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Abstract

Motivation: Metatranscriptomics (MTX) has become an increasingly practical way to profile the functional activity of
microbial communities in situ. However, MTX remains underutilized due to experimental and computational limita-
tions. The latter are complicated by non-independent changes in both RNA transcript levels and their underlying
genomic DNA copies (as microbes simultaneously change their overall abundance in the population and regulate in-
dividual transcripts), genetic plasticity (as whole loci are frequently gained and lost in microbial lineages) and meas-
urement compositionality and zero-inflation. Here, we present a systematic evaluation of and recommendations for
differential expression (DE) analysis in MTX.

Results: We designed and assessed six statistical models for DE discovery in MTX that incorporate different combi-
nations of DNA and RNA normalization and assumptions about the underlying changes of gene copies or species
abundance within communities. We evaluated these models on multiple simulated and real multi-omic datasets.
Models adjusting transcripts relative to their encoding gene copies as a covariate were significantly more accurate
in identifying DE from MTX in both simulated and real datasets. Moreover, we show that when paired DNA meas-
urements (metagenomic data) are not available, models normalizing MTX measurements within-species while also
adjusting for total-species RNA balance sensitivity, specificity and interpretability of DE detection, as does filtering
likely technical zeros. The efficiency and accuracy of these models pave the way for more effective MTX-based DE
discovery in microbial communities.

Availability and implementation: The analysis code and synthetic datasets used in this evaluation are available on-
line at http://huttenhower.sph.harvard.edu/mtx2021.

Contact: franzosa@hsph.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

While DNA shotgun sequencing of microbial communities [i.e.
metagenomics, (MGX)] has become a dominant technique to profile
community taxonomy and functional potential (Quince et al.,
2017), decoding this genetic potential does not directly indicate its
transcriptional activity under any given condition. Profiling whole-
community RNA, metatranscriptomics (MTX), is an increasingly
practical way to link community genetic potential (gene carriage
and abundance) to molecular activity (Bashiardes et al., 2016).
Given that microbes can vary their transcriptional profiles dramatic-
ally among local environmental conditions, MTX is crucial for
understanding microbial behavior in situ, as demonstrated by a var-
iety of human health applications (Franzosa et al., 2014; Heintz-
Buschart et al., 2016; McNulty et al., 2011; Schirmer et al., 2018)
and studies of the environment (Baldrian et al., 2012; Coolen and
Orsi, 2015; Frias-Lopez et al., 2008; Poretsky et al., 2009; Salazar
et al., 2019; Vorobev et al., 2020). However, since validated

computational and statistical workflows for MTX analysis have
been few in number (Franzosa et al., 2015; Giannoukos et al.,
2012), many MTX analyses have continued to rely upon techniques
borrowed from single-organism RNA-seq (Dillies et al., 2013; Lin
et al., 2016), despite gaps in their modeling assumptions and lack of
validation for microbial communities.

A variety of factors complicate differential expression (DE) ana-
lysis from MTX data, some of which are shared with single-organ-
ism RNA-seq. For example, MTX transcript abundances are
initially measured as integer read counts, which are sensitive to
sequencing depth and transcript length and must be modeled appro-
priately. These counts are often inflated with zero values incorporat-
ing technical non-detection events and biological variability
(Mallick et al., 2017). Such properties are accounted for by single-
organism RNA-seq methods (Love et al., 2014; Robinson et al.,
2010; Trapnell et al., 2013) and workflows that adapt those meth-
ods to microbial communities (Kim et al., 2016; Martinez et al.,
2016; Ni et al., 2016; Westreich et al., 2018). However, MTX data
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differ from single-organism RNA-seq in a critical way: the RNA
abundance of a gene in a community tends to vary strongly with the
gene’s underlying copy number (DNA abundance; Fig. 1A). While
this phenomenon can assert itself via copy number or ploidy changes
in single organisms as well (Dillies et al., 2013; Lin et al., 2016),
such events are typically rare. Conversely, abundances of microbial
community members (and hence their encoded genes) routinely vary
by orders of magnitude across related environments. This variation
complicates DE analysis in MTX data by inducing changes in tran-
script abundance that are independent of differential regulation, in
addition to exaggerating the effects of compositionality and the dy-
namic range of MTX measurements. Pervasive genomic plasticity
and mobility within communities can additionally alter gene copy
number across communities (Quince et al., 2017), leading to non-
regulatory changes in transcript abundances.

To account for this baseline dependency between community
functional activity (MTX) and potential (MGX), procedures are
needed to estimate the ‘relative expression’ of a function, i.e. the ex-
tent to which it is over- or under-expressed relative to the number of
community genes that encode it. For example, (Klingenberg and
Meinicke, 2017) describe a ‘taxon-specific scaling’ normalization
approach within MTX species/taxon. This approach, which ap-
proximately transforms a MTX dataset into an aggregate of single-
organism RNA-seq datasets, assumes that all genes within a species
have constant coding potential. Taxon-specific scaling loses power
when community genes cannot be assigned to a reference species or
taxonomic bin, which can range from a few percent to >90%
among community types (Quince et al., 2017). Alternatively, when
samples are profiled with paired MTX and MGX sequencing, nor-
malizing each community gene’s RNA abundance by its DNA abun-
dance is a more direct approach (Lloyd-Price et al., 2019; Salazar
et al., 2019): one which accounts for gene copy number variation
within species via per-gene DNA abundance estimates while simul-
taneously applying to genes of unknown taxonomy. However, this
of course requires MTX and MGX profiles to be generated from the
same samples, and systematic evaluation of the effectiveness of these

procedures for DE in communities has not yet been sufficiently
explored.

To address these gaps, we present a systematic effort to develop
and evaluate statistical approaches for community DE analysis from
MTX data. We tested six base linear models for identifying DE that
make different assumptions about MTX normalization, MGX avail-
ability and the relationship between DNA and RNA copy numbers
(Fig. 1B). We additionally explored modeling choices for management
of zero-inflation in MTX data, including pre-filtering likely technical
zeros and modeling feature presence/absence via logistic regression.
Combinations of normalization options, pre-filters and tuning parame-
ters were applied to a battery of synthetic MTX and MGX datasets
incorporating spiked DE and confounding biological/technical signals,
thus enabling rigorous performance assessment. These results allowed
us to make specific best-practice recommendations for MTX analysis
given the presence/absence of paired MGX data. We close by demon-
strating the performance of these methods in a case study of human gut
microbiome gene expression during inflammatory bowel disease (IBD).

2 Materials and methods

We systematically evaluated a series of statistical approaches for DE
analysis in MTX data using a combination of synthetic and real-
world sequencing data. This section (i) summarizes our procedures
for generating synthetic MTX and MGX data with spiked pheno-
type associations; (ii) defines six MTX normalization models, three
pre-filtering procedures and additional tuning parameters underly-
ing our statistical approaches and (iii) describes how these
approaches were applied to synthetic and real-world data.

2.1 Simulating paired metatranscriptomes and

metagenomes
We simulated microbial communities based on the 100 most-preva-
lent species from the healthy human gut microbiome (Lloyd-Price
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RNA abundance (outlined)

A:1 A:2 B:3 B:4

Case 1

Causal increase

B:4 RNA increase explained
by increase in B genomes

(B:4 not DE’ed)
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Case 2

Causal decrease

B:4 RNA decrease explained
by loss of the B:4 gene

(B:4 not DE’ed)

A:1 A:2 B:3 B:4

Case 3

B:4 RNA decrease explained
by increase in A genomes

(compositionality, not DE)

A:1 A:2 B:3 B:4

Case 4

B:4 RNA increase explained
by change in expression

(B:4 is DE’ed here)
A

Model number: name Model formulation Model description

M1: Naïve RNA C(fRNA) ~ p The community total-sum-scaled abundance C(x) of a feature f’s RNA 
count (fRNA) is modeled as a function of a sample phenotype/property (p).

M2: Within-taxon RNA T(fRNA) ~ p fRNA is subjected to within-taxon sum-scaling, T(x), i.e. normalizing 
against the total RNA pool of f’s source taxon.

M3: Taxon-RNA covariate T(fRNA) ~ TaxRNA(f) + p fRNA is scaled within-taxon as in M2; an RNA-level estimate of f’s source 
taxon abundance, TaxRNA(f), is included as a covariate.

M4: RNA/DNA ratio C(fRNA)/C(fDNA) ~ p The ratio of f’s total-sum scaled RNA and DNA abundances (the “relative 
expression ratio”) is modeled as a function of p.

M5: Taxon-DNA covariate C(fRNA) ~ TaxDNA(f) + p fRNA is total-sum scaled as in M1; a DNA-level estimate of f’s source taxon 
abundance, TaxDNA(f), is included as a covariate.

M6: Feature-DNA covariate C(fRNA) ~ C(fDNA) + p fRNA is total-sum scaled as in M1; a total-sum scaled estimate of f’s DNA-
level abundance is included as a covariate.

= the model requires paired MGX (DNA) data 

B

= The model requires a mapping of features to taxa = both are required

Fig. 1. Normalization and DE models for microbial community transcript abundances. (A) Each panel corresponds to a simple conceptual community (two species, A and B,

each contributing two genes) assayed by MTX and MGX sequencing. Case 0 represents a reference condition, while Cases 1–4 correspond to perturbations of the reference.

While the RNA abundance of gene B:4 (dashed outline) differs under each perturbation, only in Case 4 is the change attributable to DE rather than gene copy-number vari-

ation. (B) A summary of six linear models for assaying DE of a MTX feature f with respect to a sample phenotype/property p. Models 2–6 incorporate transformations and

covariates aimed at minimizing spurious DE signals from gene copy number
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et al., 2017) which we then used as templates for generating synthet-
ic MTX and MGX sequencing count data with spiked phenotypic
associations (including simulated DE). The details of this process are
summarized here and expanded in Supplementary Note S1. To
simulate microbial community compositions, we sampled species in
proportion to their empirical prevalence and selected abundances
from fitted log-normal distributions. We modeled species pange-
nomes as bags of 1K genes drawn from a larger pool of 2K gene
families. A community strain carriage of a given species was ran-
domly drawn from the species’ 1K genes (gene content thus varies
across simulated strains of a species, modeling genomic plasticity).
Each gene family was additionally associated with a reference (log-
mean) expression level m drawn from N(0, 1) with per-sample ex-
pression values drawn from log N(m, 1).

Samples were randomly assigned to a binary phenotype. One or
more phenomena (read depth, species abundance, gene presence/ab-
sence and gene expression level) were associated with this phenotype
by shuffling their values to induce rank-correlations of a pre-speci-
fied strength. Gene-phenotype associations involving expression
level are positive for DE in subsequent model evaluations. We simu-
lated 11 datasets of N¼100 samples containing different combina-
tions of phenomena spiked to associate with sample phenotype
(Table 1 and Supplementary Table S1). For example, the ‘null-bug’
dataset contains species-phenotype associations but no positive DE
relationships, while the ‘true-combo-dep-exp’ dataset contains a
mix of positive DE relationships and a potentially confounding
sequencing depth association.

To simulate MGX count data, reads were sampled up to a sam-
ple’s sequencing depth and assigned to sample genes in proportion
to the abundance of the gene’s source species. MTX count data were
simulated similarly, with reads assigned to transcripts (genes) in pro-
portion to the abundance of their source species and per-sample
gene expression value.

2.2 Analytical approaches for DE analysis in

metatranscriptomic data
We evaluated a series of linear models for community DE analysis
incorporating one of six gene-copy normalization methods and three
upstream zero-filtration methods alongside other parameter choices.
Models were implemented using the glm function of R’s ‘stat’ pack-
age. Unless otherwise stated, species, gene and transcript counts
were initially total-sum-scaled (to adjust for sample read depth) and
then log-transformed (for variance-stabilization). Zero values sur-
viving filtration were additively smoothed by half the corresponding
feature’s smallest non-zero measurement prior to log-
transformation.

2.2.1 Approaches for gene-copy number normalization

We considered six approaches for normalizing MTX abundances
during DE analysis (M1-6, summarized in Fig. 1B). M1 (the naı̈ve
baseline) incorporates only community-level total-sum-scaling over
MTX features (no accounting for gene-copy variation). M2 and M3
improve on M1 by incorporating within-taxon total-sum-scaling, in
which a feature’s per-sample RNA abundance is divided by the total
RNA abundance contributed by its source species. This procedure
was described as ‘taxon-specific scaling’ in (Klingenberg and
Meinicke, 2017) and, where feature-taxon relationships are known,
can compensate for variation in RNA abundance driven by changes
in underlying species abundance. M3 refines this approach by add-
ing the species’ total RNA contributions as a model covariate. This
value serves as a proxy for taxon abundance in the absence of MGX
data, with taxon (genomic) abundance providing an estimate of per-
feature gene copy number (assuming constant encoding).

Three additional normalization procedures (M4–M6; Fig. 1B)
are enabled by the availability of paired MGX sequencing data. M5
is an analog of M3 based on community-scaled MTX features but
incorporating a more accurate DNA-level estimate of taxon abun-
dance. M5 (like M2 and M3) can compensate for MTX variation
driven by source species abundance but not gene-copy variation
within species, e.g. gene duplication or loss. Two final approaches
(M4 and M6) directly relate the expression of a gene with its under-
lying DNA copy number. M4 models the ratio of a feature’s MTX
(RNA) abundance to its MGX (DNA) abundance as a measure of
‘relative expression’ (i.e. transcripts detected per gene copy). These
ratios are computed on smoothed, community-normalized MTX
and MGX measurements and then log-transformed prior to model
evaluation. M6 normalizes MTX feature expression for gene copy
number by including the feature’s MGX abundance as a model
covariate, thus emphasizing the feature’s ‘residual expression’ in DE
analysis. Notably, M4 and M6 do not require knowledge of gene-
taxon relationships, making them amenable to analyses of unclassi-
fied MTX features or community totals (i.e. sums over known and
unclassified contributions).

2.2.2 Pre-filtering technical zeros and other tuning parameters

In addition to the six models of MTX normalization introduced
above, we considered three approaches for balancing biological and
technical zeros in MTX data: ‘lenient’ filtering, which excludes fea-
tures that are always zero-valued in MTX or gene-copy estimates
(e.g. MGX), ‘semi-strict’ filtering, which filters samples per-feature
if both their MTX and gene-copy values are zero and ‘strict’ filter-
ing, which filters samples if either their MTX or gene-copy value are
zero (Supplementary Fig. S1). When a feature was removed prior to

Table 1. Properties of 11 synthetic datasets (columns) used in community DE benchmarking

null null-

bug

null-

enc

null-

dep

true-

exp

true-exp-

med

true-exp-

low

true-combo-

bug-exp

true-combo-

dep-exp

group-null-

enc

group-

true-exp

% of transcripts associated

(DE’ed) with phenotype

–– –– –– –– 10% 10% 10% 10% 10% –– 10%

Strength of DE relationships –– –– –– –– High Med Low High High –– High

% of taxa strongly confounded

with phenotype

–– 10% –– –– –– –– –– 50% –– –– ––

% of gene gain/loss strongly

confounded with phenotype

–– –– 10% –– –– –– –– –– –– 10% ––

Sequencing depth confounded

with phenotype

–– –– –– Yes –– –– –– –– Yes –– ––

Gene taxonomy is unknown;

trends at orthogroup level

–– –– –– –– –– –– –– –– –– Yes Yes

 11 synthetic MTX 1 MGX datasets fi

Notes: Datasets of N¼ 100 paired MTX and MGX samples based on healthy human gut microbiomes were spiked to include associations between a synthetic

case: control phenotype and some combination of sequencing depth, microbial species, gene presence/absence and gene expression. Expression-phenotype associa-

tions are DE positives, while other associations may introduce spurious (FP) signals of DE. ‘––’ implies 0% or ‘n/a.’ These datasets are described further in

Supplementary Table S1.

i36 Y.Zhang et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab327#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab327#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab327#supplementary-data


DE analysis due to filtering, it was counted as ‘negative for DE’ for
the purposes of performance evaluation. As an alternative approach
to handling zero values, we evaluated models for DE analysis linking
transcript presence/absence with sample covariates using logistic re-
gression, while optionally incorporating MTX read depth as an add-
itional covariate. The total space of MTX analyses benchmarked in
this study (gene-copy normalization model � pre-filtering approach
� linear versus logistic regression � optional sequencing depth cova-
riate) is enumerated in Supplementary Table S2.

2.2.3 Performance evaluation

We evaluated the sensitivity and specificity of community DE ana-
lysis methods across synthetic datasets. A positive DE signal was
defined as a transcript that was purposefully spiked to associate
with sample phenotype; all other transcripts are defined to be nega-
tive for DE. A true positive (TP) was conservatively defined as a fea-
ture whose phenotype model coefficient was significantly different
from 0 after FDR correction, i.e. having Benjamini–Hochberg FDR
q<0.05 (Benjamini and Hochberg, 1995). A feature that was nega-
tive for DE but had a nominally significant association with pheno-
type (P<0.05) was classified as a false positive (FP). We report the
TP rate (TPR) as the fraction of positives that were TPs and the FP
rate (FPR) as the fraction of negatives that were FPs under the above
definitions. An ideal model will have FPR of 0.05 (the theoretical
type-I error rate) on all datasets and a TPR of 1.00 on datasets con-
taining DE positives (TPR is not defined for datasets lacking spiked
expression associations; Table 1).

2.3 Analysis of differentially expressed pilins in IBD
We used MTX and MGX data from the IBD Multi-omics Database
(IBDMDB) cohort (Lloyd-Price et al., 2019) to evaluate the real-
world performance of a subset of community DE methods. Data
were downloaded from https://www.ibdmdb.org/ in December
2020. We focused on 800 samples with paired MTX and MGX pro-
files from 109 longitudinally-sampled participants: 52 with Crohn’s
disease (CD), 30 with ulcerative colitis (UC) and 27 non-IBD con-
trols. Longitudinal CD and UC samples from this cohort had been
previously defined as ‘dysbiotic’ if they deviated from the ‘cloud’ of
healthy microbiome configurations represented among non-IBD
MGX profiles (with ‘deviation’ defined as a median Bray–Curtis dis-
tance to non-IBD samples exceeding the 90th percentile of non-IBD
comparisons) (Lloyd-Price et al., 2019). IBDMDB had been previ-
ously analyzed using MetaWIBELE v0.3.8 (https://huttenhower.sph.
harvard.edu/metawibele/): a method that (i) assigns candidate func-
tions and taxonomy to genes in a microbial gene catalog and (ii) pri-
oritizes those functions on the basis of functional, ecological and
phenotypic properties. Based on this information, we selected a sub-
set of 113 proteins for DE analysis that were (i) enriched in MGX
samples from dysbiotic time points, (ii) taxonomically annotated to
Escherichia coli and (iii) functionally annotated as pilin-related pro-
teins on the basis of Pfam domain assignments (release Pfam32)
(Finn et al., 2016).

MGX and MTX abundance profiles containing pilin-related pro-
teins were initially community total-sum-scaled and then filtered
using the semi-strict method to balance removal of technical zeros
and loss of dysbiotic samples. Non-filtered RNA and DNA values
were then log-transformed and smoothed following the procedures
outlined above for synthetic data. Each pilin feature was analyzed
for DE under the ‘dysbiosis’ phenotype using three gene-copy nor-
malization methods (M3, M4 and M6; Fig. 1B). We re-implemented
these methods in the lmerTest R package (Kuznetsova et al., 2017)
to accommodate subjects’ repeated measures as a random effect,
‘(1jsubject).’ ‘Diagnosis’ (CD versus UC versus Non-IBD), ‘antibiot-
ic’ use and consent ‘age’ were added as additional covariates rele-
vant to the IBDMBD cohort. Nominal P-values for UC- and CD-
specific pilin DE in dysbiosis were subjected to multiple hypothesis
testing correction using the Benjamini–Hochberg method with a
FDR threshold of 0.25.

3 Results

We evaluated approaches for detecting DE from metatranscriptomic
(MTX) sequencing with an emphasis on six methods for normaliz-
ing MTX data to account for gene-copy variation (Fig. 1). We separ-
ately evaluated (i) the impact of pre-filtering MTX and MGX data
for likely technical zeros, (ii) model performance on communities of
unclassified taxonomy and (iii) additional tuning parameters.
Evaluations were performed on synthetic MTX and MGX datasets
spiked to contain true DE signals as well as biological/technical con-
founders (Table 1 and Supplementary Table S1).

3.1 Statistical models accounting for underlying

variation in gene copy number facilitate DE discovery in

MTX
We initially evaluated the performance of six approaches to MTX
normalization (M1-6, defined in Fig. 1B) using ‘strict’ pre-filtering
of MTX zeros (Section 2). For models M3-6 (i.e. those incorporating
an estimate of gene copy number), strict per-filtering excludes sam-
ples from the analysis of a given feature if the feature’s per-sample
RNA abundance or gene-copy estimate were zero. The impact of
choosing a less-strict pre-filtering approach is explored in the next
section.

All models (M1-6) displayed close to optimal specificity (FPR �
0.05) on the ‘null’ dataset, which contained no spiked phenotype
associations (Fig. 2). As expected, model M1 (which incorporates
only total community-level MTX normalization) was prone to FP
DE detection when RNA counts varied due to confounding changes
in gene copy number. This was true for confounding variation in
species abundance (the ‘null-bug’ dataset; FPR ¼ 0.110) and gene
presence/absence (the ‘null-enc’ dataset; FPR ¼ 0.082). The inability
to isolate signals of gene expression from gene-copy variation fur-
ther limited model M1’s ability to detect even strong positive DE

M6: Feature−DNA covariateM5: Taxon−DNA covariate
M4: RNA/DNA ratioM3: Within−taxon RNA + taxon−RNA covariate
M2: Within−taxon RNAM1: Naïve RNA
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signals (TPR ¼ 0). Surprisingly, the next-most sophisticated model
(M2, incorporating within-taxon normalization), suffered from
similarly high FP rates in the presence of confounding DNA-level
species and gene variation (FPR ¼ 0.110 and 0.085), possibly due to
the amplification of noise within species at low absolute RNA abun-
dance. M2 was somewhat more successful than M1 at detecting
strong DE signals (TPR ¼ 0.091).

In contrast, the four models incorporating estimates of gene copy
number (M3-6) continued to achieve near-optimal specificity even
in the presence of confounding signals (Fig. 2). Models M3 and M5,
which use taxon-level RNA and DNA (respectively) to estimate
copy number, benefit here from strict pre-filtering of RNA zeros
(e.g. by avoiding the potential to confuse RNA zeros resulting from
gene loss with DE in the ‘null-enc’ dataset). M3 and M5 displayed
slightly elevated FPs when sequencing depth was confounded with
sample phenotype (‘null-dep’ dataset; FPR ¼ 0.057 for M3 and
0.056 for M5), as did model M6, which uses a per-feature DNA
covariate to adjust for gene copy number (FPR ¼ 0.054). Model
M4, which is based on the RNA/DNA ratio, was robust to FPs from
sequencing depth confounding (FPR ¼ 0.0493) but more likely than
M6 to produce a FP given extensive confounding with community
structure (‘true-combo-bug-exp’ dataset, FPR ¼ 0.0557 for M4 ver-
sus 0.0382 for M6).

Methods M3-6 were broadly similar with respect to sensitivity
for positive DE relationships (Fig. 2). Indeed, the strength of DE
(from weak to strong across the ‘true-exp-low,’ ‘true-exp-med’ and
‘true-exp’ datasets) was a much stronger determinant of sensitivity
than choice of model among M3-6. That said, we did observe a
trend for models M3 and M5 to be slightly more sensitive than mod-
els M4 and M6 (e.g. TPR of 0.218 and 0.217 versus 0.191 and
0.181 among medium-strength DE trends), possibly due to the
greater influence of read-level noise on the per-feature gene-copy
estimates used by models M4 and M6. In summary, when using
strict pre-filtering of RNA zeros, within-taxon RNA scaling with a
taxon-RNA covariate (model M3) provided a good balance of sensi-
tivity and specificity for DE in MTX in the absence of paired MGX
data (but requires knowledge of gene-taxon relationships). If paired
MGX data are available, models M4 and M6 perform well and do
not require knowledge of gene-taxon relationships.

3.2 Prefiltering zero values distinguishes low-

expression genes from non-encoding or non-detection

events
In MTX, transcript measurements (based on integer read counts) are
commonly zero-inflated to an even greater extent than single-organ-
ism RNA-seq. This is due to the high ratio of MTX features (�0.1–
1 M transcripts) to sequencing depth (�10–100 M reads) in most
communities and the striking dynamic range among those features
(6–8 orders of magnitude) (Lloyd-Price et al., 2017, 2019). Many
MTX zeros are due to non-detection events (expression below the
limit of detection of a given sequencing depth) or non-encoding
events (gene loss within a community’s taxon lineage), instead of
only absence/down-regulation of expression.

To assess the impact of MTX zeros on DE analysis, we tested
three zero pre-filtering strategies across the six statistical models
introduced above (Supplementary Fig. S1). The first strategy, ‘leni-
ent filtering’, treats a feature as uninformative for DE analysis if it
was always zero at the RNA level (all models) or always zero in
gene-copy estimates (models M3-6), but otherwise considers all
sample values. The second strategy, ‘semi-strict filtering’, excludes a
sample from the analysis of a given feature under models M3-6 if
the feature’s RNA count and gene-copy estimate are both 0, but
includes the sample if one or both values are non-zero. The final
strategy, ‘strict filtering’ (as applied in Fig. 2), excludes a sample if
either the RNA or gene-copy estimate is zero, thus including only
those samples where both values are non-zero (conservatively treat-
ing all MTX zeros as probable non-detection events).

Overall, pre-filtering zeros that cannot contribute to significant
transcriptional differences improved the performance of statistical
models for DE discovery (Fig. 3). This is particularly intuitive for

‘uninformative’ zeros, i.e. samples with no DNA or RNA for a given
gene resulting from non-encoding or non-detection events, which
can inflate both FPs and false negatives (FNs). Lenient pre-filtering
resulted in the greatest expansion in FPs across models, especially as
applied to datasets with confounding species abundance and gene
presence/absence signals (Fig. 3A and Supplementary Fig. S2); speci-
ficity was improved under semi-strict filtering (Fig. 3B and
Supplementary Fig. S3) and maximized under strict filtering (Fig.
3C). Sensitivity followed a similar increasing trend, with a notable
jump for the models using taxon-level gene-copy estimates (M3 and
M5) under strict versus semi-strict filtering. M3 and M5 with semi-
strict filtering were additionally prone to FPs in the presence of con-
founding genomic plasticity (the ‘null-enc’ dataset), as their gene-
copy estimates are not informative for RNA zeros resulting from
low expression versus gene loss. Notably, the model adjusting RNA
for DNA copy number as a covariate (M6) most consistently con-
trolled FPs while maintaining statistical power across the three pre-
filtering approaches. Conversely, the taxon-RNA covariate model
(M3), i.e. the best-performing approach in the absence of MGX
data, was only reliable under strict pre-filtering of zero values.

3.3 Accounting for underlying differences in

metagenomic abundance enables DE detection in the

absence of taxonomic annotation
An important component of many microbial communities is the
pool of DNA or RNA features that cannot be confidently assigned
to specific taxa via homology or de novo assembly and binning.
While the analyses above presumed that all features could be
assigned to specific taxa (a prerequisite for models M2, M3 and M5;
Fig. 1B), this assumption will be violated for a fraction of genes in
most communities and for potential majorities of genes in poorly
characterized communities. To address this phenomenon in the con-
text of community DE analysis, we performed additional evalua-
tions of models M1, M4 and M6 on two synthetic MTX datasets
lacking taxonomic provenance (Table 1 and Supplementary Table
S1). There, positive DE and confounding signals were spiked con-
sistently over gene orthogroups as they occurred across community
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Fig. 3. DE models for MTX benefit from pre-filtering of probable technical zeros.

We assessed three pre-filtering strategies for balancing biological and technical zeros

in MTX data. (A) Under ‘lenient’ pre-filtering, features were analyzed for DE if they

were ever detected (non-zero) at the RNA level (or gene-copy level, where applic-

able). (B) Under ‘semi-strict’ pre-filtering, samples were excluded if both a feature’s

RNA count and gene-copy estimate (where applicable) were zero. (C) Under ‘strict’

pre-filtering, samples were excluded if either a feature’s RNA count or gene-copy es-

timate were zero. Features that were excluded from analysis were scored as ‘not DE’

(i.e. negatives). Gray cells indicate ‘undefined’ TPR for datasets lacking positive DE

signals
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species (modeling scenarios where all species contributing a certain
function respond in the same way to a given condition). We then
performed DE modeling on summed orthogroup abundances.

In the presence of confounding between gene presence/absence
and phenotype (the ‘group-null-enc’ dataset), the naı̈ve model (M1)
was particularly vulnerable to FPs (FPR ¼ 0.129; Fig. 4). Models
M4 (RNA/DNA ratio) and M6 (feature-DNA covariate) achieved
the target specificity of FPR � 0.05 for these data under semi-strict
or strict filtering of zero values, but M4 experienced elevated FPR
with lenient filtering (FPR ¼ 0.091). When applied to positive DE
signals (the ‘group-true-exp’ dataset), models M4 and M6 were both
highly sensitive and optimally specific independent of pre-filtering.
In contrast to within-species DE (Fig. 2), model M1 was more effect-
ive at recovering positive community-level DE (TPR ¼ 0.87), but
continued to report FPs even in the absence of specific confounding
signals (FPR ¼ 0.096). These results stress that modeling adjusted
RNA values to account for underlying variation in gene copy num-
ber consistently provides lower FPR and effectively aids in DE dis-
covery in microbial communities containing unknown taxonomy.

3.4 Gene-copy normalization improves transcript

presence/absence modeling
We separately evaluated the performance of six MTX normalization
models (Fig. 1) in a logistic regression framework with an optional
sequencing depth covariate. This approach directly models tran-
script presence/absence—rather than abundance, as above—as a
function of sample covariates (including the phenotype of interest).
We reasoned that this approach might be effective in detecting DE
relationships at the level of transcript detection/non-detection,
which proves to be more biologically relevant feature, while more
elegantly handling genomic plasticity (gene gain/loss) and zero
inflation.

Modeling trends incorporating logistic regression were broadly
similar to those achieved using linear regression (Supplementary Fig.
S4). Specifically, models incorporating gene copy-number normal-
ization (M3-6) outperformed unadjusted within-community (M1)
and within-taxon (M2) MTX normalization. Sensitivity was global-
ly weaker after reducing continuous MTX abundance values to pres-
ence/absence calls; thus, we consider the logistic regression
approach to be a supplement (but not alternative) to the previously-
benchmarked linear regression models. The feature-DNA covariate
model (M6) proved to be particularly specific in this domain, while
models M3 and M5 (which use taxon-level estimates of gene

copy number) were less robust to confounding gene presence/ab-
sence signals. Surprisingly, the inclusion of a sequencing depth cova-
riate did little to improve specificity and tended to reduce power
(sensitivity) across models, possibly due to the much lower degree to
which it influences presence/absence than abundance for most
features.

3.5 Adjusting RNA with DNA copy number as a

covariate effectively identifies DE’ed inflammation-

associated Enterobacteriaceae pilins in the human gut
Finally, we compared the behavior of selected well-performing mod-
els from the synthetic evaluations (M3, M4 and M6) on 800 stool
samples with paired MTX and MGX data from the IBDMDB co-
hort (Lloyd-Price et al., 2019). These samples longitudinally span
109 subjects with three primary phenotypes (27 non-IBD controls,
52 Crohn’s disease or CD and 30 ulcerative colitis or UC). A subset
of samples from CD/UC subjects were previously defined (Lloyd-
Price et al., 2019) as ‘dysbiotic’ if they deviated from the cloud of
healthy microbiome configurations covered by controls (Section 2).
When evaluating genes from this dataset for potential community
DE, we filtered samples using the semi-strict approach to maximize
the number of dysbiotic time points available for analysis. Based on
our findings above, M6 was expected to be more robust to this
choice than M3 or M4 (Fig. 3).

We focused our analysis on 113 pilin-family proteins contributed
by E.coli with potential DE in the dysbiosis state. E.coli is frequently
implicated in IBD pathogenesis (Darfeuille-Michaud, 2002; Rolhion
and Darfeuille-Michaud, 2007) where its pilin-family proteins play
roles in bacterial adhesion, co-aggregation and biofilm formation
(Hasegawa et al., 2009; Park et al., 2005). The pilin-family proteins
selected here had been previously prioritized on the basis of their
increased MGX abundance in dysbiotic samples (Section 2), and we
hypothesized that they might exhibit additional increases in func-
tional activity during inflammation (e.g. if they were playing roles as
‘drivers’ of dysbiosis versus ‘passengers’ in more-abundant E.coli
genomes).

DE analysis of IBDMDB data using the feature-DNA covariate
model (M6) highlighted a specific and dramatic transcriptional in-
crease in E.coli genes encoding pilin-related proteins in dysbiotic
samples, thus supporting their potential active role in IBD-associ-
ated inflammation (mixed-effects linear model, FDR q<0.25; Fig.
5A). Since ground-truth DE status is not known for these features,
we focused our evaluation on comparisons between results returned
by models that had performed well on synthetic data (M3, M4 and
M6). Among the 16 significantly up-regulated pilin-related proteins
predicted by M6, the taxon-RNA covariate model (M3) tended to
agree that these proteins were up-regulated, but only two achieved
statistical significance (Fig. 5B). M3 additionally called 11 pilins as
significantly up-regulated in dysbiosis and 3 as significantly down-
regulated (Supplementary Fig. S5). While these discrepancies may
indicate unique biological signals detected by M3, it is also possible
that they arise from violations of model M3’s assumption of con-
stant gene copy number, which is particularly inappropriate for
highly strain-variant clades like E.coli.

Surprisingly, while the RNA/DNA ratio model (M4) tended to
agree with M6 in its assessments of the statistical significance of
pilin DE (Fig. 5C), it did so projecting trends with opposite (nega-
tive) sign for most pilins (Supplementary Fig. S5). This behavior is
counter to biological intuition, in which inflammation-associated
E.coli would be more likely to upregulate pilus structures. Where
E.coli’s MGX abundance is also expanded in dysbiotic samples,
RNA/DNA ratios for E.coli genes may be depressed to an excessive
degree, leading to spurious evidence of down-regulation. Indeed,
such interactions between species abundance and small RNA values
(allowed under semi-strict filtering) were observed for M4 in the
synthetic evaluations (Fig. 3B), where they provided an uncommon
point of differentiation between models M4 and M6 (with M6 prov-
ing more robust to small values generally, consistent with its behav-
ior in this application).
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4 Discussion

Shotgun DNA sequencing of microbial communities (MGX) is a
highly utilized technology for profiling microbial community com-
position and functional potential, and shotgun RNA MTX contin-
ues to join this approach as a powerful tool for probing community
functional activity. However, both due to experimental challenges
and computational limitations, MTX remains underutilized. To par-
tially address these challenges, we performed a rigorous evaluation
of candidate statistical approaches for detecting community DE of
microbial genes and gene families from MTX data.

A defining challenge of statistical analysis of MTX data is the de-
pendence of a gene’s RNA count on its underlying MGX copy num-
ber. Failure to account for this coupling leads to extensive spurious
community DE signals in the presence of confounding variation in
taxon abundance or genomic plasticity, and it can also obscure true
DE. We strongly recommend employing DE models in MTX that
adjust for gene-copy number with either a taxon-level RNA estimate
(M3) or, when paired MGX data are available, a direct feature-level
DNA measurement (M6). We further emphasize that, while gene-
copy normalization is possible in the absence of paired MGX data,
it is limited to genes of known taxonomy. Hence, generating and
analyzing paired MGX data for MTX samples is recommended
where feasible.

Statistical analysis in MTX is additionally complicated by zero-
inflation, which is driven by the interaction between MTX features’
vast numbers, their dynamic range and detection limits imposed by
sequencing depth. We explored combining gene-copy normalization
with pre-filtering strategies to reduce the impact of technical zeros
on detecting DE from MTX data. Strict filtering of MTX zeros was
particularly important for maximizing specificity and, more surpris-
ingly, sensitivity in models using taxon-level estimates of gene copy
number (including M3). While strict filtering results in greater sam-
ple loss (reduced power) for M3, this effect was outcompeted by
improved signal-to-noise ratio from removed technical zeros. In con-
trast, semi-strict filtering under M3 was prone to mistaking RNA

non-detection for reduced expression when species abundance was
low (leading to FNs), in addition to mistaking gene loss for reduced
expression at any species abundance (leading to FPs). Notably, the
feature-DNA covariate model (M6) was largely robust to pre-filter-
ing strategy, including in data lacking taxonomic provenance.
Coupled with the interpretability of M6’s ‘residual expression’ val-
ues, and the potential instability of the RNA/DNA ratio (model M4)
in the presence of small values, we highlight M6 as our current pre-
ferred model of community DE when paired MGX data are
available.

We focused in this work on DE methods for MTX that could be
conveniently implemented in existing linear modeling frameworks
while simultaneously compensating for the challenging properties of
MTX data. Adapting such frameworks is useful given their support
for complex covariate structures, which are critical in (e.g.) epi-
demiological studies of the human microbiome. However, it remains
possible that statistical methods developed de novo for DE in MTX
might perform better than our best performers, and more research in
this area is warranted. Relatedly, there are a number of potential
avenues for modifying the synthetic data generation framework we
used to benchmark DE methods that could be applied in future eval-
uations. Our framework simulated microbial communities based on
empirical species prevalence and abundance distributions, but
assumed (i) a high, constant rate of gene encoding within strains of a
species (80%) and (ii) random log-normal gene expression within
and across species. Alternatively, gene-level properties could also be
modeled on empirical distributions, and doing so might resolve
observed differences in model performance on synthetic versus real-
world data (for example, by better representing the extensive gen-
omic plasticity of species like E.coli). In addition, more accurately
modeling differences in species’ global transcriptional activities
would impact the accuracy of M3’s RNA-based estimates of taxon
abundance (which may be overly optimistic in our evaluation).

Notwithstanding these options for future work, the simulation
and evaluation framework presented here provides a strong founda-
tion for microbial community DE analysis from MTX data,
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providing models that accurately account for normalization, zero-in-
flation and confounding of microbial growth and genomic plasticity
with transcriptional changes linked to environmental parameters or
phenotypes.
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