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The blood-brain barrier (BBB) selectively restricts the entry of molecules from peripheral
circulation into the central nervous system (CNS) parenchyma. Despite this protective
barrier, bacteria and other pathogens can still invade the CNS, often as a consequence of
immune deficiencies or complications following neurosurgical procedures. These
infections are difficult to treat since many bacteria, such as Staphylococcus aureus,
encode a repertoire of virulence factors, can acquire antibiotic resistance, and form
biofilm. Additionally, pathogens can leverage virulence factor production to polarize host
immune cells towards an anti-inflammatory phenotype, leading to chronic infection. The
difficulty of pathogen clearance is magnified by the fact that antibiotics and other
treatments cannot easily penetrate the BBB, which requires extended regimens to
achieve therapeutic concentrations. Nanoparticle systems are rapidly emerging as a
promising platform to treat a range of CNS disorders. Nanoparticles have several
advantages, as they can be engineered to cross the BBB with specific functionality to
increase cellular and molecular targeting, have controlled release of therapeutic agents,
and superior bioavailability and circulation compared to traditional therapies. Within the
CNS environment, therapeutic actions are not limited to directly targeting the pathogen,
but can also be tailored to modulate immune cell activation to promote infection
resolution. This perspective highlights the factors leading to infection persistence in the
CNS and discusses how novel nanoparticle therapies can be engineered to provide
enhanced treatment, specifically through modulation of immune cell polarization.

Keywords: central nervous system, infection, biofilm, immunometabolism, nanoparticles, blood-brain barrier,
leukocytes, microglia
INTRODUCTION

The blood-brain barrier (BBB) represents a double-edged sword in the context of central nervous
system (CNS) infectious diseases. On the one hand, tight junctions between brain capillary
endothelial cells, reinforced with astrocyte end feet and pericytes, act as a defense to restrict
pathogen invasion into the CNS from the periphery (1, 2). However, the same tight junctions also
org June 2021 | Volume 12 | Article 6709311
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hinder the delivery of therapeutics to the brain parenchyma in
situations where the BBB is breached. A wide range of bacteria,
viruses, fungi, and parasites can traverse the BBB with
neurotropism for CNS meningeal, ventricular, and parenchymal
compartments (1–3). These pathogens are responsible for severe
clinical conditions including meningitis, encephalitis, and
pyogenic infections. Patients with CNS infections often require
lengthy hospitalization, critical care support, complex diagnostic
tests, and invasive treatment procedures. Globally, more than 1.2
million individuals are affected by meningitis annually, with
bacterial meningitis responsible for 120,000 deaths (4, 5). Many
of the pathogens that invade the CNS are opportunistic and
exploit patients with primary immune deficiencies that worsen
disease severity (6, 7). Other CNS infections can arise from
complications following neurosurgical procedures, such as
craniotomy and cerebrospinal fluid (CSF) shunt placement (8–
10). The expanded use of therapeutics targeting immune effector
mechanisms, such as monoclonal antibodies to inhibit cytokine
action or leukocyte trafficking, can increase susceptibility to CNS
infection (11–13). In the CNS, pathogens can tightly regulate
virulence factor and metabolite production to promote their
survival (3, 14–16). In bacterial strains such as Staphylococcus
aureus, this includes biofilm formation and antibiotic tolerance
(17). Additionally, host-pathogen crosstalk can polarize immune
cells towards an anti-inflammatory phenotype to promote chronic
infection. Although CNS infections are generally less frequent
compared to the periphery, their high morbidity and mortality
rates necessitate better understanding and management to
improve patient outcomes.

Treatments for CNS infection depend on the suspected
pathogen, but one commonality exists – time is essential. As
infections can be rapidly fatal, it is imperative that therapeutic
interventions are initiated as soon as a diagnosis is made. For
drugs, CNS entry is dependent on size, charge, lipophilicity,
plasma protein binding, affinity for active transport mechanisms
at the BBB, as well as edema and CSF flow (18). With these
stringent requirements, it is no surprise that the BBB is the
bottleneck of the pharmaceutical industry for CNS therapeutics.
Around 98% of brain-targeting drug candidates have impeded
ability to pass the BBB, including new classes of biotherapies
such as RNAs (19, 20). Current treatment options for many
bacterial, fungal, and viral pathogens are highly empirical due to
a lack of clinical trial-based evidence and few approved therapies
(3). Administration routes are also empirical, and due to the
difficulty in achieving therapeutic concentrations of compounds
in the CNS following intravenous injection, more invasive
transcranial delivery is often required. This includes intrathecal
and intraventricular injection of anti-infection agents dosed as
high as 10-fold in excess of the minimum inhibitory
concentration to achieve clearance, and ventricular catheters
must be maintained for 24-48 h or substantially longer (21). A
growing number of CNS infections with multi-drug resistant
(MDR) bacteria such as Acinetobacter baumannii, Pseudomonas
aeruginosa, and Klebsiella pneumoniae present a serious problem
as these superbugs are only sensitive to select classes of
polymyxin last-resort antibiotics, severely limiting treatment
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options (22). Further complicating treatment is that many
drugs, such as the antibiotics for MDR bacteria, are associated
with neurotoxicity due to the need for high therapeutic
concentrations, non-specific targeting, and only small amounts
of drug reaching the infection site within the CNS. As such,
treatments must include neuroprotective agents to alleviate
harmful side effects.

Engineered nanoparticle systems have emerged as a promising
therapeutic path to circumvent BBB restrictions and provide
targeted delivery of drugs to the CNS (23, 24). Additionally, the
concept of using immunometabolic modulation to treat
neurological disorders such as Alzheimer’s disease (AD),
Parkinson’s disease (PD), and multiple sclerosis (MS) has gained
traction in recent years (25, 26). We believe that using nanoparticle
delivery systems with immunometabolic therapies could provide a
paradigm shift for the successful treatment of life-threatening CNS
infections. This approach has the potential as a dual-action
therapeutic bolstering the host defenses and synergizing with anti-
infection agents, ultimately improving patient outcomes (Figure 1).
PATHOGENIC AND IMMUNE
CHARACTERISTICS OF CNS INFECTIONS

Mechanisms of Pathogen Entry
Into the CNS
A variety of routes facilitate pathogen entry into the CNS (4).
One common path is through the meninges and CSF. Bacterial
species including Streptococcus pneumoniae and Listeria
monocytogenes access the blood and CSF after colonization in the
nasopharynx or gastrointestinal tract, respectively (27, 28). Once in
the subarachnoid space, interactions between bacterial and host
proteins facilitate invasion into the CNS parenchyma. For example,
S. pneumoniae uses the adhesion molecule RrgA to bind the
polymeric immunoglobulin receptor plgR or platelet-associated
cell adhesion molecule (PECAM)-1 on endothelial cells (27).
L. monocytogenes uses the internalin InlF to interact with the
cytoplasmic intermediate filament protein vimentin that is also
expressed on the surface of brain endothelial cells (28). Fungal
invasion of the CNS can also occur through the CSF in cases of
congenital, acquired, or drug-mediated T cell dysfunction (29, 30).
Direct infection and replication inside BBB endothelial cells
provides another route for pathogen entry to the CNS. For
example, Zika virus is known to have tropism for vascular
endothelial cells though mechanisms involving the AXL tyrosine
kinase receptor family, and the protozoan Toxoplasma gondii
utilizes parasite adhesion microneme protein-2 (MIC2) for
growth in brain endothelial cells (31, 32). Upon replication, these
pathogens are released into the CNS parenchyma after endothelial
cell lysis. Microbes can also use host endocytic machinery to reach
the CNS via transcytosis. For example, S. pneumoniae can cross
endothelial barriers by clathrin- and caveolae-mediated
micropinocytosis (33). West Nile virus (WNV) can invade the
CNS through the use of lipid rafts and caveolae-facilitated
endocytosis (34). Fungal species such as Cryptococcus neoformans
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also leverage host proteins for transcytosis, including cysteinyl
leukotrienes and the glycoprotein receptor CD44 (35). Another
notable entry route to the CNS for pathogens is via a “Trojan-horse”
mechanism, whereby microbes are transported across the BBB
within phagocytic leukocytes (36, 37). Research has demonstrated
that WNV is carried to the brain via infected neutrophils, and CNS
infection with T. gondii is associated with migration of infected
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monocytes and dendritic cells (DCs) (38, 39). Finally, foreign bodies
introduced into the CNS provide direct routes for pathogen
colonization, often leading to infection with skin flora such as S.
aureus or S. epidermidis (40, 41). Later, we will discuss how the same
biological mechanisms exploited by pathogens to enter the CNS can
be used for designing new classes of nanoparticle therapeutics with
enhanced BBB permeability.
FIGURE 1 | Integrating immunometabolism and nanoparticle systems for the treatment of CNS infection. Immune activation is controlled by the metabolic pathways
needed to generate the energy and intermediates required for effector responses. Research continues to uncover the metabolic pathways that regulate inflammatory
polarization of all Key immune cell types during CNS infection, including microglia and infiltrating leukocytes. Nanoparticle carriers can be engineered with
different Functionalization to safely, and non-invasively transport therapeutic Payloads across the BBB to the CNS with a variety of tunable compositions,
chemical ligands, and physiological characteristics. Together, nanoparticle systems provide a multi-tool kit of customizable parts for delivering immunometabolic
modulating therapies to targeted cells in the CNS. Figure created with BioRender.
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The Host Immune Response
to CNS Infection
The immune response to pathogen invasion of the CNS is an
organized and dynamic process. Microbes are sensed by microglia
and astrocytes in the CNS parenchyma as well as macrophages
within the choroid plexus, meninges, and perivascular space (42,
43). Activation occurs through the recognition of pathogen-
associated molecular patterns (PAMPs) by a range of pattern
recognition receptors (PRRs), the most well studied being the
Toll-like receptor (TLR) family (44, 45). Microglial and CNS
macrophage activation in response to TLR stimulation is
characterized by increased major histocompatibility complex
class II (MHCII) and costimulatory molecule (CD80 and CD86)
expression. Additionally, pro-inflammatory cytokines and
chemokines including TNF-a, IL-1b, CCL2, and CCL5 are
secreted concomitant with nitric oxide and reactive oxygen
species (ROS) production. Changes in phagocytosis, cell motility,
and proliferation are also observed. These attributes serve to limit
pathogen expansion, and recruit and activate peripheral blood
leukocytes into the CNS to mitigate the infection. Ideally, activation
is tightly regulated and short-lived before resolving into a
homeostatic state characterized by the secretion of anti-
inflammatory signals, including IL-10 and transforming growth
factor-beta (TGF-b) that support neurorepair (44, 46, 47). Given
the high mortality rates associated with CNS infections, it is clear
that immune activation can become dysregulated, leading to
bystander damage of surrounding normal brain parenchyma and
increased disease severity.

In recent years, the rapidly expanding field of immunometabolism
has demonstrated that immune activation is controlled by the
metabolic pathways needed to generate the energy and
intermediates required for effector responses (26, 48, 49). The
major pathways identified to date that dictate leukocyte function
include glycolysis, the tricarboxylic acid (TCA) cycle, oxidative
phosphorylation (OXPHOS), fatty acid oxidation and synthesis
(FAO and FAS, respectively), the pentose phosphate pathway
(PPP), and amino acid metabolism (50). During normal resting
conditions, leukocytes tend to display a basal activity of all major
metabolic pathways. Glucose is converted to pyruvate to fuel the
TCA cycle and generate adenosine triphosphate (ATP) for energy as
well as nicotinamide adenine dinucleotide (NADH) and flavin
adenine dinucleotide (FADH2) as electron donors for OXPHOS.
Upon activation, cells undergo metabolic reprogramming
characteristic of altered fuel consumption, modified mitochondrial
structure and dynamics, preferential use of specific metabolic
pathways, and metabolite flux (48–50). In response to pro-
inflammatory signals, many leukocytes undergo Warburg
metabolism that is typified by increased glycolysis under aerobic
conditions (51). This glycolytic bias enhances the synthesis of
nucleotides, amino acids, fatty acids, and other metabolic
intermediates to promote proliferation and cytokine production,
including rapid ATP generation. Cells in an anti-inflammatory state
tend to favor OXPHOS since their biosynthetic demands are less
pronounced. However, it is important to note that the concept
of metabolic bias is not an “all-or-none” phenomenon but
instead exists on a spectrum since metabolic pathways are highly
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integrated (50). Furthermore, unique metabolic pathways have been
linked to specific cell types, revealing another layer of complexity
(52–54). Metabolic programming is also highly dependent on
substrate availability. This provides an opportunity for pathogens
to manipulate host defenses through substrate competition that
can ultimately suppress pro-inflammatory responses by biasing
leukocytes towards an anti-inflammatory state (55, 56). For
example, S. aureus biofilm promotes an anti-inflammatory milieu
through depletion of key nutrients such as glucose, preferential
recruitment of granulocytic-myeloid-derived suppressor cells
(G-MDSCs), and release of lactate to drive production of the anti-
inflammatory cytokine IL-10 (57). The CNS has a distinct nutrient
environment compared to the periphery, which likely influences the
immunometabolic status of resident microglia and infiltrating
leukocytes during infection. While comprising only 2% of the
total body mass, the brain utilizes approximately 25% of the
glucose consumed by the human body (58). Under conditions of
diminished glucose supply, such as infection or ischemia, CNS cells
can adapt to use alternative energy sources generated from FAO or
glutaminolysis (53). The concept of metabolically reprograming
cells to promote infection clearance presents an exciting therapeutic
opportunity. To realize this idea, it is important to understand the
relationships between inflammatory polarization and metabolic
status for the various immune cell populations within the CNS
and how this changes in the context of infection.
Immunometabolism of Glial and
Leukocyte Populations
The key players in controlling CNS infections are resident
microglia and macrophage populations along with infiltrating
leukocytes. These cell types share many similarities in terms of
TLR usage but also significant heterogeneity in effector functions.
Microglia originate from the primitive yolk sac during development
and comprise 5-10% of the total cell population in the brain
parenchyma (59). During normal steady-state conditions,
microglia survey the brain parenchyma detecting neuronal
activity and maintain homeostasis through synaptic pruning,
clearance of apoptotic cells, and regulating neurogenesis (60, 61).
In response to pro-inflammatory stimuli, microglia undergo
Warburg metabolism, shifting from OXPHOS in the resting state
to aerobic glycolysis (62, 63). As a result, specific metabolite
transporters and glycolytic genes are upregulated, notably the
glucose transporter GLUT-1 and hexokinase, respectively, leading
to protein acetylation due to acetyl-CoA accumulation and release
of IL-1b. Further, superoxide generation is used to kill pathogens,
and it is suggested that histone deacetylase (HDAC) activity links
epigenetic changes with metabolism (25, 62). Non-immune cells,
such as CNS resident astrocytes and oligodendrocytes also play key
metabolic roles to support neuron homeostasis. Under
physiological conditions, astrocytes provide neurons with
metabolic substrates for neurotransmission, maintain neural
electrical activity, and support energy balance and synaptic
pruning (64, 65). Upon activation, astrocytes have been shown to
undergo aerobic glycolysis to promote pro-inflammatory signals
(54, 63). Oligodendrocytes form the lipid-rich myelin supporting
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the propagation of neuronal action potentials, where cells respond
to glutamatergic signals by increasing glycolysis to support axonal
energy metabolism (26, 66). The metabolic changes that occur in
astrocytes and oligodendrocytes during CNS infection and how this
shapes neuronal survival remain to be determined.

Infiltrating leukocytes are the other key contributors to CNS
infection. Macrophages, neutrophils, DCs, and natural killer
(NK) cells are rapidly recruited into the infected CNS where
they can influence glial activation through release of
inflammatory cytokines and other factors such as ROS (25, 26,
67–69). Macrophages and monocytes are found in the CNS
meningeal and perivascular interfaces as well as the infected
brain and experience a metabolic shift from OXPHOS to
glycolysis upon pro-inflammatory activation, similar to
microglia (70–72). The most comprehensive immunometabolic
studies to date have been conducted on macrophages, wherein
two major breakpoints in the TCA cycle result in succinate and
citrate accumulation and nitric oxide, IL-6, and IL-1b production.
Citrate accumulation also leads to the generation of itaconate,
which exerts bactericidal activity (73). However, chronic
production of itaconate can elicit anti-inflammatory effects and,
as such, this balance must be tightly regulated. Similar to
macrophages, pro-inflammatory DCs exhibit a metabolic shift
towards glycolysis; however, DCs continue to use the TCA cycle
for generating ATP as opposed to heavily relying on glycolysis
which differs frommacrophages (74, 75). There are numerous DC
subsets, and it is important to recognize that each may undergo
unique metabolic programs during activation in a context-
dependent manner (76). Activated neutrophils favor glycolysis
as well as the PPP to produce NADPH for redox reactions. Their
low mitochondrial abundance reflects their reduced reliance on
OXPHOS (77). NK cells do not experience a glycolytic bias upon
activation but instead enhance both glycolysis and OXPHOS,
where glucose remains the primary fuel (78). With regard to
adaptive immunity, T cells also play important roles in many CNS
infectious diseases, ranging from cytotoxic activity during viral
infections to promoting innate immunity through the release of
cytokines such as IFN-g and IL-17 (79). Like their innate
counterparts, T cell activation is highly dependent on glycolytic
metabolism for their effector functions. However, metabolic
variability exists for dictating T cell subset fate. For example, the
OXPHOS pathway is important for Th17 differentiation, and the
absence of OXPHOS during differentiation leads to regulatory T
cell (Treg) development (79, 80). B cells are rather unique in their
metabolic program compared to other immune cells, relying
heavily on FAO and minimally on glycolysis (81, 82). There are
few reports on the role of B cells during CNS infections, but
available evidence shows important contributions for pathogen
neutralization by enhanced opsonophagocytosis and complement
activation (83). The metabolic diversity of infiltrating leukocytes
during CNS infectious diseases and how this shapes not only their
intrinsic properties but also extrinsic effects on surrounding
leukocytes and resident glia represents a complex scenario, and
one that is ripe for interrogation to exploit pathways that promote
infection resolution without excessive bystander damage to
normal brain parenchyma.
Frontiers in Immunology | www.frontiersin.org 5
Modulating Immune Cell Polarization
Extensive evidence has shown that immune cell polarization is
linked to metabolism, supporting the idea of manipulating
metabolism as a means to direct immune cells towards
pathways that promote infection clearance, which has been
coined metabolic reprogramming (50). Most current research
into immune modulation in the CNS has targeted inflammation
associated with AD, PD, and MS; however, the same concepts
can be leveraged for CNS infectious diseases. In the context of
neurodegenerative disorders, T cell activation has been targeted
to attenuate chronic inflammation. Initial work showed that
inhibition of glycolysis limited T cell pathogenicity by favoring
Treg development (84, 85). Tetramerization of pyruvate kinase
M2, the enzyme catalyzing the last step in glycolysis, inhibited
the glycolytic activity of pro-inflammatory T cells to ameliorate
experimental autoimmune encephalomyelitis (EAE), the mouse
model of MS (86). Other work demonstrated that the TCA
derivative itaconate also reduced EAE severity by suppressing T
cell and microglial activation (87). Further studies have shown
metabolic polarization effects in T cells with cytokines such as
IFN-b and targeting mitochondrial respiratory chain enzymes
(88, 89). A growing body of literature is beginning to uncover the
mechanisms driving microglial plasticity in the brain, where the
mechanistic target of rapamycin (mTOR) pathway has been
identified and has clear links with metabolism (90). As critical
metabolic nodes emerge, a variety of approaches relying on
pharmacological agents, cytokines, lipid messengers, and
microRNAs have all been shown to be effective metabolic
modulating agents (91).

Insights into how metabolic status may shape CNS immune
activation can also be drawn from research in the periphery,
where much focus has been on macrophages. Studies have
uncovered mechanisms behind mitochondrial repurposing
during activation, and how resulting mitochondrial reactive
oxygen species (mtROS) production can be blocked to
promote anti-inflammatory states (92). Other work has
demonstrated that metabolic reprogramming of monocytes via
the OXPHOS inhibitor oligomycin reduced bacterial burden in a
S. aureus biofilm model of prosthetic joint infection (93). The
effectiveness of this treatment resulted from inhibiting the anti-
inflammatory OXPHOS bias, shifting cells towards a pro-
inflammatory glycolytic state to promote biofilm clearance.
Pertinent to CNS infection, similar immune-based approaches
have been used with exogenous application of IL-1b or grafted
pro-inflammatory macrophages, both of which lowered bacterial
burden in a S. aureus biofilm model of craniotomy infection (94,
95). As another layer of complexity, a recent study demonstrated
the influence of microenvironment in shaping immunomodulatory
attributes, where macrophage expression of glycolytic markers was
suppressed upon migration into the brain parenchyma (71). More
specifically, lactate dehydrogenase A (LDHA; converts pyruvate to
lactate) andmonocarboxylate transporter 4 (MCT-4; exports lactate
from glycolytic cells) expression was significantly reduced in
macrophages that invaded the brain parenchyma in EAE,
whereas these molecules were elevated in macrophages associated
with perivascular cuffs. This suggests a failure of macrophages to
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maintain their pro-inflammatory properties upon entering the
CNS, which the authors attributed to differences in metabolic
demand. While a specific mechanism for this reprogramming is
unknown, it could be influenced by local nutrient or metabolite
availability, such as lactate itself, which is known to be produced by
astrocytes and oligodendrocytes for supporting proper axonal
function (58, 96), or it may provide balance to the local
inflammatory response. Collectively, these findings support the
idea that immune cell function could be tailored by modulating
metabolism to overcome deficiencies in CNS metabolites, such that
infiltrating leukocytes remain in a pro-inflammatory state to
fight infection.

The aforementioned examples reflect only a small amount of
the growing literature on metabolic modulation. Ongoing work
continues to identify molecular agents targeting aspects of key
metabolic pathways. Overall, strong evidence supports the use of
metabolic modulation therapy for controlling immune cell
activation states and effector functions (84–86, 89, 91, 94). The
heterogeneity between different cell types highlights the need to
uniquely target select immune populations. Additionally, more
work should aim to investigate how immunometabolic therapies
can synergize with existing anti-infection drugs to enhance
clearance from the CNS. Such an immunometabolic approach to
treating CNS infections has potential to improve disease outcomes,
depending on the availability of suitable delivery mechanisms.
THE PROSPECT OF NANOPARTICLE
SYSTEMS FOR MODULATING IMMUNE
CELL POLARIZATION

Shortcomings of Current CNS
Infection Treatments
As previously discussed, the BBB is a cooperative interaction
between brain capillary endothelial cells, astrocytes, and pericytes
that maintains brain homeostasis and controls nutrient influx into
the parenchyma. Transport through the BBB can occur through a
variety of routes, generally classified as passive transport, carrier-
mediated, and vesicular trafficking (Figure 1) (97). Passive
transport is mostly limited to small substances. Small
hydrophilic compounds may pass paracellularly through the
tight junctions between endothelial cells likely by means of
transient relaxation of the junctions, while small lipophilic
substances can use transcellular passive diffusion to reach the
brain (97). Carrier-mediated transport exploits diverse solute
transporters for traversing the BBB, such as those for glucose or
amino acids. Receptor-mediated and adsorptive-mediated
transport utilize antibody binding or plasma proteins for
crossing via endocytosis and pinocytosis (98).

Expectedly, delivery of anti-infection agents to the CNS is
strongly hindered by the BBB, and more invasive transcranial
delivery via intrathecal and intraventricular injection is often used
as a bypass (99, 100). However, bypass strategies are complicated by
limited drug diffusion, which reduces biodistribution to the target
location in the parenchyma. Osmotic disruption of the BBB with
Frontiers in Immunology | www.frontiersin.org 6
vasoactive substances, exposure to high intensity focused
ultrasound, and electromagnetic pulses have also been explored
to improve drug permeability to the CNS (101–103). However, BBB
disruption can lead to unwanted entry of other molecules into the
CNS or drugs becoming trapped in brain endothelial cells rather
than distributing to target sites. Engineered nanoparticles represent
a promising approach to improve non-invasive delivery of CNS
therapeutics by ferrying drugs across the BBB. Nanoparticles can be
designed to perform multiple, targeted functions aimed at both the
pathogen and host, and their biodegradable properties have the
added advantage of self-clearance (20, 23, 24, 100).

Design Variables of Nanoparticle
Therapies
Nanoparticles are small structures ranging from 1 to 1000 nm in
diameter. They can be generated by a wide array of biodegradable
and non-biodegradable substances and readily modified to deliver
therapeutic agents, as discussed in the following sections (24).
There are several approaches for transporting nanoparticles across
the BBB, all facilitated by harnessing the physiological properties of
endogenousmolecules required for proper brain function (98, 104).
For example, carrier-mediated transport allows nanoparticles to
use essential nutrient transporters, such as GLUT-1 for glucose and
L1 and y+ for large amino acids. Through adsorptive-mediated
transcytosis, electrostatic interactions between cationic ligands and
negatively charged endothelial cell membranes lead to vesicle-based
endocytosis. Perhaps the most effective approach, receptor-
mediated transcytosis, relies on luminal plasma membrane
receptors of endothelial cells for endocytosis. Examples include
the lactoferrin and transferrin receptors (LfR and TfR,
respectively), low density lipoprotein receptor-related protein 1
and 2 (LRP-1 and -2), insulin receptor, and folate receptor
(98, 104).

To exploit the endogenous transport machinery of the BBB,
nanoparticles must be designed to mimic physiologically active
compounds. Several key characteristics can be leveraged to
optimize nanoparticle entry into the CNS. First, nanoparticle size
is crucial for endocytosis, with a critical limit of approximately 200
nm or less for efficient cellular uptake via clathrin-mediated
endocytosis (23, 105). Charge is another important factor
affecting both internalization and circulation time. Due to the net
negative charge on endothelial cell membranes, positively charged
nanoparticles can more readily use adsorptive transcytosis. On the
contrary, neutral and negatively charged nanoparticles remain in
circulation longer because of reduced protein adsorption.
Zwitterionic nanoparticles can provide a balance between uptake
and circulation requirements (106). Functionalization through
incorporation of surface ligands provides the most flexibility to
engineered nanoparticles. The main objective in selecting surface
ligands is increasing BBB passage and cell-specific targeting
through carrier- and receptor-mediated transcytosis. Studies have
demonstrated the ability to decorate particles with ligands for
GLUT-1, albumin transporters, LfRs and TfRs, and more (107–
110). The use of cell-penetrating peptides as surface ligands can be
used to bypass endocytosis, leading to direct nanoparticle entry to
the cytoplasm (111). Studies have also demonstrated the use of
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ligands such as insulin for targeting affected brain regions in
neurodegenerative and neuropsychiatric disorders (105). Not
only the ligand itself, but its density or avidity are also important
factors, as too many high affinity ligands can hinder endocytosis by
anchoring nanoparticles to cell membranes (110).

Intravenous injection is the most widely utilized route for
nanoparticle administration. However, the rapid clearance of
particles from circulation can limit the concentrations reaching
the CNS (23). New non-invasive routes of administration are
being explored to improve CNS bioavailability. Intranasal delivery
is a major alternative route, which could facilitate direct nose-to-
brain delivery in a matter of minutes via olfactory and trigeminal
nerves (112–117). The functional diversity and customization
possibilities in designing CNS-targeting nanoparticles makes
them multi-tool kits with options for tailoring transport routes,
targets, and payload release kinetics. Researchers continue to
discern the relative importance of the variables governing
nanoparticle characteristics and how one property may modify
another attribute (118). One such study examining these
relationships determined that for the specific polymeric
nanoparticles used, the most influential parameter for efficient
BBB penetration was the surfactant type, whereas size and zeta
potential had little impact (119). Continued efforts advancing
CNS-targeting nanoparticles will only enhance their potential
for personalized medicine applications.

Nanoparticles for the CNS
Significant work has identified a wide range of polymeric, lipid-
based, cell-derived, and inorganic nanoparticles as viable
therapeutic options to promote CNS uptake. While most of the
current research and select examples discussed below have
focused on cancer, neuroinflammation, and neurodegenerative
diseases, the same nanoparticle systems can be leveraged to treat
CNS infections by simply changing the therapeutic payload. Both
in vitro and in vivo studies have been conducted to demonstrate
the vast potential of nanoparticle therapeutics. While in vitro
systems are useful for isolating specific research variables and
uncovering transport mechanisms, the use of in vivo models
provides much greater measures of physiological relevance (97).
The fact that a majority of the examples described below are from
in vivo models shows the exciting success of many nanoparticle
systems and the impending progression toward clinical trials.

Polymers, both artificially- and naturally-derived, have
received the most attention for CNS delivery (24, 100, 120).
The most widely used polymer is poly(D,L-lactide-co-glycolic
acid) (PLGA), which is FDA approved and can undergo
hydrolysis within the body to form biocompatible metabolites
(121). PLGA nanoparticles have proven effective at increasing
the half-life and stability of drugs such as the chemotherapeutic
agent cisplatin, in comparison to the raw drug counterpart (122).
Another study demonstrated that PLGA encapsulation of the
anti-inflammatory and anti-oxidant compound curcumin
dramatically improved BBB permeability and stimulated
hippocampal neurogenesis to reduce cognitive decline in a rat
model of AD (123). PLGA can also be conjugated and
functionalized for specific targeting. In one example, researchers
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used Lf-conjugated polyethylene glycol (PEG)-PLGA nanoparticles
containing the peptide urocortin to increase blood circulation time
and promote specific uptake in the striatum and substantia nigra as
a neuroprotective therapeutic for PD (124, 125).

Poly(alkyl cyanoacrylate) (PACA) is another nanoparticle
polymer with proven ability to cross the BBB. PACA nanoparticles
can be coated with surfactants for improved BBB permeability
and have demonstrated promise as potential AD therapeutics from
in vitro studies showing limited effects on vascular homeostasis and
inflammatory response (126). Poly(butyl cyanoacrylate) (PBCA)
nanoparticles are closely related to PACA, but degrade more
rapidly in the body due to their higher water solubility (127).
Other classes of biocompatible polymers include copolymer-poly
(methylmethacrylate-sulfopropylmethacrylate) (PMMA-SPM),
which have been loaded with anti-retroviral drugs for transport
across the BBB (128). Natural polymers such as chitosan have also
been explored as nanoparticle materials with CNS permeability.
Tripolyphosphate cross-linked chitosan nanoparticles delivered the
anti-inflammatory compound piperine to the CNS following
intranasal administration in a rat model of sporadic dementia,
which reduced inflammation by decreasing TNF-a and activated
caspase-3 concomitant with increased superoxide dismutase activity
(129). Another study used chitosan-coated lipid nanoparticle carriers
conjugated to the transactivator of transcription (TAT) cell-
penetrating peptide to enhance CNS delivery of glial cell-derived
neurotrophic factor (GDNF) in a mouse model of PD, leading to
decreased dopaminergic neuron loss and improved motor
function (130).

Lipid-based nanoparticles include solid lipid and nanoemulsions,
both of which are biocompatible, stable, and BBB-permeable (131,
132). Solid lipid nanoparticles consist of glycerides, waxes, and fatty
acids stabilized with emulsifiers, and nanoemulsions are similar but
with a liquid lipid core. Both are best suited for carrying lipophilic
and hydrophobic drugs. A recent study used solid lipid nanoparticles
loaded with doxorubicin for treating glioblastoma, which
demonstrated excellent tumor cell toxicity (131).

Cell-derived nanoparticles consist of liposomes and
exosomes. Liposomes have an aqueous core surrounded by a
phospholipid bilayer, making them suitable for both
hydrophobic and hydrophilic drugs. Phase III clinical trials are
underway using cytarabine-carrying liposomes for treatment of
neoplastic meningitis. The liposomal nanoparticles showed
increased therapeutic concentrations of cytarabine in the CSF
for up to 14 days post-administration (133). Another study has
used cationic nanoliposomes with TfR-affinity ligands to deliver
oligonucleotides and siRNA to the brain within 6 hours
following intravenous injection. These nanoparticles reduced
neuroinflammation when the siRNA targeted TNF-a (132).
Exosomes are small vesicles secreted from all cell types that
contain a wide range of biological molecules, including surface
proteins, ligands, cytokines, and RNAs. They are beginning to be
studied for therapeutic applications based on their ability to be
loaded with drugs, BBB permeability, and potential for nasal
administration (134).

Other unique nanoparticle formulations continue to be
developed (135, 136). For example, biodegradable anti-TfR
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monoclonal antibody (OX26)-PEGylated selenium nanoparticles
were shown to suppress pathological inflammation and oxidative
metabolism associated with cerebral stroke (137). Additionally,
inorganic gold nanoparticles with varying surface ligands have
shown promise for treating CNS bacterial infections due to both
the inherent bactericidal properties of gold and conjugated
antibiotics (138). The nanoparticle examples noted here merely
represent a small snapshot of the wealth of possibilities for
designing therapeutic carriers for improved treatment of
CNS infections.
Cell-Specific Targeting With Nanoparticles
A final goal of nanoparticle therapies is cell-specific targeting
(139, 140). In the context of CNS parenchymal infection,
microglia represent a logical candidate. For microglial specificity,
nanoparticles can leverage receptor-targeting ligands and the
inherent phagocytic properties of microglia, while maintaining
biocompatibility (140). An early study of microglial targeting used
liposomal nanoparticles modified with the TLR4 ligand
lipopolysaccharide (LPS), which significantly increased uptake of
the encapsulated drug compared to non-targeted liposomes (141).
In a later study, ceria-zirconia nanoparticles decorated with
CD11b antibody showed preferential uptake by microglia
compared to other cell types in the brain and higher
internalization compared to nanoparticles conjugated to an
isotype-matched control antibody (142). Other promising
surface receptors exist to target microglia, including triggering
receptor expressed on myeloid cells 2 (TREM2), Tmem119, and
P2RY12 (143). Recent work has highlighted the significant
transcriptional heterogeneity of leukocyte subpopulations within
the CNS during S. aureus craniotomy infection, including
microglia (144). The tunability of nanoparticle systems has
exciting potential to target this diversity within a given cell type,
where typical molecular therapies fall short. Of note, several of the
receptors that have been exploited to deliver nanoparticles to
microglia are also expressed on macrophages and neutrophils that
infiltrate the CNS during infection. Therefore, targeting a single
cell type with these receptors is unlikely. However, with the
increasing abundance of next-generation sequencing datasets for
CNS diseases, including infection, the identification of receptors
that are enriched on a given phagocyte population is likely.
Ultimately, nanoparticles targeting all of the key immune cell
populations would fully complement the multi-tool kit of carriers
for precisely modulating metabolic activity for the treatment of
CNS infections.
DISCUSSION

Many bacteria, viruses, fungi, and parasites can invade the CNS
and cause severe meningitis, encephalitis, and pyogenic infections.
These conditions can become exceedingly dangerous as pathogens
can acquire drug resistance, form biofilm, and leverage virulence
factors that disrupt the host immune response and reprogram
Frontiers in Immunology | www.frontiersin.org 8
immune cells towards an anti-inflammatory bias. These challenges
are exacerbated by the fact that therapeutic agent delivery to the
CNS is hindered by the BBB, the same defense meant to exclude
harmful pathogens. As such, treatment of CNS infections remains
highly empirical and difficult, relying on extended and/or invasive
delivery of anti-infection agents often with deleterious side effects.

We propose that together, the fields of immunometabolism
and nanotechnology have the potential for a paradigm shift in
novel treatments for CNS infections (Figure 1). The rapidly
expanding field of immunometabolism has demonstrated that
immune activation is controlled by the metabolic pathways
needed to generate the energy and intermediates required for
effector responses. The metabolic pathways that elicit pro-
inflammatory activity have been described for all the key
immune players in CNS infection, including microglia and
infiltrating leukocytes but primarily in the context of
neurodegeneration. It remains to be determined whether
similar metabolic programs are observed during infection,
which may differ based on nutrient competition with the
pathogen. A variety of pharmacological agents, cytokines, lipid
messengers, and microRNAs have been shown to modulate
metabolism and could serve as potential therapeutics. In the
realm of nanotechnology, nanoparticles can be engineered with a
host of tunable structures, chemical ligands, and physiological
characteristics to safely, and non-invasively deliver therapeutics
to the CNS by transporting drugs across the BBB. Nanoparticle
applications and design will continue to improve with
increased knowledge of the precise interactions between
structure, BBB penetration, and efficacy. Overall, merging
therapeutic approaches with metabolic modulating agents and
nanoparticles as delivery vehicles warrants the need for more
focused research efforts given the promise for improving patient
outcomes associated with CNS infections.

Research into metabolic reprogramming in the CNS to date
has mainly focused on AD, PD, and MS, but more emphasis
should be placed on infectious diseases, particularly in the
current era of increasing antimicrobial resistance. Compared to
peripheral tissues, the use of nanoparticles is especially important
for CNS infections because of the BBB exclusivity. In the
periphery, the major objective of nanoparticle usage is to target
specific cell types and enhance cellular uptake of the drug or
payload. In the CNS, these same attributes hold with the
additional requirement of BBB penetration, which adds
complexity to any potential therapeutic application.
Nanoparticle-mediated metabolic modulation therapy could
bolster endogenous cellular effector mechanisms to better fight
infections compared to the introduction of compounds with
harmful side effects throughout the CNS and periphery.
Alongside future work into nanoparticle-based treatments for
CNS infections, we anticipate the need for more long-term
studies to address potential nanoparticle toxicity. Finally, we
predict that the most effective nanoparticle therapeutics for CNS
infections will be realized in a combinational platform leveraging
not only metabolic modulation but also nanoparticle-
encapsulated or intravenous anti-infection agents. The optimal
metabolic modulation therapy may also not take the form of a
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single re-polarization event, but instead a series of controlled
toggling between pro- and anti-inflammatory states to adjust to
the temporal nature of inflammation as the infection subsides.
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