three experimental groups.
Results are the mean ± SD (n = 6). E,F: Representative im-
ages of gelatin zymography and combined quantitative data
show the gelatinolytic activities of MMP-2 and MMP-9 of
the injured gastrocnemius in the three experimental groups
(n = 4). *p < 0.05, **p < 0.01 vs. the corresponding control
groups by Student’s t-test or one-way ANOVA followed by
Tukey post hoc tests. NS: not significant.
Figure S5. CatK inhibition prevented CTX-induced muscle
function. A: Grip strength was measured over 5 times in each
mouse on 0, 3 and 14 days after CTX injury and averaged to
obtain the grip strength for each time point. B: Workload in
the vertical direction was calculated in consideration of the
weight of the mouse (= weight × gravitational acceleration ×
mileage in the vertical direction). C,D: Running time and dis-
tance were calculated from the product of running time and
speed. All items were expressed as the ratio of observed
values to data on day 0 before CTX injection. Results are the
mean ± SD (n = 3). *P < 0.05, vs. the corresponding controls
by 2-way repeated-measures ANOVA and Bonferroni post
hoc tests.
Figure S6. Changes in the expression of CatK mRNA induced
by CTX in a time- and dose-dependent manner. A:Microscopy
images and quantitative real-time PCR data show the levels of
CatK mRNA in the serum-free medium at the indicated time
points. B: Representative images and quantitative real-time
PCR data show changes in the CTX-induced CatK mRNA ex-
pression over time. C: Representative images and quantitative
real-time PCR data show changes in the CTX-induced CatK
mRNA expression with dose. Scale bars: A, 50 μm.
*p < 0.05, **p < 0.01 vs. the corresponding control groups
by Student’s t-test or one-way ANOVA followed by Tukey post
hoc tests. NS: not significant.
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