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2 1 INTRODUCTION

Abstract: In spite of the great progress that has been made towards automating brain ex-
traction in human magnetic resonance imaging (MRI), challenges remain in the automation
of this task for mouse models of brain disorders. Researchers often resort to editing brain seg-
mentation results manually when automated methods fail to produce accurate delineations.
However, manual corrections can be labor-intensive and introduce interrater variability. This
motivated our development of a new deep-learning-based method for brain segmentation of
mouse MRI, which we call Mouse Brain Extractor. We adapted the existing SwinUNETR
architecture (Hatamizadeh et al., 2021) with the goal of making it more robust to scale vari-
ance. Our approach is to supply the network model with supplementary spatial information
in the form of absolute positional encoding. We use a new scheme for positional encoding,
which we call Global Positional Encoding (GPE). GPE is based on a shared coordinate frame
that is relative to the entire input image. This differs from the positional encoding used in
SwinUNETR, which solely employs relative pairwise image patch positions. GPE also differs
from the conventional absolute positional encoding approach, which encodes position rela-
tive to a subimage rather than the entire image. We trained and tested our method on a
heterogeneous dataset of N=223 mouse MRI, for which we generated a corresponding set
of manually-edited brain masks. These data were acquired previously in other studies using
several different scanners and imaging protocols and included in vivo and ex vivo images of
mice with heterogeneous brain structure due to different genotypes, strains, diseases, ages,
and sexes. We evaluated our method’s results against those of seven existing rodent brain
extraction methods and two state-of-the art deep-learning approaches, nnU-Net (Isensee et
al., 2018) and SwinUNETR. Overall, our proposed method achieved average Dice scores on
the order of 0.98 and average HD95 measures on the order of 100 µm when compared to
the manually-labeled brain masks. In statistical analyses, our method significantly outper-
formed the conventional approaches and performed as well as or significantly better than
the nnU-Net and SwinUNETR methods. These results suggest that Global Positional En-
coding provides additional contextual information that enables our Mouse Brain Extractor to
perform competitively on datasets containing multiple resolutions.

1 Introduction

Preclinical models play a key role in the study of biological processes, with the goal of translating
knowledge gained from these studies into a better understanding of aspects of human systems. The
mouse has been a critical component in many translational studies and has been particularly important
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in the investigation of the processeses of neurodevelopment and neurodegeneration. Magnetic resonance
imaging (MRI) of mouse models provides a mechanism for quantifying effects in preclinical studies,
thereby enabling statistical analyses of differences between groups or changes over time. Wherever
possible, it is desirable to automate the computational processing of preclinical MRI to reduce operator
time required for analysis, to reduce rater-dependent variability, and to facilitate reproducibility.

One preliminary step that is essential in many analysis workflows for mouse brain MRI is the segmentation
of brain from non-brain tissue, a process widely-known as brain extraction or skull stripping. The extracted
brain-only images can be used directly to study whole brain characteristics and, importantly, can facilitate
downstream processing methods. One major application is the use of skull-stripping prior to brain
registration, where the isolation of the brain region can improve alignment to another brain image by
reducing the spatial domain of interest and removing highly variable non-brain anatomical features that
are not relevant to the alignment task.

Although numerous automated methods have been developed for brain extraction in human MRI, fewer
tools have been created specifically for rodent imaging. In some cases, researchers have adapted auto-
mated tools that were originally developed for processing human MRI, which has led to variants that
include SPM-Mouse (Sawiak et al., 2013), based on SPM (Ashburner, 2012), and the Rodent Brain Ex-
traction Tool (rBET; Wood et al., 2013), based on FSL’s Brain Extraction Tool (BET; Smith, 2002).
Preclinical researchers also make use of human-specific tools by modifying image metadata to meet a
method’s expectations, e.g., by changing the resolution specified in the image file such that the software
will interpret its voxels to be larger and thus scale the mouse brain to human proportions. This technique
has been used, for example, with ANTs’ antsBrainExtraction (Avants et al., 2011). However, methods
originally designed for human MRI may yield poor-quality results in mouse data due to differences in
head shape, anatomical structure, and tissue composition.

A small number of tools have been developed specifically for performing brain extraction in rodent MRI.
Among these is the graph-based 3D Pulse-Coupled Neural Network (3D-PCNN), which iteratively modi-
fies brain mask regions based on the similarity of image intensities in adjacent voxels (Chou et al., 2011).
However, in images with lower tissue contrast or substantial field inhomogeneity artifacts, 3D-PCNN can
perform poorly (Oguz et al., 2014). Other approaches include Rapid Automatic Tissue Segmentation
(RATS; Oguz et al., 2014) and SHape descriptor selected Extremal Regions after Morphologically fil-
tering (SHERM; Y. Liu et al., 2020). RATS and SHERM both use iterative mathematical morphology
operations to form initial regions of interest. RATS follows this step by converting its initial binary mask
into a surface and then performing Layered Optimal Graph Image Segmentation for Multiple Objects and
Surfaces (LOGISMOS) to improve the topology of the surface (Oguz et al., 2014). In contrast, SHERM
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4 1 INTRODUCTION

analyzes the initial mask to detect maximally-stable extremal regions (Matas et al., 2004) which are
clusters of voxels composed of similar grey-scale values surrounded by sharp intensity gradients at the
edges. The detected regions are then filtered based on convexity and shape descriptors, and are finally
merged to produce a final brain segmentation (Y. Liu et al., 2020). RATS and SHERM are sensitive to
image contrasts because they both rely on image intensity gradients to define the edges of the brain.
Another disadvantage of 3D-PCNN, RATS, and SHERM is that they often require a manual search for
unique parameters to produce optimal results for each image (Y. Liu et al., 2020).

In cases where automated tools fail to produce accurate segmentation results, researchers frequently
resort to manual editing of the generated outputs. Manual segmentation is often regarded as a gold
standard, but the manual correction process can be labor-intensive and is susceptible to intra-rater and
inter-rater variability. In an effort to directly emulate well-edited segmentations, many brain extraction
methods have been designed using machine learning methods that are trained on collections of manually-
delineated data.

The advent of deep learning in particular has spawned new rodent-specific skull-stripping tools, several
of which use some form of the U-Net (Ronneberger et al., 2015) as their underlying architecture. These
learning-based approaches include Multi-Task U-Net (MU-Net; De Feo et al., 2021), RodentMRISkull-
Stripping (Hsu et al., 2020), and Deep Learning-based Brain Image Processing Pipeline (DeepBrainIPP;
Alam et al., 2022). MU-Net and RodentMRISkullStripping both incorporate frameworks based on a basic
U-Net. DeepBrainIPP uses a network derived from the no-new U-Net (nnU-Net; Isensee et al., 2018),
which is a widely-used general-purpose biomedical segmentation method.

Although deep-learning models are powerful tools for performing segmentation tasks, many of the existing
deep-learning approaches require resampling of the input and output images to meet their image resolution
and size requirements. Downsampling and upsampling of an image can lead to segmentation errors
resulting from interpolation artifacts. DeepBrainIPP is one example of a learning-based algorithm that
resamples its data to specific resolutions, which are selected based on whether the input MRI was acquired
in vivo or ex vivo. In the case of in vivo data, DeepBrainIPP interpolates input images to 60 µm ×
60 µm in-plane resolution with a 480 µm interplane distance. This would require an input image with
100 µm isotropic resolution, a voxel size that has been used in many studies (e.g., Bock et al., 2005;
Y. Ma et al., 2008; Meyer et al., 2017), to be upsampled 1.7-fold in-plane and downsampled 4.8-fold
interplane. Loss of small anatomical features in the MRI can occur with drastic downsampling, and errors
propagated from the interpolation steps can reappear when the extracted brain mask is resampled back
to the original MRI resolution. These methods can be made less sensitive to differences in scale without
the need for resampling by including images with a variety of resolutions in the training data. This can be
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achieved either by expanding the dataset with images acquired at different scales or by augmenting the
training data with multiple scaled versions of the original images, a technique known as scale-jittering.
Still, models that use convolutional layers, which are ubiquitous in image segmentation networks (e.g.,
convolutional neural networks [CNNs] and U-Nets) remain sensitive to scaled patterns (Gong et al., 2014;
Xu et al., 2014).

More recently, the Transformer model (Vaswani et al., 2017), which was originally developed for natural
language processing (NLP), has been adapted for use in image analysis. Whereas CNNs excel at learning
localized patterns, Transformers are better able to learn global context, making them less sensitive to
images of different scales than convolution-based approaches are. Transformers are often built with an
encoder-decoder architecture, in which the encoder learns the relationship between tokens (e.g., words in
NLP or image patches in image analysis) and the decoder generates sequences of desired outputs based
on the encoded inputs. One important derivative of the Transformer is the Vision Transformer (ViT)
(Dosovitskiy et al., 2020). In contrast to CNNs and U-Net-based models, the ViT uses Transformer
blocks rather than convolutional layers. A key element of the Transformer is its multi-head self-attention
(MSA) mechanism, which allows the model to contextualize each small patch of area in the image.
Conceptually, MSA helps direct the model’s attention to specific regions of the image, thereby reducing
its attention to less important regions. The Transformer does this by partitioning the input image into
small, non-overlapping patches (e.g., 2 pixels × 2 pixels) and converting these patches into embedding
vectors, which are also called tokens. It then learns the sequential associations of adjacent and non-
adjacent tokens.

Images can vary greatly in scale and resolution, which differs from the data addressed by natural language
processing (NLP). The scale of the tokens in an NLP Transformer is fixed because each word is repre-
sented by a single token regardless of the length of the word. In contrast, a token in a ViT is derived from
a small image patch of a fixed size. As a result, the tokens capture different scales when a dataset has
multiple resolutions, which can make it more difficult for the model to learn a task effectively. Another
challenge in using Transformers for image processing is that the task of calculating contextual information
for each small image patch is computationally expensive. This issue becomes more pronounced when
datasets contain large, high-resolution images. Z. Liu et al. (2021) addressed this with the Shifted Win-
dow (Swin) Transformer, which improved upon ViT by implementing a novel shifted-windowing scheme
and a token merging method, which work together to compute cross-window associations efficiently
and to generate a hierarchical representation of image features. This implementation enables the Swin
Transformer (SwinT) to harness the benefits of the MSA mechanism of NLP Transformers and the hier-
archical feature extraction capability of CNNs. These methods have been further extended for semantic
segmentation by replacing the decoding scheme of Transformers with the decoding schemes of U-Nets
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6 1 INTRODUCTION

(Ronneberger et al., 2015). Hatamizadeh et al. (2022) showed enhanced segmentation performance by
using Transformer blocks as encoders and U-Net-based convolutional layers as decoders. They attributed
the improvement to the incorporation of CNNs and hypothesized that convolutional layers can be more
effective at evaluating local information compared to the Transformer decoders. Examples of this type of
architecture include the U-Net Transformer (UNETR; Hatamizadeh et al., 2022) and the Shifted window
UNETR (SwinUNETR; Hatamizadeh et al., 2021), both of which use convolutional layers in the decoding
process. With the reintroduction of convolutional layers, however, the robustness to scale variance is
somewhat decreased in SwinUNETR compared to the Swin Transformer.

In the present work, we developed a mouse-specific skull-stripping approach that processes images at
their native resolutions. Our proposed Mouse Brain Extractor extends the SwinUNETR architecture with
the goal of enhancing its robustness to scale-variance. We supplement the SwinUNETR model with
additional spatial information in the form of absolute positions. We represent the positional information
using Global Positional Encodings (GPEs), which we define using a shared coordinate frame based on the
entire input image. The absolute positions provide additional contextual information and help improve
delineation accuracy when tokens vary in scale. Our approach differs from that of SwinUNETR, which
exclusively uses pairwise relationships of token positions, and from the conventional absolute positional
encoding design, which defines position based on only a section of the image.

We trained and tested the Mouse Brain Extractor model using a heterogeneous set of 223 in vivo and ex
vivo mouse MRI that we carefully curated from existing datasets. These data pose challenges because
of variation in image resolution, image dimensions, acquisition systems and protocols used, as well as
variations in brain structure due to differences in mouse strains, age, sex, disease models, and genotypes.
We generated a set of reference brain segmentations for each of these MRI based on our existing lab
protocol (MacKenzie-Graham et al., 2012; Meyer et al., 2023), which uses a segmentation approach
that we developed previously for human data (Shattuck et al., 2001), followed by manual editing and
postprocessing. We partitioned these data into three subgroups based on their degree of anisotropy and
whether they were acquired in vivo or ex vivo. Each subgroup was further divided into three subsets
corresponding to training, validation, and test data.

We applied our method to the test data and assessed the results relative to the manual delineations using
the Dice similarity coefficient (Dice, 1945) and the 95th-percentile Hausdorff distance (HD95; Nováková
et al., 2017). We also performed an evaluation study that compared our method’s segmentation results
with those of nine existing tools. These included seven rodent-specific methods, namely: DeepBrainIPP,
RodentMRISkullStripping, SHERM, 3D-PCNN, RATS, rBET, and antsBrainExtraction. We also trained
two state-of-the-art general-purpose deep-learning segmentation methods, nnU-Net and the original Swi-
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nUNETR. Both methods were trained using the training datasets that we used to train our own method.
We applied these nine methods to our test datasets and evaluated the results using Dice scores and HD95
measures. We then performed a series of two-tailed Welch’s t-tests to determine if differences between
our method’s evaluation measures and those of the existing approaches were statistically significant.

2 Methods

2.1 Background

2.1.1 Swin Transformer

Swin Transformers (Z. Liu et al., 2021) have shown impressive performance when processing images of
differing scales at their native resolutions. The Swin Transformer takes an input image I0 ∈ RH0×W0 ,
where H0 and W0 represent the height and width of I0, respectively. The image is then partitioned into
non-overlapping patches of size p×p, where p is a hyperparameter. Each patch is encoded as a token and
is input into a linear embedding layer, which projects the token onto an embedding space of dimension,
C, a hyperparameter. The projected tokens then pass through multiple SwinT blocks, which are modified
MSA computation blocks (Vaswani et al., 2017). The SwinT blocks compute sequential relationships
among the tokens and estimate attention weights. The attention scores measure a token’s degree of
influence on the other tokens in a sequence as well as its relevance in achieving the task objective (e.g.,
segmentation). The attention weights are adjusted during training to assign higher scores to tokens that
are more influential for solving the task. The term multi-head refers to the multiple parallel self-attention
calculations performed on the same input to extract multiple attention weights, which is analogous to
the multiple filters used in a convolutional layer of a CNN. Self-attention is able to capture non-local
information because it is computed within non-overlapping windows that are composed of M × M

tokens. Unlike CNNs, Transformers explicitly compute the sequential relationship of the image patches
in these windows, enabling the model to learn contextualized representations. After each SwinT block,
the patch tokens are concatenated and the dimensionality of the resulting merged tokens is reduced
using a linear layer. This decreases the number of tokens by a factor of 2, thereby creating a hierarchical
structure. Cross-window associations, which enable the model to compute sequential relationships of
tokens that span multiple windows, are created by shifting the windows by

(⌊
M
2

⌋
,
⌊

M
2

⌋)
before the next

set of self-attention weights are computed. As the merged tokens move further along the series of SwinT
blocks, they are encoded into higher feature dimensions, which is similar to the use of increasing feature
dimensions in CNNs.
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8 2 METHODS

These methods are implemented in neural network architectures as a repeated sequence of four steps
(see Fig. 1A): a regular window-based MSA (W-MSA), a first multilayer perceptron (MLP), a shifted-
window-based MSA (SW-MSA), and a second MLP. There is a residual connection before and after each
step, and the output of each step is normalized using layer normalization (LN). Conceptually, W-MSA
and SW-MSA determine tokens of importance, MLP provides additional network parameters and greater
model flexibility, and LN and the residual connections help stabilize training. These steps are represented
as a pair of Swin Transformer blocks, in which the first block computes the first two steps (W-MSA and
MLP), and the second block calculates the remaining two steps (SW-MSA and MLP). In this paper, we
refer to each pair of Swin Transformer blocks as a SwinT Pair. The formulation of a SwinT Pair is

ẑi
W = W-MSA

[
LN

(
vi
)]

+ vi

zi
W = MLP

[
LN

(
ẑi

W
)]

+ ẑi
W

ẑi
S = SW-MSA

[
LN

(
zi

W
)]

+ zi
W

zi
S = MLP

[
LN

(
ẑi

S
)]

+ ẑi
S,

(1)

where i represents the index of the SwinT Pair and vi is the input to the i-th SwinT pair. The intermediate
outputs of W-MSA and MLP for the first SwinT block are ẑi

W and zi
W, respectively. The outputs of SW-

MSA and MLP in the second SwinT block are denoted by ẑi
S and zi

S. zi
S is the output for the entire

SwinT Pair. The self-attention function in W-MSA and SW-MSA is defined as

Attention(Q, K, V ) = Softmax
(

QKT

√
d

+ B

)
V, (2)

where Q, K, V ∈ RM2×d and B ∈ RM2×M2 denote matrices for query, key, value, and relative position.
The dimension d is a hyperparameter that sets the size of the key, query, value vectors, which exist as row
vectors in Q, K, V . The scale factor

√
d prevents small gradients during backpropagation when QKT is

very large. Matrices Q, K, and V are derived using patch embedding vectors and are defined as

Q = EPQ

K = EPK

V = EPV ,

(3)

where E ∈ RM2×C is a matrix that contains the patch embedding vectors within a window (M × M)
and PQ, PK , PV ∈ RC×d are the network weight matrices. The Softmax in Eq. (2) estimates attention
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2.1 Background 9

weights based on the query, key, and position matrices; these weights are then used to calculate the
attention function values as weighted sums of the value matrix, V .

2.1.2 SwinUNETR

The shifted window U-Net TRansformer (SwinUNETR) was developed primarily for semantic segmenta-
tion. It uses the Swin Transformer encoding scheme as its encoder and uses the upsampling deconvo-
lutional layers from the U-Net (Ronneberger et al., 2015) as its decoder. By using convolutional layers
as decoders, SwinUNETR builds upon the Swin Transformer by incorporating CNN’s ability to obtain
localized information while retaining the capability of the Transformer model to capture contextualized
representations. Given an image volume I0 ∈ RH0×W0×D0 , SwinUNETR samples a subimage I1 of size
H1 × W1 × D1 as input to its network. We note that in some cases, one or more the dimensions of I1

may be greater than or equal to the dimensions of the input image I0. This can occur, for example, if
the input image is low resolution. In such cases, the image will be zero-padded as necessary so that I1

has dimensions I1 of size H1 × W1 × D1. For simplicity, we still refer to I1 as a subimage of I0. At each
iteration during training, the subimage I1 is positioned randomly within I0 to provide the model with
variations of content sampled from the image. During inference, the subimage is positioned sequentially
to cover the entire domain of I0.

The SwinUNETR encoder is a sequence composed of five main modules: (1) a patch partition layer;
(2) a linear patch embedding layer with two consecutive Swin Transformer blocks accompanied by patch
merging; and (3)-(5) three repeated modules that each consist of two consecutive Swin Transformer
blocks with patch merging. The final module is followed by a bottleneck layer, which further reduces the
output dimensionality while retaining relevant information. Each module that contains a SwinT Pair (i.e.,
modules 2-5) is defined as a stage. At each stage, the output features are passed to a CNN-decoder
using skip connections, which produce the final segmentation. We note that Swin Transformers can
process 2D or 3D data; for the sake of brevity, we describe 3D SwinT blocks here and in the following
sections.

2.1.3 Positional encoding

The patch embeddings used in Transformer models do not inherently contain spatial information, and thus
the models consider them as an unordered collection of tokens. The absence of positional information can
pose an issue in semantic segmentation because accurate delineation of regions often relies on the spatial
relationships of image patches. In a mouse MRI, for example, image patches within the olfactory bulb
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10 2 METHODS

may have image textures that are similar to the image textures presented by the spinal cord. Incorporating
spatial information for these patches may help differentiate these anatomical regions because they are
often located within distinct areas of the image.

Positional encoding was developed to add spatial information to each token explicitly. One type of
positional encoding is absolute positional encoding, which encodes the absolute locations of tokens.
A well-known method for absolute positional encoding was proposed by Vaswani et al. (2017) during
their development of the Transformer model. They assigned a unique fixed value to each token, which
encodes its absolute position using a series of sine and cosine functions with progressively increasing
wavelengths. This implementation was motivated by the hypothesis that the cyclical nature of sinusoids
may encourage the models to learn relative positions rather than relying on explicit numerical values
(e.g., spatial Euclidean coordinates). Additionally, Vaswani et al. (2017) postulated that these sinusoidal
positional encoding functions may promote the model’s generalizability towards longer inputs because
they can be extrapolated more easily than learned position embeddings.

A second type of positional encoding is relative positional encoding, which is dependent on the pairwise
positions of tokens. This method is used in the Swin Transformer and in SwinUNETR in the form of
relative position bias matrices, denoted by B in Eq. (2), with learnable position embeddings. Relative
positional encoding does not rely on the absolute positions of the tokens and can thus be beneficial in
datasets where image features are not consistently located at the same positions. This can be particularly
helpful in natural images, which can contain objects with widely diverse positions.

2.2 Mouse Brain Extractor

Our goal in developing Mouse Brain Extractor was to create a method that can segment the brain
accurately in a mouse MRI at its native resolution. We adapted the SwinUNETR architecture to use
both relative and absolute positional encoding. Our reasoning for this was based on the observation
that mouse MRI are frequently acquired such that they exhibit fairly consistent placement of anatomical
features within the field of view. This differs from natural images, where there is often high variability
in the features of the image background or in the positioning of objects of interest.

In our Mouse Brain Extractor, we use a combination of relative position encoding and absolute position
encoding to provide local and global context when processing each image patch. Our approach differs
from that of SwinUNETR, which solely uses relative positional encoding, and from conventional absolute
positional encoding, which derives position embeddings based only on the subimage sampled from the
larger input image. Relative positional encodings are permutation invariant, which means that they
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2.2 Mouse Brain Extractor 11

are not associated with specific image features. This is useful in cases when the locations of image
features vary highly across images. When subimages do not contain enough image detail, absolute
positional encoding can provide the model with additional spatial information in the form of explicit
token positions. However, absolute positional encoding schemes are not as beneficial in datasets with
multiple scales, because they assign identical absolute positions to each subimage regardless of its location
in relation to the whole image. We thus formulated Global Positional Encoding, a version of absolute
positional encoding that uses a normalized coordinate system based on the full input image rather than
on an input image patch.

2.2.1 Global Positional Encoding

We implemented Global Positional Encoding (GPE) to be more invariant to image scale by allowing all
input images to share a similar coordinate frame regardless of image size. In the case of analyzing mouse
MRI, we assume that the head of the mouse is positioned near the center of the image volume and that
it occupies the majority of the image space. We note that we did consider basing GPE on registration to
a standard template; however, we did not observe substantial improvements using this approach during
our initial testing. We thus opted not to include an extra image registration step in our approach, which
would have introduced an additional dependency and a potential source of error.

The conventional approach for absolute positional encoding assigns identical absolute positions to tokens
regardless of the position of the subimage I1 within I0. These absolute positional encodings are thus
relative to the subimage and are not truly absolute because I1 is sampled from a different location within
I0 at each iteration. Identical absolute positions could be assigned to tokens that have dissimilar image
features, such as in the case of images that vary in scale.

Our approach differs in that we generate the global positional encoding for each voxel based on its
location within the entire input volume, rather than just the subimage. We did this for two reasons.
First, in cases where the subimage size is much smaller than the image size, e.g., for a large image with
high resolution, positional information regarding the location of the subimage with respect to the whole
image can provide additional information that cannot be deduced from local image patterns. This can
be especially helpful if there is insufficient image detail due to reduced image contrast or low spatial
frequency within the subimage. For example, a subimage of the midbrain in a low-resolution image
may appear similar to a subimage of the neck muscle tissue in a high-resolution image. In scenarios
similar to this, GPE may aid in correctly identifying the image patches that should be labeled as brain.
Secondly, if the subimage size is larger than the size of the input image, e.g., for a small image with
low resolution, the input data will be padded prior to training or inference. We do not compute GPEs in
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12 2 METHODS

the padded areas, which is consistent with our assumption that the fields of view for whole-head mouse
MRIs generally cover similar anatomical areas. This can simplify training by letting the model learn that
these areas are unimportant.

We represent the GPEs as fixed 3D sinusoidal functions, which we adopted based on methods proposed
by Vaswani et al. (2017), Wang and Liu (2019), and the multidim-positional-encoding software package
(Tatkowski, 2024) for 1D, 2D, and 3D, respectively. This formulation produces a unique value at each
token position while maintaining an identifiable pattern across the positions. We construct a GPE array,
G0 ∈ RH0×W0×D0×C , such that each voxel position defined by coordinates x,y,z is represented by a
unique vector of length C = 3c, indexed by k:

G0(x, y, z, k) =



sin
(
x/10k/c

)
k ∈ {0, 2, ..., c − 2}

cos
(
x/10(k−1)/c

)
k ∈ {1, 3, ..., c − 1}

sin
(
y/10k/c−1

)
k ∈ {c, c + 2, ..., 2c − 2}

cos
(
y/10(k−1)/c−1

)
k ∈ {c + 1, c + 3, ..., 2c − 1}

sin
(
z/10k/c−2

)
k ∈ {2c, 2c + 2, ..., 3c − 2}

cos
(
z/10(k−1)/c−2

)
k ∈ {2c + 1, 2c + 3, ..., 3c − 1}.

(4)

We define C to be a multiple of 6 so that we can partition the embedding vector into three equal
segments, each of which contains values that alternate between a sine function and a cosine function.
These three segments correspond to the image coordinates x, y, and z, which are formed by normalizing
the voxel indices to the range [0,10] based on the initial input image size. This represents a set of
normalized Euclidean coordinates of I. We empirically selected the bounds to limit the domain of the
sine and cosine functions to the unit interval in radians.

Three characteristics of the GPE contribute to the generation of a distinct embedding vector at each
position x, y, z. First, alternating sine and cosine values occur at even and odd values of k, respectively.
Second, the period of each sinusoid increases with each increment of k. Third, the 3D location of the
token is represented in the GPE by the three-partitioned segments.

Prior to adding the GPEs to the patch embedding vectors, we select a subregion G1 from G0, which
corresponds to the region of subimage I1. We then downsample the spatial dimensions of G1 to pro-
duce G2 ∈ R

H1
2 × W1

2 × D1
2 ×C to match the spatial dimensions of the tokenized data, which are formed by

reducing I1 by a factor of 2. We then select a window in G2 that corresponds to the region of the patch
embedding vectors E ∈ RM3×C to produce G3 ∈ RM3×C . G3 is then added to E to generate the query,
key, and value matrices, which are now defined as:
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2.2 Mouse Brain Extractor 13

Q = (E + G3) PQ

K = (E + G3) PK

V = (E + G3) PV .

(5)

2.2.2 Mouse Brain Extractor architecture and implementation

We implemented the Mouse Brain Extractor model by adapting the original SwinUNETR implementation
distributed by the Medical Open Network for Artificial Intelligence Project (MONAI; Cardoso et al.,
2022). The major changes that we made were the incorporation of GPEs in Stage 1 of the Swin
Transformers (described in Sec. 2.2.1); the remainder of our network architecture is nearly identical to
the original SwinUNETR model (Hatamizadeh et al., 2021) and differs only in input dimension and size.
Figure 1 illustrates our Mouse Brain Extractor architecture, which we describe here for a 3D MRI volume
input. The architecture for 2D input images is similar, but the third dimension (D) is omitted.

During training, we repeat the following process for each input MRI, which we represent as I0. First, the
normalized Euclidean coordinates of I0 are generated and used to compute the C-element GPE vectors
that form G0 ∈ RH0×W0×D0×C in Eq. (4), where C = 48. We then select a random voxel position
in I0 and extract a subimage I1 ∈ RH1×W1×D1 centered on this point. The subimage is formed by
zero-padding or cropping each dimension if necessary to match the new size. Next, I1 is passed into a
1-layer CNN (kernel size = 2; stride size = 2; output features size = C) to produce I2 ∈ R

H1
2 × W1

2 × D1
2 ×C .

G1 is then downsampled by a factor of 2 along the spatial axes using trilinear interpolation to match
the dimensions of I2, resulting in G2. We note that we only downsample in the spatial dimensions and
we do not resample the k dimension. We also interpolate values per channel (i.e., along each k). This
is important in maintaining the sinusoidal form in each channel. Next, G2 is added to I2 to provide
absolute positions of each token. Mouse Brain Extractor, like the original SwinUNETR, has 4 stages
that each contain two Swin Transformer blocks, as formulated in Eq. (1), which are followed by patch
merging. Each SwinT block performs a sequence of layer normalization (LN), W-MSA, a second LN,
and 2-layer MLP with Gaussian Error Linear Units (GELUs). A residual connection is added after each
W-MSA and MLP. The second SwinT block is identical to the first, except it replaces W-MSA with a
SW-MSA.

The patch merging process reduces the number of features by a factor of 2 and also concatenates 2×2×2
neighboring patches to form feature embeddings of size 4C, which are then passed into a linear layer to
reduce the feature dimension to 2C. Thus, at each step in the encoding scheme, we have the following
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Figure 1: Mouse Brain Extractor Architecture. Our proposed Mouse Brain Extractor incorporates
whole-image spatial information into the SwinUNETR architecture. A. SwinT Pair: The architectures
of SwinUNETR and Mouse Brain Extractor use modules composed of two consecutive Swin Transformer
blocks, which we describe as SwinT Pairs, in the encoding scheme. B. Mouse Brain Extractor’s
network architecture: For a 3D input MRI volume (H0 × W0 × D0 × 1), a subimage section of size
H1 ×W1 ×D1 ×1 is selected from the input image and partitioned into a set of 2×2×2 non-overlapping
patches. These image patches are projected to an embedding space using a 1-layer CNN. Subsequently,
global positional encodings are computed, downsampled by a factor of 2 in each spatial dimension, and
added to the patch embedding vectors. Then, the outputs are passed into a series of SwinT Pairs, which
perform similarity computations within and across windows. The encoded outputs derived at each step
are input into residual and deconvolutional layers via skip connections to generate the final segmentation.
For 2D models, the last dimension (D) is omitted. (Layer Norm: layer normalization; W-MSA: regular
window multi-head self attention; MLP: multi-layer perceptron; SW-MSA: shifted window multi-head
self-attention)
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2.3 Source Data 15

Dataset

in vivo
isotropic

in vivo
anisotropic

EAE
Meyer et al., 2017

NeAt
Ma et al., 2008

Chd8
Tabbaa et al., 2023

TBI
Hubbard et al., 2021

EAE
MacKenzie-Graham et al., 2009ex vivo

Cohort Strain

48 C57BL/6

5 C57BL/6

21 B6-CC61
15 B6-CC17

48 C57BL/6

60 C57BL/6

48 WT

5 WT

48 WT

48 WT
12 CKO

18 HET
18 WT

Genotype

25 F / 23 M

0 F / 5 M

18 F / 18 M

24 F / 24 M

47 F / 13 M

Sex

30 EAE / 18 healthy controls

24 injured / 24 sham
12 0-DPI / 12 30-DPI / 12 100-DPI / 12 166-DPI
40 EAE / 20 healthy controls
12 SOD1-/-

12 AAV-treated

Notes

4.94 ± 0.48

3.25 ± 0.25

10.43 ± 1.53

4.97 ± 2.17

4.67 ± 1.27

Age at Scan
(mos. ± sd)

Aging
Itoh et al., 2023 26C57BL/6 26WT 13F / 13M Aged 5 to 24 months13.65 ± 6.86

Table 1: Dataset demographics. We selected a heterogeneous collection of mouse MRI containing a
mixture of populations, strains, genotypes, ages, and sexes for training and evaluation. The data were
acquired previously as part of other studies (Hubbard et al., 2021; Itoh et al., 2023; MacKenzie-Graham et
al., 2009; Meyer et al., 2017), acquired as part of ongoing studies of specific mouse models (Tabbaa et al.,
2023) or retrieved from an open-access repository (Y. Ma et al., 2008). (DPI: days-post-injury indicates
the number of days after brain injury or sham surgery, EAE: experimental autoimmune encephalomyelitis,
TBI: traumatic brain injury, WT: wild type, HET: heterozygous type, CKO: conditional gene knockout,
SOD1: superoxide dismutase 1, AAV: adeno-associated virus)

image resolutions: H1 × W1 × D1, H1
2 × W1

2 × D1
2 × C, H1

4 × W1
4 × D1

4 × 2C, H1
8 × W1

8 × D1
8 × 4C, and

H1
8 × W1

8 × D1
8 × 8C.

The input MRI, the patch embeddings, and outputs from Stages 1 through 3 are passed into residual
blocks (2-layer CNN with kernel = 3, stride = 1, pad = 1). The resulting outputs are concatenated to
the feature outputs from the previous stage, which are then deconvolved using an upsampling kernel size
of 2. These concatenated outputs are passed into the residual blocks once more (2-layer CNN with kernel
= 3, stride = 1, pad = 1). Stage 4 output features are input into only one set of residual blocks and
passed into the deconvolutional layers. The feature dimension is reduced by half in the deconvolutional
blocks. However, the deconvolutional block that restores the original resolution does not alter the feature
dimension size. Lastly, the output from the decoder is passed through a single convolutional layer (kernel
size = 1; stride = 1) and a Softmax function to produce the final segmentation volume (H1×W1×D1×2).

2.3 Source Data

We assembled a heterogeneous collection of in vivo and ex vivo T1- and T2-weighted MRI of mouse
brains (N=223). Our motivation in creating this dataset was to be able to improve the generalizability
of our method by including data that employed a variety of mouse brain anatomy and MRI protocols. In
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total, these data were collected using six types of scanners, six different T2-weighted pulse sequences,
and two different T1-weighted pulse sequences. Our dataset comprised 163 in vivo and 60 ex vivo mouse
images. These included healthy brains (N=69), brain models of diseases and disorders (N=106), and
physically injured brains (N=48). We gathered this dataset from images that we acquired previously in
separate studies (Hubbard et al., 2021; Itoh et al., 2023; MacKenzie-Graham et al., 2009; Meyer et al.,
2017), that were acquired as part of ongoing studies of specific mouse models (Tabbaa et al., 2023),
or that we retrieved from an open-access repository (Y. Ma et al., 2008). All studies from which we
retrieved data were performed in accordance with the National Institutes of Health Guide for the Care
and Use of Laboratory Animals and appropriate Institutional Animal Care and Use Committees (IACUC).
A summary of the imaging data and their corresponding demographic information is shown in Table
1. Additional details regarding the MR scanners, imaging sequences, image dimensions, and scanning
resolutions are provided in Appendix Table 4.

We subdivided the data into three groups (see Table 1): in vivo isotropic, in vivo anisotropic, and ex
vivo. Images in the anisotropic in vivo group had a voxel aspect ratio in the range [3.98, 15.36], where
we define voxel aspect ratio as the maximum edge length of a voxel divided by its minimum edge length.
Aspect ratios in this range are not uncommon in preclinical imaging, where in vivo brains are often
imaged with high in-plane resolution and a corresponding larger slice thickness. The ex vivo images were
acquired with a smaller range of voxel aspect ratios (1–1.85) and did not exhibit large partial volume
effects. Because these images were mostly uniform in their appearance, we opted to have a single group
for the ex vivo data.

While one could in principal use all three groups of data to train a single model, we opted to produce
separate models for each type of data. A primary aim of the model is to correctly characterize the
distribution of the input datasets. However, distinct dissimilarities in image appearance across the
datasets as well as the more subtle differences within datasets result in a data distribution with many
modes. The complexity of the distribution-fitting process increases with the number of modes and has
the potential to decrease the trained model’s accuracy. Thus, a simpler data distribution with less
data variability makes it easier to parameterize the distribution accurately and enhances the model’s
performance. In our data, we have a mixture of voxel aspect ratios and in vivo and ex vivo preparations,
which all contribute to variations in image appearance. While highly anisotropic images often have very
high resolution in-plane, they can still exhibit blurry brain boundaries due to the partial volume effect.
Each voxel is an average of the signals within its volume, and a large slice thickness will thus cause
voxels to average signals from multiple tissue types. This makes it more difficult to distinguish between
non-brain and brain and to localize the brain boundary accurately. Additionally, compared to ex vivo
images, in vivo images typically have lower image resolution and contrast because of limited scan times.
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2.3 Source Data 17

Images of ex vivo models can be acquired with much higher resolution and quality, and may thus capture
finer anatomical details and boundaries. Moreover, ex vivo brains may have a distorted shape compared
to in vivo brains because the ventricles collapse due to reduced fluid pressure.

2.3.1 In vivo isotropic MRI

The in vivo isotropic data comprised scans from 79 C57BL/6 wildtype (WT) mice. These included 48
mice from a study investigating experimental autoimmune encephalomyelitis (EAE), a mouse model of
multiple sclerosis (Meyer et al., 2017), 26 mice from a normative aging study (Itoh et al., 2023), and
5 scans from the open-access MR Microscopy (MRM) NeAt repository (Y. Ma et al., 2008). MRI from
the EAE and aging studies were acquired at the Ahmanson-Lovelace Brain Mapping Center (ALBMC)
at UCLA and at the Small Animal Imaging Core (SAIC) at Children’s Hospital Los Angeles (CHLA).
The MRI data from the MRM NeAt dataset were retrieved from the DigitAl Medicine Analytic (DAMA)
Lab’s GitHub repository (D. Ma, 2020) that were imaged at the Brookhaven National Laboratory and
National High Magnetic Field Laboratory (Y. Ma et al., 2008).

2.3.2 In vivo anisotropic MRI

The in vivo anisotropic data included 84 MRI from two separate studies: 36 from a study involving
mice with a loss-of-function mutation (haploinsufficiency) in Chd8, a high-confidence autism spectrum
disorder (ASD) risk gene (Tabbaa et al., 2023), and 48 from a multi-site traumatic brain injury (TBI)
study (Hubbard et al., 2021).

The Chd8 data included images of 21 B6-CC61 and 15 B6-CC17 mice. These two strains were selected
because B6-CC61 exhibits high Chd8 mutation vulnerability resulting in atypical social behavior compared
to the resilient B6-CC17 strain (Tabbaa et al., 2023). Each mouse was scanned using two sequential
acquisitions that produced two separate images that contained the anterior and posterior halves of the
head. This acquisition method was adopted to adjust the repetition time (TR) to acquire an acceptable
contrast, which also provided an acceptable resolution and total scan time. As described in Sec. 2.4,
these pairs of images were later combined to form single whole-head images for each mouse brain.

The TBI data included MRI of C57BL/6 mice that received severe controlled cortical impact (CCI) injury
or sham surgery prior to scanning. Both sets of mice received a craniotomy on the left side of the skull,
but only the CCI group received an injury using a 3 mm flat-tip impactor at the same location. Following
the procedure, a plastic surgical disc was placed on the site of the surgery. The mice were imaged at 0,
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30, 100, and 166 days post CCI or sham surgery.

2.3.3 Ex vivo MRI

All 60 ex vivo MRI (47F/13M; 48 WT/12 conditional knock-out [CKO]; age at scan 4.67±1.27 months)
were collected from a mixture of C57BL/6 healthy and EAE-induced mice as part of a previous study on
EAE (MacKenzie-Graham et al., 2009). These ex vivo images were scanned using T1- and T2-weighted
sequences at the Duke Center for In Vivo Microscopy (CIVM) (N=12), the Beckman Institute at the
California Institute of Technology (N=24), and SAIC at CHLA (N=24). They consisted of isotropic
images and anisotropic images with voxel dimension ratios in the range 1.33–1.85.

The T2-weighted images acquired at CIVM were collected from a female cohort (age at scan 4.50±1.40
months) and included four EAE-induced mice and eight healthy controls with a range of 63 to 147
days post-EAE induction. Twelve mice (N=12; 12F; 5 EAE/7 healthy controls; age at scan 4.25±0.70
months; post-EAE induction range of 15 to 55 days) scanned at the Beckman Institute were imaged using
a T2-weighted imaging protocol, while the other twelve (N=12; 12F; 7 EAE/5 healthy controls; age at
scan 3.40±0.69 months; post-EAE induction range of 20 to 80 days) were acquired using a T1-weighted
imaging sequence.

The ex vivo cohort scanned at SAIC consisted of 12 transgenic mice with a conditional knockout of the
superoxide dismutase (SOD1) enzyme-encoding gene (SOD1-/-) (7F/5M; 12 EAE; age at scan 6.48±0.33
months; 41 days post-EAE induction) and 12 mice treated with adeno-associated virus (AAV) (4F/8M;
12 EAE; age at scan 4.7 months; 43 days post-EAE induction).

2.4 Data preparation

The MRI data for this study were selected to capture variability in head and neck shape and position, brain
size due to strain and genotype, field inhomogeneity, ringing artifacts, RF interference, and anatomical
abnormalities. After selecting an initial set from each study through visual inspection, we identified
additional images of similar image intensity distributions by computing the Jensen-Shannon distances
between the selected images and the potential candidate images. We identified subsets of these images
to be used as training, validation, and test datasets.
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2.4 Data preparation 19

2.4.1 MRI volume preprocessing

Each MRI was reoriented such that its image data were stored in a consistent right-anterior-superior
orientation. We note that this was achieved by permuting the axes to reorder the data, which does not
require resampling or interpolation. We then performed limited pre-processing on the training, validation,
and test datasets. For most datasets, this involved only bias field correction. The Chd8 data required
processing to combine the two acquisition frames, which we achieved as follows. We first concatenated the
two sections to create a single image. However, differing bias field effects produced a distinct discontinuity
where the images were joined. We addressed this by performing slice-based normalization to create a
smoother transition between the two sections. The normalization was performed by: (1) computing the
average intensity value per slice (S̄i = mean(Si), where Si denotes the intensity values in image slice
index i); (2) fitting a 2nd degree polynomial model on S̄ to obtain estimated intensity values Ŝ using the
function’s coefficients; and (3) modifying the intensity values by Ŝi per slice (S ′

i = Si + (Ŝi − S̄i)). The
resulting concatenated image was treated as one MRI volume in subsequent processing and analysis.

We then performed bias field correction on all image volumes using the N4 method from ANTs (Tustison
et al., 2010). We refer to these data as the N4-corrected images in this manuscript, while we refer to
the original set as uncorrected.

2.4.2 Delineation

We created a reference brain mask for each MRI volume following in-house protocols developed by A.M.G.
(MacKenzie-Graham et al., 2012; Meyer et al., 2023). We generated an initial set of brain masks for all
MRI volumes using BrainSuite’s Brain Surface Extractor (BSE; version 21a), a skull-stripping tool that we
originally developed for T1-weighted MRI of the human brain (Shattuck et al., 2001). We applied BSE to
the N4-corrected images and used its automated parameter selection feature, which optimizes algorithm
settings using a cost function designed for human brains (Rajagopal et al., 2017). When needed, we
manually adjusted the program settings and reapplied BSE to generate improved brain masks. A trained
rater (H.H.) with 4 years of brain labeling experience then overlaid the masks on the N4-corrected images
and performed manual edits using the mask editing tool in the BrainSuite GUI (Shattuck & Leahy, 2002).
The brain masks included all brain tissue and excluded the trigeminal nerve, CSF ventral to the pons, and
the optic nerve. Any spinal cord tissue present posterior to the last coronal slice where the cerebellum
is not present was also removed from the mask. Manual corrections required approximately 10 mins per
MRI for the in vivo anisotropic data, 30 mins per MRI for the in vivo isotropic data, and 60 mins per
MRI for the ex vivo data.
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In vivo anisotropic

In vivo isotropic

Ex vivo

Figure 2: Manually-edited delineations with postprocessing. An example of an uncorrected image
from each dataset is shown in each row. Top: in vivo isotropic image of an EAE-induced female from
the EAE cohort; middle: in vivo anisotropic image of a sham-surgery female from the TBI cohort; and
bottom: ex vivo image of an EAE-induced female from the EAE cohort. Green contours indicate the
brain delineation boundaries, which were initially generated with BSE (Shattuck et al., 2001), corrected
manually according to the protocol described by MacKenzie-Graham et al. (2012) and Meyer et al.
(2023), and minimally postprocessed (see Sec. 2.4.2). Some of the characteristics that pose challenges
for automated segmentation include low contrast due to field inhomogeneity (in vivo isotropic) and
blurring of anatomical boundaries due to larger slice thicknesses (in vivo anisotropic). Higher resolution
images (ex vivo) may provide clearer details that improve automated segmentation results.
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2.5 Training, Validation, and Testing Datasets 21

While manual edits can represent a gold standard for comparison, they are prone to some errors and
irregularities. In this work, the completed masks exhibited uneven boundaries across slices because the
brain masks were edited on a slice-by-slice basis primarily in the coronal plane. There were some additional
errors produced by stray mouse clicks, which resulted either in holes interior to the mask or extraneous
clusters of voxels that were disconnected from the brain mask.

We addressed these issues by applying a series of processing steps to all mask volumes in the training,
validation, and test datasets. We corrected for stray mouse clicks by selecting the largest connected
component in the image as the brain mask and then filling any holes in that mask. We smoothed uneven
segmentation boundaries across slices by first smoothing the mask with a 3D Gaussian filter with σ=1
voxel and then thresholding the smoothed image at 0.5 to produce a binary mask. An expert rater
(A.M.G.) reviewed the final brain masks visually and approved them.

Examples of the final manually-edited masks for in vivo isotropic, in vivo anisotropic, and ex vivo data
are shown in Fig. 2. Distinctive characteristics for each type of image can be observed, some of which
may present difficulties when determining boundaries. In the in vivo isotropic data, lower contrast and
attenuated signals in the ventral region resulting from field inhomogeneity make brain edge detection
challenging for both human raters and automated methods. Although N4 correction partially restores the
signals and contrast, this area often remains hypointense and difficult to delineate. Another problematic
feature can be observed in the in vivo anisotropic data, where the partial volume effect from the larger
slice thickness blurs the brain boundaries. This is particularly visible in the rostral regions where the
shape of the brain changes more dramatically. These issues are less commonly observed in ex vivo data,
which typically have higher resolutions and less field inhomogeneity. However, in the case of some of the
T1-weighted ex vivo images, brain boundaries are less distinct and still pose challenges.

2.5 Training, Validation, and Testing Datasets

We partitioned each of the three groups of data in Table 1 (in vivo isotropic, in vivo anisotropic, and
ex vivo) into three subsets for training, validation, and testing. The training and test datasets were
organized to exhibit similar heterogeneity in demographics and image appearance. We made use of both
the uncorrected and N4-corrected data in our training and evaluation. The delineated mask for each MRI
volume was used as the ground truth segmentation for both the uncorrected and N4-corrected images.
We included the N4-corrected images because the N4 method is frequently performed as a preliminary
step in image processing pipelines and users may prefer to run brain extraction on the corrected data.
We also used the N4-corrected data to represent images with minimal bias field artifacts. We note
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Total
120
120
116
116
85

120
116
85

120
116
85

85

Artificial bias
field artifact

8
8
8
8
5
5
8
8
5
8
8
5

Scale-jittered
(Uncorrected/
N4-corrected)

None
None
None
None
None
None

12 / 12
14 / 14
10 / 10
12 / 12
14 / 14
10 / 10

Uncorrected/
N4-corrected

56 / 56
56 / 56
54 / 54
54 / 54
40 / 40
40 / 40
56 / 56
54 / 54
40 / 40
56 / 56
54 / 54
40 / 40

Model
2D nnU-Net

3D full resolution nnU-Net
2D nnU-Net

3D full resolution nnU-Net
2D nnU-Net

2D SwinUNETR

Mouse Brain Extractor
Mouse Brain Extractor
Mouse Brain Extractor

3D SwinUNETR
3D SwinUNETR

3D cascade nnU-Net
ex vivo
ex vivo

ex vivo

Dataset

in vivo isotropic

in vivo isotropic

in vivo isotropic

in vivo anisotropic

in vivo anisotropic

in vivo anisotropic

in vivo isotropic
in vivo anisotropic

ex vivo

Table 2: Training data. Training data for nnU-Net, SwinUNETR, and Mouse Brain Extractor included
uncorrected and N4-corrected MRI data. Data augmentation was used to generate images with severe
artificial bias field artifacts and scale-jittering. The scale-jittered data were not included in the training
dataset for the nnU-Net models because nnU-Net’s workflow resamples the data to the median resolution
of the images on which it was trained (see Sec. 2.9.1). On-the-fly data augmentation was performed
during training to further expand the dataset and is described in Section 2.5.1.

that the N4 method is not guaranteed to produce images completely free from bias field effects, thus
the N4-corrected images exhibit a range of small field inhomogeneity artifacts that help improve the
generalizability of our model.

2.5.1 Training Data

For the in vivo isotropic dataset, MRI from 56 mice were used for training: 33 from the in vivo EAE
dataset (33 C57BL/6; 33 WT; 17F/16M; age at scan 4.94±0.48 months; 12 EAE (45 days post EAE-
induction)/21 healthy controls; 20 from the in vivo aging dataset (20 C57BL/6; 20 WT; 10F/10M; age
at scan 13.80±6.72 months); 3 from MRM NeAt (3M; 3 C57BL/6). For the in vivo anisotropic dataset,
MRI from a total of 56 mice were used: 24 from the Chd8 cohort (14 B6-CC61/10 B6-CC17; 12 HET/12
WT; 12F/12M; age at scan 10.30±1.55 months); and 32 from the TBI cohort (32 C57BL/6; 32 WT;
16F/16M; age at scan 4.97±2.18 months; 16 injured/16 sham surgery; 8 from each of 0, 30, 100 and
166 days post injury. The ex vivo dataset used data from 40 mice from the ex vivo EAE dataset (40
C57BL/6; 32 WT/8 CKO; 30F/10M; age at scan 4.67±1.25 months; 13 EAE [30.22±24.40 days post
EAE-induction]/27 healthy controls; 8 SOD1-/-; 8 AAV-treated). The N4-corrected images of each of
these MRI were added to the training dataset.
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2.5 Training, Validation, and Testing Datasets 23

Data augmentation We included pre-computed data augmentations in the training datasets, and we
also performed on-the-fly data augmentation during training. The pre-computed augmentations consisted
of data with artificial bias fields and resolutions not present in the original training data. We chose to
precompute these particular operations because they are very compute-intensive, as compared to the
augmentations that we did compute on the fly. By precomputing them, we generate them only once and
reduce computational load during training. The on-the-fly data augmentations were generated randomly
at each iteration during training, which greatly increased the effective size of the training dataset. Details
regarding the on-the-fly data augmentation methods are provided in Section 2.6.

We performed two data augmentation transforms on two disjoint subsets of training data prior to training.
On the first subset, we applied bias field transforms which we represented as smoothly-varying 4th-degree
polynomial functions with coefficients ranging from 0.2 to 0.4. We applied these fields to 8 in vivo
isotropic, 8 in vivo anisotropic, and 5 ex vivo images.

For the second subset, we resampled the MRI to 12 distinct resolutions to enhance Mouse Brain Ex-
tractor’s ability to to learn the associations between GPEs and tokens. We hypothesized that by supple-
menting the training data with data containing a variety of resolutions not present in the original data,
Mouse Brain Extractor can learn the relationship between GPEs and image patches. A subset of MRI
volumes from the training data were resampled to 12 different resolutions using cubic spline interpolation.
The corresponding mask volumes were resampled using a technique similar to nnU-Net’s interpolation
method and consisted of converting the binary labels into one-hot encoding vector images, performing
linear interpolation across the channels, and taking the argmax (index of the maximum value) of each
vector (Isensee et al., 2018). For the in vivo isotropic resolution datasets, a subset of 28 images from
the in vivo EAE, aging, and MRM NeAt datasets (14 native/14 N4-corrected) were resampled to 50 µm,
75 µm, 150 µm, and 200 µm isotropic resolution. For the in vivo anisotropic resolution data, a subset
24 images from the Chd8 and TBI datasets (12 native/12 N4-corrected) were resampled in-plane to 60
µm, 100 µm, 150 µm, and 200 µm isotropic resolutions in-plane (coronal plane). For the ex vivo data,
a subset of 20 images from the ex vivo EAE dataset (10 native/10 N4-corrected) were resampled to 20
µm, 25 µm, 30 µm, and 50 µm isotropic resolution.

2.5.2 Validation data

We created our validation dataset by selecting at random one-fifth of the combined set, which included
both the training data described in 2.5.1 and the precomputed data augmentations. This subset was used
to assess the generalizability of our model during training and to determine post-processing methods.
The resulting validation dataset consisted of 10 MRI for the in vivo isotropic dataset, 10 MRI for the in
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vivo anisotropic dataset, and 5 MRI for the ex vivo dataset.

2.5.3 Test data

The remaining data that were not included in the training or validation datasets were used as the test
dataset. A summary of the demographic information of the test datasets are outlined in Appendix Table
5. For the in vivo isotropic resolution datasets, 15 MRI were drawn from the in vivo EAE dataset (15
C57BL/6; 15 WT; 8F/7M; age at scan 4.91±0.48 months; 6 EAE (45 days post EAE-induction)/9
healthy controls), 6 were drawn from the aging dataset (6 C57BL/6; 6 WT; 3F/3M; age at scan
13.17±7.94 months), and 2 MRI were drawn from MRM NeAt dataset (2M; 2 C57BL/6). For the in
vivo anisotropic resolution datasets, a total of 28 MRI were drawn: 12 from the Chd8 dataset (7 B6-
CC61/5 B6-CC17; 6 HET/6 WT; 6F/6M; age at scan 10.68±1.52 months) and 16 from TBI dataset
(16 C57BL/6; 16 WT; 8F/8M; age at scan 4.97±2.21 months; 8 injured/8 sham surgery; 4 from each
of 0, 30, 100 and 166 days post injury). The voxel aspect ratio ranges were identical to the ones in the
training datasets and varied between 3.98 and 15.36. From the ex vivo datasets, all 20 images were taken
from the ex vivo EAE dataset (20 C57BL/6; 16 WT/4 CKO; 17F/3M; age at scan 4.66±1.34 months;
13 EAE (51.38±29.90 days post EAE-induction)/7 healthy controls; 4 SOD1-/-; 4 AAV-treated). Four
of these images had a voxel aspect ratio of 1.33, while the remaining 16 had isotropic resolutions.

2.6 Training

We trained three separate Mouse Brain Extractor models, which were each dedicated to a particular type
of data: in vivo isotropic, in vivo anisotropic, and ex vivo. For the in vivo anisotropic model, we used
an input subimage size of 128 × 128 (H1 = W1 = 128) in the coronal view because the coronal plane
had the highest resolution in this dataset. During development, we observed better performance with a
2D model than with a 3D model, the accuracy of which may have been reduced by the low resolution in
the sagittal and axial planes. For the in vivo isotropic and ex vivo datasets, we used an input subimage
size of 96 × 96 × 96 (H1 = W1 = D1 = 96), because 3D models showed better performance than 2D
models. In these 3D models, we selected 96 voxels instead of 128 to reduce GPU memory usage so that
the models could be run within the 24GB available on our systems.

The maximum iterations used for each model were 90,000 for in vivo isotropic models, 55,000 for in
vivo anisotropic models, and 90,000 for ex vivo resolution models. We used an initial learning rate of
5 × 10−4 with a linear warm-up with a cosine annealing learning rate scheduler (Loshchilov & Hutter,
2016). The models with the best Dice scores on the validation datasets were chosen as the final models.
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During training, additional data transformations were randomly performed before each iteration for all
models. The transforms were similar to those used by nnU-Net Version 2 (Isensee, 2024) and included:
size scaling (multiplicative factor in [0.7,1.4]); rotations ([-90°,90°]); gamma scaling (with and without
inversion; γ = [0.7,1.5]); flipping across all orthogonal axes; Gaussian noise (σ2 ∈ [0,0.1]); Gaussian
smoothing (σ ∈ [0.5,1]); intensity scaling (multiplicative factor in [0.75,1.25]); contrast augmentation
(contrast range multiplicative factor in [0.75,1.25]); simulation of low resolution (zoom factor in [0.5,1]);
downsampling using nearest-neighbor interpolation and upsampling using cubic spline interpolation); and
translations ([-50, 50] voxels on all axes). The probabilities for each transformation varied and were
independent of each other.

2.7 Inference and Post-processing Steps

During inference, we used a tile overlap strategy, which runs inference on a section of image at a time,
with the section being the size of the subimage used by the network. Each subsequent section overlaps
the previous section by 0.8. The final segmentation is determined by the majority count.

The last stage of our segmentation approach is a set of post-processing steps designed to improve the
outputs from Mouse Brain Extractor. During the development of our method, we reviewed results for
the validation datasets and observed some minor errors in a small subset of the predicted labels. These
included small holes internal to the brain mask, disconnected mask segments, and rough boundaries. We
addressed these by developing a post-processing sequence that selects the largest connected component
and fills any cavities internal to it. It then smooths the brain boundaries by applying a Gaussian filter
(σ = 1 voxel) and then thresholding at 0.5 to yield a binary mask. This smoothing step was applied to
the in vivo anisotropic and ex vivo model outputs. We did not apply Gaussian smoothing to the in vivo
isotropic model outputs because it produced worse Dice scores on the validation data.

2.8 Evaluation

We evaluated our method’s segmentation performance using the test data described in Section 2.5.3.
We compared each output with the corresponding manually-edited segmentation using Dice similarity
(Dice, 1945) and 95th-percentile Hausdorff distance (HD95; Nováková et al., 2017) measures. Dice
scores range from 0 to 1, with higher scores indicating a greater overlap between the automated method
and manual segmentation (1 indicates perfect agreement; 0 indicates no agreement). The symmetric
Hausdorff distance (HD), for a given segmentation T and U , is the maximum of the minimum distances
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from the boundary voxels of T to U and from the boundary voxels of U to T . Smaller Hausdorff distances
indicate closer alignment of the segmentation boundaries. Here, we use the HD95 measure, which is the
value at the 95th percentile of the minimum distances. The usage of the 95th percentile instead of the
maximum distance makes the measure more robust to the effect of outliers.

2.9 Comparison with Existing Approaches

We performed an evaluation comparing our method’s segmentation results with those of nine existing
approaches. The methods we compared were nnU-Net (Isensee et al., 2018), SwinUNETR (Hatamizadeh
et al., 2021), DeepBrainIPP (Alam et al., 2022), RodentMRISkullStripping (Hsu et al., 2020), SHERM
(Y. Liu et al., 2020), 3D-PCNN (Chou et al., 2011), RATS (Oguz et al., 2014), rBET (Wood et al.,
2013), and antsBrainExtraction (Avants et al., 2011). We assessed their performance by computing
Dice and HD95 measures of their segmentation outputs relative to the manually-edited masks. We then
performed statistical comparisons of these measures against our own results.

2.9.1 Processing with Existing Approaches

For each method, we processed the test images after preparing them based on the pre-processing steps
reported in each method’s corresponding publication or usage instructions. We describe the individual
preparations used for each method in more detail below. In a subset of cases, we performed additional
steps (e.g., cropping of images or modification of method parameters) to meet method-specific usage
requirements or to produce satisfactory segmentations. Table 3 summarizes the methods that were
compared and the datasets on which they were evaluated.

nnU-Net We trained nnU-Net using the same training dataset that we used for Mouse Brain Extractor,
with the exception of the precomputed augmented data that were produced by scale-jittering. nnU-Net
automatically resamples its input data to the median resolution of the datasets on which it is trained
(Isensee et al., 2018), which means that these augmented images would be resampled back to their
original resolutions. This is similar to nnU-Net’s built-in low-resolution simulation data augmentation,
thus we deemed it unnecessary for nnU-Net’s training. The presence of many additional resampled images
in the training dataset could possibly prevent the nnU-Net models from optimizing on the original, non-
resampled images.

All nnU-Net models were trained using their default method configurations and settings, apart from small
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SHERM
RodentMRISkullStripping
3D-PCNN
RATS
antsBrainExtrac�on
DeepBrainIPP
rBET
nnU-Net
SwinUNETR
Mouse Brain Extractor

Evaluated Incomplete
Results

Not
Evaluated

In vi
vo

 iso
.

In vi
vo

 an
iso

.

Ex v
ivo

In vi
vo

 iso
.

In vi
vo

 an
iso

.

Ex v
ivo

Uncorrected N4-corrected

Table 3: Evaluation Summary. Shown are the methods that were compared and the datasets on
which they were evaluated. Some methods were not evaluated on all data subsets because of their input
requirements (see Sec. 2.9.1). Incomplete results were obtained for 3D-PCNN, which terminated with
an error on four images from the N4-corrected in vivo anisotropic dataset, and for DeepBrainIPP, which
produced empty brain masks for six uncorrected and five N4-corrected images from the in vivo anisotropic
datasets.

changes in the data augmentation methods. We modified the degrees of image rotation used in nnU-Net’s
data augmentation to match those of our proposed models. Additionally, we modified the probabilities
that determine the likelihood of a specific transformation being applied to more closely match natural
occurrences. For example, left-right (LR) flips are more frequently observed than up-down (UD) flips in
MR data, so we adjusted the LR mirroring probability to be higher than that of UD mirroring.

NnU-Net outputs training recommendations based on the training dataset’s image properties, such as
image sizes and resolutions. Based on these instructions, we employed a 5-fold validation technique and
trained the 2D U-Net and 3D full-resolution U-Net for all datasets. For ex vivo data, we trained an
additional configuration, the 3D cascade U-Net, which was recommended by nnU-Net due to the high
image resolution and size. Each model was trained for 1000 iterations. After assessing the performance
of each model configuration using the validation data, nnU-Net selected the 2D U-Net as the best
configuration for all dataset types (Isensee et al., 2018). NnU-Net also determined post-processing
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methods for each model: none for in vivo anisotropic, and selection of the largest connected component
for in vivo isotropic and ex vivo models.

SwinUNETR We trained SwinUNETR identically to how we trained Mouse Brain Extractor. Specifi-
cally, the training and validation datasets, data augmentations, training hyperparameters (e.g., number
of iterations and learning rates), optimizers, learning rate schedulers, and validation methods were the
same as we used for Mouse Brain Extractor. During inference, we also used a tile overlap strategy with
an overlap ratio of 0.8 and the same post-processing that we described in Sec. 2.7.

DeepBrainIPP DeepBrainIPP (Alam et al., 2022) provides multiple pre-trained weights. We selected
its invivo-2 and exvivo-1 models, which most closely matched the resolutions and types of our datasets.
Because their models were trained with uncorrected and N4-corrected images, we included both sets
in DeepBrainIPP’s evaluation. However, due to input image size restrictions, we manually cropped the
images so that the pipeline could be run. We also performed extra steps external to DeepBrainIPP
to prepare the segmentation outputs for evaluation. As part of its workflow, DeepBrainIPP performs
skull stripping and paraflocculi segmentation separately and outputs two individual masks for these two
regions. We thus combined the two segmentation masks into a single binary mask (see App. B for
details).

RodentMRISkullStripping We applied RodentMRISkullStripping (Hsu et al., 2020) to both the orig-
inal and the N4-corrected in vivo isotropic and anisotropic test datasets. We excluded ex vivo datasets
because the developers of this method only trained it on in vivo data.

SHERM We applied SHERM (Y. Liu et al., 2020) to all of the N4-corrected in vivo data. We excluded
the ex vivo datasets because SHERM was not designed for this type of sample. We also omitted the
uncorrected datasets based on SHERM’s instructions to correct for bias fields prior to running SHERM.
In our preliminary tests, the maximally stable extremal region (MSER) selections were not able to survive
the default convexity threshold of 0.85 on our test datasets. We lowered the threshold to 0.7 to produce
better results, which was an approach also taken by Hsu et al. (2020).

3D-PCNN We applied 3D-PCNN (Chou et al., 2011) to the N4-corrected in vivo isotropic, in vivo
anisotropic, and ex vivo datasets. Because the voxel resolutions of our images were not magnified,
we set 3D-PCNN’s zoom factor parameter to 1 and modified the radii of its structural element to 5 for
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lower-resolution images (≥ 100 µm in the dimension of the highest resolution) and 7 for higher-resolution
images (< 100 µm in the dimension of the highest resolution), as per 3D-PCNN’s instructions.

RATS We applied RATS to the N4-corrected test datasets only, as per the pre-processing methods
described by the RATS developers (Oguz et al., 2014). We converted the resulting surface files, which
RATS outputs in VTK polydata (VTP) format, into volumetric binary masks using functions available
in 3DSlicer (Kikinis et al., 2013) as suggested by the RATS usage instructions.

rBET We evaluated rBET (Wood et al., 2013) using all six test datasets. We specified an additional
argument in rBET to set the brain radius to 5 mm to match mouse brain dimensions.

antsBrainExtraction AntsBrainExtraction is an atlas-based method that requires a brain MRI tem-
plate with an intact skull and a corresponding probability map of the brain region. We generated six
separate MRI templates and sets of corresponding brain probability maps using the images and masks
from the training datasets (see App. B for more details). We only evaluated antsBrainExtraction on the
uncorrected images because the antsBrainExtraction workflow includes its own N4 bias field correction.
We note that prior to running these steps, we modified the image header information to increase the
voxel dimension sizes by a factor of 10 to approximate human MRI resolutions.

2.9.2 Statistical Comparison

We evaluated the segmentation results for each of the methods using Dice and HD95 measures computed
relative to the manually-edited data. We then performed two-tailed Welch’s t-tests to determine whether
the results were statistically different from those of Mouse Brain Extractor. As described above, some
methods were not run on all datasets because of the limitations of those methods. Additionally, 3D-
PCNN failed to complete processing for four images, and DeepBrainIPP produced empty masks that did
not identify any brain matter for 11 images. We ommitted these methods that produced an incomplete
set of masks for a particular dataset from the subsequent analysis.

3 Results

We performed the processing steps as described in Section 2. The models for Mouse Brain Extractor,
nnU-Net, and SwinUNETR were trained on multiple computers, each of which had either an NVIDIA
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Titan RTX or an NVidia GeForce RTX 4090 graphical processing unit (GPU) that was used for training.
Each GPU had 24GB memory. We applied the trained Mouse Brain Extractor, SwinUNETR, and nnU-
Net models and the other seven algorithms (antsBrainExtraction, RATS, rBET, SHERM, 3D-PCNN,
DeepBrainIPP, RodentMRISkullStripping) to the test datasets detailed in Section 2.5.3 as summarized
in Table 3. All methods completed without processing errors, with the exception of 3D-PCNN, which
failed to finish on four of the in vivo anisotropic MRI. DeepBrainIPP failed to detect any brain matter
in six uncorrected and five N4-corrected MRIs from the in vivo anisotropic test dataset.

We computed Dice coefficients and HD95 measures between each automated segmentation result and the
corresponding manually-edited mask. The distributions of the Dice and HD95 measures for all methods
are shown in Figs. 3 and 4, respectively. 3D-PCNN and DeepBrainIPP are omitted from the plots for the
in vivo anisotropic test data results in Figs. 3D and 4D because neither method generated a complete
set of brain segmentations for those datasets.

We performed two-tailed Welch’s t-tests (Welch, 1947) on the Dice scores and the HD95 measures of
Mouse Brain Extractor against those of the other methods. As shown in the box plots in Figs. 3 and
4, nnU-Net and SwinUNETR, and Mouse Brain Extractor had results that were competitive with each
other, while the results for the remaining algorithms were worse in general. Mouse Brain Extractor’s
average Dice and HD95 measures were statistically better than those of antBrainExtraction, RATS,
rBET, SHERM, 3D-PCNN, DeepBrainIPP, and RodentMRISkullStripping for all test datasets (Dice:
10−25 < p < 10−3; HD95: 10−17 < p < 10−3). For the in vivo isotropic datasets, antsBrainExtraction,
3D-PCNN, SHERM and RodentMRISkullStripping also performed competitively against nnU-Net. We
note that for RATS and RodentMRISkullStripping, we also performed comparisons excluding the coronal
slices past the cerebellum, because these methods include parts of the spinal cord in the brain mask by
design. Doing so provided small improvements in the Dice and HD95 measures. However, this did not
change their overall competitiveness, and their evaluation metrics were still worse statistically than those
of Mouse Brain Extractor.

We therefore focus primarily on the results of nnU-Net, SwinUNETR, and Mouse Brain Extractor. The
Dice and HD95 results for these three methods are shown in expanded views for each plot in Figs. 3 and
4 to facilitate interpretation. Mouse Brain Extractor produced average Dice coefficients and HD95 mea-
sures that were better, with statistical significance, than those of nnU-Net for both sets of in vivo isotropic
data (Figs. 3AB and 4AB). For the uncorrected in vivo isotropic data, Mouse Brain Extractor achieved
an average Dice coefficient of 0.9863±0.0048 and an average HD95 of 120.5±33.5 µm. These results
were significantly better than nnU-Net’s mean Dice coefficient of 0.9654±0.0061 (p = 7.55 × 10−16)
and mean HD95 measure of 266.0±52.0 µm (p = 2.44 × 10−13). Similarly, for the N4-corrected in vivo

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2024. ; https://doi.org/10.1101/2024.09.03.611106doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.03.611106
http://creativecommons.org/licenses/by-nc-nd/4.0/


31

rBET

DeepBrai
nIPP

RodentM
RISk

ullS
tri

pping

nnU-N
et

Sw
inUNETR

Mouse Brai
n Extr

ac
tor

0.7

0.8

0.9

1.0

Di
ce

nnU-N
et

Sw
inUNETR

Mouse Brai
n Extr

ac
tor

0.95

0.96

0.97

0.98

0.99 ***

rBET

DeepBrai
nIPP

RodentM
RISk

ullS
tri

pping†

nnU-N
et

Sw
inUNETR

Mouse Brai
n Extr

ac
tor

0.7

0.8

0.9

1.0

Di
ce

nnU-N
et

Sw
inUNETR

Mouse Brai
n Extr

ac
tor

0.97

0.98

0.99 **

rBET

DeepBrai
nIPP

RATS

3D-PCNN

SH
ERM

RodentM
RISk

ullS
tri

pping

nnU-N
et

Sw
inUNETR

Mouse Brai
n Extr

ac
tor

0.0

0.2

0.4

0.6

0.8

1.0

Di
ce

nnU-N
et

Sw
inUNETR

Mouse Brai
n Extr

ac
tor

0.94

0.96

0.98

***

rBET

DeepBrai
nIPP

†

RATS

3D-PCNN
†

SH
ERM

RodentM
RISk

ullS
tri

pping

nnU-N
et

Sw
inUNETR

Mouse Brai
n Extr

ac
tor

0.0

0.2

0.4

0.6

0.8

1.0

Di
ce

nnU-N
et

Sw
inUNETR

Mouse Brai
n Extr

ac
tor

0.965

0.970

0.975

0.980

0.985

rBET

DeepBrai
nIPP

RATS

3D-PCNN

SH
ERM

†

RodentM
RISk

ullS
tri

pping†

nnU-N
et

Sw
inUNETR

Mouse Brai
n Extr

ac
tor

0.0

0.2

0.4

0.6

0.8

1.0

Di
ce

nnU-N
et

Sw
inUNETR

Mouse Brai
n Extr

ac
tor

0.97

0.98

0.99 *

rBET

DeepBrai
nIPP

†

RodentM
RISk

ullS
tri

pping

nnU-N
et

Sw
inUNETR

Mouse Brai
n Extr

ac
tor

0.5

0.6

0.7

0.8

0.9

1.0

Di
ce

nnU-N
et

Sw
inUNETR

Mouse Brai
n Extr

ac
tor

0.965

0.970

0.975

0.980

0.985

B. In Vivo Isotropic (N4-Corrected)A. In Vivo Isotropic

D. In Vivo Anisotropic (N4-Corrected)C. In Vivo Anisotropic

F. Ex Vivo (N4-Corrected)E. Ex Vivo

Figure 3: Dice Results. Box plots of the Dice similarity coefficients for the methods compared, applied
to: A) uncorrected in vivo isotropic data; B) N4-corrected in vivo isotropic data; C) uncorrected in vivo
anisotropic data; D) N4-corrected in vivo anisotropic data; E) uncorrected ex vivo data; F) N4-corrected
ex vivo data. Higher Dice values indicate a better segmentation overlap and range between 0 and 1.
We performed pairwise statistical comparisons on the Dice scores of our method Mouse Brain Extractor
against those of other methods using two-tailed Welch’s t-tests. NnU-Net and SwinUNETR were the
most competitive against Mouse Brain Extractor. We thus display for each plot an expanded view of nnU-
Net, SwinUNETR, and Mouse Brain Extractor. The significance bars and asterisks are shown only for the
subplot (*p < 0.02; **p < 0.01; ***p < 5 × 10−11). Mouse Brain Extractor consistently outperformed
the rest of the methods (rBET, DeepBrainIPP, RodentMRISkullStripping, antsBrainExtraction, RATS,
3D-PCNN, SHERM) across all datasets. †Greyed text indicates methods were not evaluated for a
particular dataset (see Sec. 2.8 and App. B for details).
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B. In Vivo Isotropic (N4-Corrected)A. In Vivo Isotropic
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Figure 4: HD95 results. Box plots of the 95th percentile Hausdorff distance results for the methods
compared, applied to: A) uncorrected in vivo isotropic data; B) N4-corrected in vivo isotropic data;
C) uncorrected in vivo anisotropic data; D) N4-corrected in vivo anisotropic data; E) uncorrected ex
vivo data; F) N4-corrected ex vivo data. Smaller distance measures indicate a closer proximity of
segmentation boundaries and are measured in µm. We conducted pairwise two-tailed Welch’s t-tests
on the HD95 measures of Mouse Brain Extractor and those of every other method. NnU-Net and
SwinUNETR were the most competitive against Mouse Brain Extractor, and their results are shown in
expanded views. We show significance bars and asterisks only for these subplots (*p < 0.02; **p < 0.01;
***p < 5 × 10−11). Mouse Brain Extractor achieved statistically lower HD95 measures on the rest of
the methods (rBET, DeepBrainIPP, RodentMRISkullStripping, antsBrainExtraction, RATS, 3D-PCNN,
SHERM) on all datasets. †Greyed text indicates methods were not evaluated for a particular dataset
(see Sec. 2.8 and App. B).
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isotropic data, Mouse Brain Extractor yielded higher Dice scores (0.9863±0.0051; p = 1.61 × 10−11)
and lower HD95 metrics (124.9±42.3 µm; p = 7.5 × 10−3) than nnU-Net (Dice: 0.9606±0.0106; HD95:
606.1±766.4 µm). Mouse Brain Extractor performed comparably to SwinUNETR and did not dif-
fer statistically on either the uncorrected in vivo isotropic data (Dice: 0.9855±0.0052, p = 0.5807;
HD95: 127.0±46.1 µm, p = 0.5954) or the N4-corrected in vivo isotropic data (Dice: 0.9854±0.0052,
p = 0.5727; HD95: 129.5±48.5 µm, p = 0.7371).

For the uncorrected and N4-corrected in vivo anisotropic datasets (Fig. 3C&D), the average Dice scores
for nnU-Net and SwinUNETR were slightly higher than those of Mouse Brain Extractor, but these
differences did not reach statistical significance. The average HD95 measures (Fig. 4C&D) for nnU-
Net were lower than those of Mouse Brain Extractor, but again these results were not statistically
significant. Specifically, for the uncorrected in vivo anisotropic data, Mouse Brain Extractor achieved
an average Dice coefficient of 0.9808±0.0048 and an average HD95 of 165.0±112.7 µm, which were
not significantly different from the corresponding results of nnU-Net (Dice: 0.9821±0.0045, p = 0.2906;
HD95: 157.1±138.9 µm, p = 0.8199) or SwinUNETR (Dice: 0.9816±0.0052, p = 0.5277; HD95:
179.7±181.6 µm, p = 0.7222). For the N4-corrected in vivo anisotropic data, Mouse Brain Extractor
achieved an average Dice coefficient of 0.9806±0.0047 and average HD95 of 162.8±92.3 µm, which again
did not differ significantly from nnU-Net (Dice: 0.9822±0.0045, p = 0.2137; HD95: 156.2±138.4 µm,
p = 0.8392) or SwinUNETR (Dice: 0.9817±0.0054, p = 0.4191; HD95: 175.7±181.5 µm, p = 0.7432).

For the ex vivo datasets, Mouse Brain Extractor produced average Dice coefficients and average HD95
measures that were better statistically than those of SwinUNETR (Figs. 3EF and 4EF). For the uncor-
rected ex vivo data, Mouse Brain Extractor produced a mean Dice score of 0.9844±0.0059 and a mean
HD95 measure of 111.0±55.4 µm, which were significantly better than SwinUNETR’s mean Dice score
(0.9791±0.0056; p = 7.65 × 10−3) and mean HD95 measure (179.9±76.7 µm; p = 3.18 × 10−3). Simi-
larly, for the N4-corrected ex vivo data, Mouse Brain Extractor yielded higher mean Dice (0.9842±0.0054;
p = 0.0112) and HD95 measures (114.3±44.3 µm; p = 0.0101) than SwinUNETR (Dice: 0.9793±0.0059;
HD95: 182.8±98.4 µm). Mouse Brain Extractor performed comparably to nnU-Net and did not differ
significantly on either the uncorrected data (Dice: p = 0.3260; HD95: p = 0.3182) or the N4-corrected
data (Dice: p = 0.2603; HD95: p = 0.1469).

We additionally assessed whether N4-correction significantly altered the automated methods’ perfor-
mances. We computed two-tailed Welch’s t-tests on the evaluation metrics derived from the predicted
segmentations generated using uncorrected and N4-corrected data. Interestingly, N4-correction negatively
impacted nnU-Net’s performance on the in vivo isotropic data, for which nnU-Net rendered a significantly
worse HD95 measure in the N4-corrected data compared to the uncorrected data (p = 0.0496). No other
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statistically significant difference was observed across the other methods and dataset types.

Although Dice scores and HD95 provide quantitative measures of segmentation similarities, they do not
convey spatial information about the specific regions where the methods exhibited accurate or inaccurate
performance. We thus show in Fig. 5 examples of individual segmentation outputs produced by nnU-
Net, SwinUNETR, and Mouse Brain Extractor, compared individually with the manually labeled masks.
The subjects shown correspond to the images that resulted in the best and worst Dice scores for Mouse
Brain Extractor on the uncorrected data; for consistency, we show the same subjects and slices for all
three methods. As observed in the figure, the boundaries in the superior frontal regions were labeled
correctly in general by all three methods across all datasets. In contrast, each of these methods often
labeled the ventral regions of the brain incorrectly, possibly because of attenuated signals caused by severe
inhomogeneity fields. Each method commonly mis-segmented the paraflocculi in the in vivo anisotropic
dataset, perhaps because of substantial partial volume effects caused by large slice thicknesses. In the
ex vivo data, only Mouse Brain Extractor incorrectly labeled the non-brain areas near the cerebellum,
specifically, neck muscles. This may be due to the unclear boundary of the brain in this area. We note
that applying N4 correction improved Mouse Brain Extractor’s segmentation of this area.

We also created error maps to visualize where the methods most commonly fail. Following the approach
we previously applied when evaluating skull-stripping methods in human MRI (Shattuck et al., 2009), we
created spatial maps of the false positive and false negative errors relative to the manual delineations. We
first applied ANTs nonlinear registration (Avants et al., 2011) to each image in each dataset to produce
a spatial transform to the Mortimer Space Atlas (MSA50; Meyer et al., 2017). For each method being
evaluated, we computed image arrays of false positive and false negative values by comparing its output
masks with the manually-edited masks at each voxel. We resampled these false positive and false negative
images to the MSA50 space using the ANTs transforms and linear interpolation, and then averaged the
maps across each dataset to produce separate mean false positive and mean false negative images. These
volumes thus represent the frequency of error at each voxel in the atlas space. We then summed the
average error maps along the x-axis to produce sagittal views of the error densities.

Figures 6 and 7 show the spatial maps of false positives and false negatives, respectively, for nnU-Net,
SwinUNETR, and Mouse Brain Extractor computed for the uncorrected versions of the in vivo isotropic,
in vivo anisotropic, and ex vivo data. Results from the N4-corrected data produced similar maps and
are omitted for brevity. As seen in Fig. 6, all three methods showed relatively high false positives in
the ventral region where the trigeminal nerves reside, as well as in the posterior (brainstem-spinal cord)
boundary, indicating that the methods often mislabeled these structures as brain matter. In particular,
SwinUNETR’s errors in the ex vivo data were mainly in the brainstem-spinal cord boundary, where
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Figure 5: Examples of individual brain segmentations generated by nnU-Net, SwinUNETR, and
Mouse Brain Extractor. Green pixels indicate the boundary voxels identified only by the manually-
edited brain masks, while purple pixels indicate boundary voxels labeled only by the automated methods.
Orange pixels indicate agreement between the manual and automated segmentation methods. For each
dataset, the best and worst cases (top and bottom rows, respectively) were selected based on Mouse Brain
Extractor’s Dice scores. All segmentation results and MRI slices shown are from the uncorrected test
datasets. All three methods perform well near the superior frontal portion of the brain but had reduced
accuracy in the ventral regions as well as in the paraflocculus. We note that when the boundaries are
parallel to the plane of section, the contour lines appear thicker. Shown are: in vivo isotropic images
from (top) a healthy control male from the EAE cohort and (bottom) a healthy male from the NeAT
cohort; in vivo anisotropic images from (top) a B6-CC61 heterozygous male from the Chd8 cohort and
(bottom) a sham surgery female from the TBI cohort; and ex vivo images from (top) an EAE-induced
female from the EAE cohort and (bottom) a healthy female from the EAE cohort.
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Figure 6: Average counts of false positive voxels for nnU-Net, SwinUNETR, and Mouse Brain
Extractor. The images show where non-brain voxels were commonly mislabeled as brain. Each image
displays the average false positive count along the x-axis. For each method and dataset, the false positive
maps were registered non-linearly to the MSA50 atlas (Meyer et al., 2017), resampled to the atlas space,
summed along the x-axis, and averaged over subjects. In general, higher average false positive counts
were concentrated in the trigeminal nerve and spinal cord regions compared to other areas.

SwinUNETR mislabeled the spinal cord as brain. NnU-Net also showed higher false positives in the
regions posterior to the cerebellum in the isotropic data, but nnU-Net’s errors were distributed more
spatially across the whole brain.

In the average false negative maps (Fig. 7), more errors can be seen in the regions near the trigeminal
nerves in all datasets for all three methods. NnU-Net’s in vivo isotropic segmentation outputs produced
a higher false negative count around the brain boundaries, indicating that there was frequent misidenti-
fication of brain matter in these areas. The ventral regions in particular showed higher false negatives.
For the ex vivo data, SwinUNETR occasionally mislabeled the parafloccular nodules as non-brain matter,
whereas Mouse Brain Extractor mislabeled parts of the spinal cord as non-brain.
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Figure 7: Average counts of false negative voxels for nnU-Net, SwinUNETR, and Mouse Brain
Extractor. The images show areas where brain voxels were commonly mislabeled as non-brain. For
each method and dataset, the false negative maps were aligned to the MSA50 atlas (Meyer et al., 2017)
using nonlinear registration, resampled to the template space, summed along the x-axis, and averaged
over subjects. Common regions of false negatives included the trigeminal nerve, the spinal cord, and the
paraflocculus.

4 Discussion

We have presented Mouse Brain Extractor, a method for segmenting the brain from whole-head mouse
MRI data. Mouse Brain Extractor builds upon SwinUNETR (Hatamizadeh et al., 2021) by incorporating a
new variation of absolute positional encoding called Global Positional Encoding. Our position embeddings
are based on a shared coordinate frame that encompasses the whole input image. As a result, Mouse Brain
Extractor performed competitively without needing to resample the input images or the segmentation
outputs. Furthermore, to increase our model’s generalizability, we curated a heterogeneous collection
of previously-acquired mouse MRI data, encompassing a variety of populations, sexes, ages, animal
preparations, genotypes, and strains. These datasets also featured diverse MRI contrasts acquired using
an array of scanner types and protocols. We generated corresponding brain masks by manually editing
and minimally postprocessing an initial set of brain segmentations, which we used as ground truth
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labels. Based on our evaluations, Mouse Brain Extractor achieved Dice coefficients of approximately
0.98 and HD95 measures of approximately 100 to 200 µm when assessed against the ground truth
labels. Our proposed method consistently outperformed rBET, DeepBrainIPP, RodentMRISkullStripping,
antsBrainExtraction, RATS, 3D-PCNN, and SHERM across all datasets with statistical significance.

In comparison with nnU-Net and SwinUNETR, two state-of-the-art deep learning methods, Mouse Brain
Extractor also performed competitively. Mouse Brain Extractor produced significantly better Dice and
HD95 values than nnU-Net on in vivo isotropic resolution datasets and than SwinUNETR on ex vivo
datasets. When considering the mean values, Mouse Brain Extractor achieved a Dice score that was
approximately 0.02 higher than that of nnU-Net in the in vivo isotropic dataset. In the in vivo anisotropic
resolution datasets, Mouse Brain Extractor performed comparably to nnU-Net and SwinUNETR and did
not differ statistically in either Dice or HD95 measures. For the ex vivo data, Mouse Brain Extractor
resulted in Dice scores that were approximately 0.005 higher than those of SwinUNETR. We note that
although the Dice similarity improvements appear modest, the brain segmentations were composed of a
large number of voxels and a relatively smooth object of interest. This means that the the scores for the
best methods were highly compressed near the maximum value of the Dice similarity coefficient. As the
segmentation sizes become larger, the incremental increases in the segmentations produce smaller changes
in the resulting Dice scores. For example, consider two cubic sets of segmented voxels T and U , where
T is a cube of size (N + 2) × (N + 2) × (N + 2) and U is a cube of size N × N × N comprising the
interior voxels of T . In this case, the Dice coefficient can be simplified to 2|U∩T |

|U |+|T | = 2|U |
|U |+|T | = 2N3

N3+(N+2)3 .
If N = 10, the Dice score is approximately 0.733. However, if the sizes of the cubes are increased such
that N = 100, the Dice score becomes approximately 0.970. For larger objects, single-voxel boundary
shifts have a reduced effect on the Dice score. Brain segmentation methods that perform well often differ
primarily near the boundary voxels, but match in the interior of the brain. Improvements in detecting the
boundary accurately can thus appear less impactful. For cases with larger segments, boundary measures
can provide more informative quantitative metrics than Dice scores. This can be seen in the HD95
measures, which were on the order of 110 µm for Mouse Brain Extractor and 180 µm for SwinUNETR.
Here, the discrepancies in the distances are more noticeable compared to the differences in the Dice
scores.

We observed similar statistical significance in the evaluation of segmentation results generated from
the N4-corrected images by nnU-Net, SwinUNETR, and Mouse Brain Extractor. We also note that all
three methods were robust to bias field artifacts and N4-correction, with the exception of one case from
nnU-Net. In the in vivo isotropic data, nnU-Net’s HD95 increased by 340 µm in the N4-corrected data
compared to the uncorrected data. One possible reason for the worse performance is that N4-correction
could have inaccurately transformed the image intensities. The bias field artifacts were particularly
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severe in the in vivo isotropic dataset, thus N4-correction could have increased the effect of the artifact
by pushing the intensity image values in the wrong direction. This would have caused the existing
hyperintense voxels to become brighter and hypointense areas to become darker. Mouse Brain Extractor
was less sensitive to the effects of N4-correction and yielded HD95 measures that were on the order
of 120 µm for both the uncorrected and N4-corrected data. Additionally, N4-correction may not be
a necessary pre-processing step for Mouse Brain Extractor or for SwinUNETR because they performed
comparably on both uncorrected and N4-corrected data, with no statistical significance.

In general, there were some anatomical areas that nnU-Net, SwinUNETR, and Mouse Brain Extractor
commonly mislabeled. One of these was the ventral region of the brain. There were substantial bias field
artifacts in the in vivo datasets, which produced signals that were often attenuated in the ventral regions.
This may have made it more challenging for the automated methods to detect edges. In particular, nnU-
Net often mis-segmented these areas in the in vivo isotropic datasets. NnU-Net’s accuracy may have
suffered in this case due to the lack of global spatial context, which was limited because of its 2D
input or convolutional architecture. Conversely, Mouse Brain Extractor, which incorporated 3D inputs
and Transformer blocks, produced far fewer errors in these same regions. Field inhomogeneity can also
make it difficult to identify the paraflocculus. This was especially challenging in the in vivo anisotropic
datasets, because the inter-plane slice thicknesses were much larger compared to the other datasets.
The paraflocculi are small in size, thus the partial volume effect greatly exacerbated the blurring of their
boundaries.

Other common areas where segmentation errors occurred included the trigeminal nerve boundary and
the brainstem-spinal cord boundary. These boundaries do not exhibit distinct physical features and
require contextual information from the surrounding anatomy to be identified correctly. According to
the convention of our manual delineation protocol, the trigeminal nerve is included in the brain mask
when the peduncles have appeared in the coronal view. Similarly, our protocol excludes the spinal
cord from the brain mask when the cerebellum is not present in the coronal view. The automated
methods may have difficulty delineating these boundaries because the algorithms based their boundaries
on local spatial patterns and contrasts, whereas the human rater followed a protocol that determines a
delineation, in part, by the appearance of anatomical structures in a slice that is dependent on a specific
scanning orientation (e.g., the coronal plane). Such errors were observed frequently in SwinUNETR’s
segmentation results for the ex vivo datasets, which included images with large sizes and multiple image
resolutions. However, with the inclusion of Global Positional Encoding in our Mouse Brain Extractor
method, performance in these regions improved. This suggests that the GPEs may have provided the
model with additional spatial context regarding the subimage’s location relative to the whole image. In
contrast, in the case of the in vivo anisotropic data, which consisted of larger subimage sizes and smaller
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input image volumes, SwinUNETR performed competitively, possibly because more of the image could
be captured in the subimage.

A key strength of our approach is its ability to perform well across multiple different types of acquisitions
and mouse brain models. In addition to the variety of image quality and resolutions, the datasets used
for this study encompassed a wide range of brain disorders with distinct anatomical differences. For
example, the TBI dataset contained mice with abnormal brain deformations that were markedly distinct
from the macrocephalic Chd8 mice. Despite these differences in anatomy and image appearance, Mouse
Brain Extractor was consistently able to segment the brains accurately.

One limitation of our study is the lack of T1-weighted contrasts in the in vivo MRI datasets, which
makes our method less generalizable to these types of data. Another limitation is the longer inference
time compared to nnU-Net. This is primarily because of an increased number of multiply-add operations
and model parameters in Mouse Brain Extractor and the calculation of the global positional encodings.
This makes our method slower than nnU-Net and SwinUNETR by approximately 3-fold and 1.2-fold,
respectively. NnU-Net contains on the order of 30 million parameters and requires approximately 200
billion floating point operations (FLOPs) to infer a single brain mask for an input MRI. SwinUNETR and
Mouse Brain Extractor each have on the order of 40 billion parameters and require approximately 700
billion FLOPs for the neural network to infer a single brain mask. Additionally, the generation of the 48-
element global positional encodings in the Mouse Brain Extractor, which are computed immediately prior
to model inference, further increases the number of FLOPs and the computation time by approximately
20-fold compared to SwinUNETR.

We plan to extend the present work in multiple ways. We are currently incorporating the brain segmen-
tation software into a larger, more comprehensive analysis framework for performing group studies on
preclinical images. We also plan to train and test these tools on rat brain MRI to expand its application
in preclinical rodent imaging. Finally, we are exploring ways to improve the computational efficiency of
the methods.

Ethics Statement

The MRI data used in this study were acquired previously in separate studies (Hubbard et al., 2021; Itoh
et al., 2023; MacKenzie-Graham et al., 2009; Meyer et al., 2017), as part of ongoing studies of specific
mouse models (Tabbaa et al., 2023), or retrieved from an open-access repository (Y. Ma et al., 2008).
All studies from which we retrieved data were performed in accordance with the National Institutes of
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Health Guide for the Care and Use of Laboratory Animals and appropriate Institutional Animal Care and
Use Committees (IACUC).

Data and Code Availability

The Python source code for Mouse Brain Extractor is released under the the GNU General Public License
v2.0 only (GPL-2.0-only) and is available from our GitHub repository: https://github.com/MouseSuite/
MouseBrainExtractor. We have also released Docker and Singularity/Apptainer images that contain the
pre-trained weights and all software dependencies necessary to run Mouse Brain Extractor. Instructions
for use are provided on our GitHub page.

The MRI data used from the MRM NeAt dataset are publicly available the NeAT GitHub repository:
https://github.com/dama-lab/mouse-brain-atlas/tree/master/NeAt/in vivo. The remaining MRI data
used in this paper are not publicly available. MRI data for the EAE, aging, and TBI cohorts are available
upon reasonable request, which may be sent to the corresponding author. Original MRI data for the
Chd8 dataset will be available upon reasonable request once the neuroanatomical strain differences are
reported in a separate publication. Requests for access will be considered by the relevant coauthors in
accordance with necessary data sharing agreements or other institutional requirements.
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A MRI data summary

In this section, we describe the imaging acquisition procedures that were used to acquire the MRI data
used in our study (see Table 4) and the demographic details for the mice that were scanned. A subset
of these data (see Table 5) were used to evaluate the different methods compared in this paper. All
imaging data were collected previously as parts of other studies (Hubbard et al., 2021; Itoh et al., 2023;
MacKenzie-Graham et al., 2009; Meyer et al., 2017), were acquired as part of ongoing studies of specific
mouse models (Tabbaa et al., 2023), or were retrieved from a publicly available open-access repository
(Y. Ma et al., 2008).

Dataset

in vivo
isotropic

in vivo
anisotropic

ex vivo

Cohort Sequence

T2 RARE (TR=3500 ms;
TEeff=32 ms; ETL=16)

T2 RARE (TR=1500 ms;
TEeff=10 ms)

T2 spin echo (TR=400 ms;
TE=7.5 ms)

T2 turbo RARE

RF refocused spin echo
T1 FLASH (TR=58.885 ms;

TE=7.713 ms);
T1 FLASH (TR=23.3 ms;

TE=4.38 ms)

T2 turbo spin echo
(TR=2070 ms; TE=42 ms)

Scanner

7 T Bruker;
11.7 T Biospec

Bruker

7 T Bruker/
Siemens
Clinscan

11.7 T Biospec
Bruker

11.7 T Biospec
Bruker

11.7 T Bruker

9.4 T Magnex/
Bruker

9.4 T Agilent

x-axis

100.0 ± 0.0

100.0 ± 0.0

56.1 ± 0.3

80.4 ± 16.5

46.2 ± 0.8

43.0 ± 0.0

64.5 ± 0.0

50 ± 0.0

z-axis

100.0 ± 0.0

100.0 ± 0.0

56.0 ± 0.4

80.4 ± 16.5

37.5 ± 0.0

43.0 ± 0.0

64.5 ± 0.0

50 ± 0.0

x-axis

[192, 192]

[192, 192]

[284, 320]

[256, 384]

[256, 512]

[256, 256]

[154, 169]

[244, 284]

z-axis

[100, 100]

[96, 96]

[284, 320]

[208, 312]

[256, 256]

[256, 256]

[127, 183]

[159, 204]

y-axis

[256, 256]

[256, 256]

[48, 80]

[18, 21]

[512, 512]

[512, 512]

[217, 272]

[330, 389]

y-axis

Image resolutions (µm ± sd) Image dimensions [min, max]

100.0 ± 0.0

100.0 ± 0.0

333.7 ± 68.4

777.5 ± 13.1

50 ± 0.0

43.0 ± 0.0

64.5 ± 0.0

50 ± 0.0

EAE
Meyer et al., 2017

NeAt
Ma et al., 2008

Chd8
Tabbaa et al., 2023

TBI
Hubbard et al., 2021

EAE
MacKenzie-Graham et al., 2009

[1, 1]

[1, 1]

[3.98, 6.70]

[8.57, 15.36]

[1, 1.85]

Voxel Aspect Ratio
[min,max]

T2 RARE (TR=3500 ms;
TEeff=32 ms; ETL=16)

7 T Bruker;
11.7 T Biospec

Bruker
100.0 ± 0.0 100.0 ± 0.0 [192, 192] [100, 100][256, 256]100.0 ± 0.0Aging

Itoh et al., 2023 [1, 1]

Table 4: MRI description for the data used in this study. In total, our study gathered datasets that
were scanned using eight distinct pulse sequences at five different MR scanners. All datasets except for
the in vivo isotropic resolution images had varying degrees of resolutions. Voxel aspect ratio is the ratio
of the maximum to the minimum voxel edge length. X-, y-, and z-axis refer to a right-anterior-superior
orientation, where x-axis represents left/right, y-axis represents rostral/caudal, and z-axis represents
dorsal/ventral.
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Dataset

in vivo
isotropic

in vivo
anisotropic

ex vivo

Cohort Strain

15 C57BL/6

2 C57BL/6

7 B6-CC61
5 B6-CC17

16 C57BL/6

20 C57BL/6

15 WT

2 WT

16 WT

20 WT

6 HET
6 WT

Genotype

11 F / 10 M

0 F / 2 M

6 F / 6 M

8 F / 8 M

17 F / 3 M

Sex

15

2

12

16

20

Total

9 EAE / 12 healthy controls

8 injured / 8 sham
4 0-DPI / 4 30-DPI / 4 100-DPI / 4 166-DPI
13 EAE / 7 healthy controls
4 SOD1-/-

4 AAV-treated

Notes

4.91 ± 0.48

3.25 ± 0.25

10.68 ± 1.52

4.97 ± 2.21

4.66 ± 1.34

Age at Scan
(mos. ± sd)

EAE
Meyer et al., 2017

NeAt
Ma et al., 2008

Chd8
Tabbaa et al., 2023

TBI
Hubbard et al., 2021

EAE
MacKenzie-Graham et al., 2009

6C57BL/6 6 WT 3 F / 3 M 6Aged 5 to 24 months13.17 ± 7.94Aging
Itoh et al., 2023

Table 5: Demographic information for the test datasets. A subset of images representative of
each cohort was used to evaluate the methods. Voxel aspect ratio is the ratio of the maximum to the
minimum voxel edge length and days-post-injury (DPI) indicates the number of days after brain injury
or sham surgery.

A.1 In vivo experimental autoimmune encephalomyelitis (EAE) and aging
data

The in vivo EAE and aging dataset we selected for our study consisted of 30 EAE-induced mice and
44 healthy controls. Twelve of the healthy control mice were scanned at the Small Animal Imaging
Core (SAIC) at the Children’s Hospital Los Angeles (CHLA) using an 11.7 T BioSpec (Bruker Instru-
ments, Billerica, MA) scanner. The remaining mice were scanned at the Ahmanson-Lovelace Brain
Mapping Center (ALBMC) at UCLA using a 7 T Bruker (Bruker Instruments, Billerica, MA) scan-
ner. Both cohorts were imaged using a rapid-acquisition with relaxation enhancement (RARE) sequence
(TR/TEeff = 3500/32 ms, ETL = 16, matrix = 256 × 192 × 100, voxel dimensions = 100 µm isotropic
resolution) (Itoh et al., 2023; Meyer et al., 2017).

A.2 MR microscopy (MRM) NeAt data

For our study, we used five mouse MRI (5M; age at scan 3.25 ± 0.25 months) from the publicly
available MRM NeAt dataset (https://github.com/dama-lab/mouse-brain-atlas/tree/master/NeAt/in
vivo), which includes 11 male T2w images, with ages ranging from 3 to 3.5 months old at the time of
the scan (Y. Ma et al., 2008). We excluded six of these images from our study because of their poor
quality. All MRM NeAt mouse MRI data were acquired using a 9.4 T Magnex horizontal bore magnet
with an ADVANCE Bruker console (Bruker, Billerica, MA) with the following acquisition parameters:
145° flip angle; TE = 7.5 ms; TR = 400 ms; 100 µm isotropic resolution (Ali et al., 2005; Bogdan
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& Joseph, 1990; DiIorio et al., 1995; Elster & Provost, 1993; J. Ma et al., 1996). Additional details
regarding the MRM NeAt data can be found in (Y. Ma et al., 2008).

A.3 Chd8 data

All 36 mice from the Chd8 cohort were acquired at SAIC using an 11.7 T Bruker BioSpin (Bruker
Instruments, Billerica, MA) using two similar T2 sequences. Twenty-six mice (13F/13M; 13 HET/13WT;
12 B6-CC17/14 B6-CC61; age at scan 11.16 ± 1.1 months) were scanned using a T2 turbo RARE
sequence (TE = 20 ms; TR = 2800 ms; 48 slices; field of view = 18 mm × 18 mm; in-plane matrix = 320
× 320, slice thickness 0.056 mm). Images from another 10 mice (5F/5M; 5 HET/5WT; 3 B6-CC17/7
B6-CC61; age at scan 2.03 ± 0.2 months) were acquired on the same scanner using a slightly different
T2 turbo RARE sequence (TE = 20 ms; TR = 2250; 40 slices; field of view = 16 mm × 16 mm; in-plane
matrix = 284 × 284, slice thickness 0.214 mm).

A.4 Traumatic brain injury (TBI) data

The mice from the TBI study were scanned using a 7T Bruker/Siemens Clinscan scanner using a turbo
spin echo sequence (TR = 2070 ms; TE = 42 ms; field of view = 40 mm × 0.7 mm × 40 mm; in-plane
matrix = 384 × 512). Twelve consecutive slices were acquired near the site of controlled cortical impact
(CCI) injury or sham surgery. More information on the imaging is available in (Hubbard et al., 2021).

A.5 Ex vivo EAE data acquired at the Duke Center for In Vivo Microscopy
(CIVM)

Magnetic resonance histology was performed on the cohort scanned at CIVM using a 9.4 T Agilent
scanner solenoid coil using a radiofrequency (RF) refocused spin echo sequence. The reconstructed
image size was 512 × 1024 × 512 with an isotropic resolution of 21.5 µm. For the purpose of the
MacKenzie-Graham et al. (2009) study, the data were downsampled by a factor of 2 to produce a final
image size of 256 × 512 × 256, yielding an isotropic resolution of 43 µm.
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A.6 Ex vivo EAE data acquired at the Beckman Institute at the California
Institute of Technology

T2-weighted magnetic resonance microscopy images were acquired using an 11.7 T Bruker (Bruker
Instruments, Billerica, MA) scanner. A RARE 3D imaging sequence was applied (matrix dimensions = 256
× 256 × 256; FOV = 3 cm × 1.5 cm × 1.5 cm; TR = 1500 ms; TEeff = 10 ms; number of averages = 4)
and the resulting image was zero-filled (Farrar & Becker, 2012; Fukushima, 2018) to yield a reconstructed
image of approximately 60 µm3. These images were then resampled to 50 µm × 50 µm × 47.5 µm
resolution. For a more detailed description on these two ex vivo datasets, please see (MacKenzie-Graham
et al., 2009).

The T1-weighted images were acquired using the same scanner (11.7 T Bruker) using the Fast Low
Angle Shot (FLASH) sequence (matrix dimensions = 512 × 100 × 150; FOV = 3.3 cm × 1.1 cm ×
1.65 cm; TR = 58.885 ms; TE = 7.713 ms; number of averages = 80).

A.7 Ex vivo EAE data acquired at the Small Animal Imaging Core (SAIC)
at Children’s Hospital Los Angeles

All ex vivo images collected at SAIC were acquired using an 11.7 T BioSpec (Bruker Instruments,
Billerica, MA) scanner. The T1-weighted images were acquired using the following parameters: FLASH
sequence; matrix dimensions = 600 × 300 × 300; FOV = 3 cm × 1.5 cm × 1.5 cm; TR = 23.3 ms;
TE = 4.38 ms; number of averages = 24.

B Processing and application of existing methods

The following summarizes the steps we performed to apply DeepBrainIPP and antsBrainExtraction on
the test datasets for method comparison.

B.1 DeepBrainIPP

During the application of DeepBrainIPP on our test datasets, we observed algorithm failures on a subset
of our data. We surmised that these were because DeepBrainIPP could not accommodate some of our
larger images. We addressed this by cropping the images as necessary to meet the DeepBrainIPP’s input
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size constraints before processing them with DeepBrainIPP. We cropped all in vivo isotropic test images
with size 192 × 256 × 100 along the y-dimension to produce a cropped image of size 192 × 230 ×
100. We similarly cropped four ex vivo test images, which were of size 256 × 512 × 256, to 256 × 460
× 256. All image cropping was done symmetrically, with an equal number of slices removed from both
ends of the y-axis. We note that only slices not containing the brain were cropped.

We performed additional post-processing steps external to DeepBrainIPP’s workflow to consolidate its
output brain labels. DeepBrainIPP performs two separate segmentations. First, it segments the larger
brain area, which includes cerebrum, brainstem, and the cerebellum. DeepBrainIPP also performs a
second segmentation to label to capture the smaller floccular nodules in the cerebellum called the bi-
lateral paraflocculi, which is often missed in the larger brain mask. This method results in two separate
segmentation files. In the DeepBrainIPP pipeline, the paraflocculus masks for in vivo and ex vivo data
are resampled to 60 µm isotropic resolution, then zero-padded to produce an output mask of size 448
× 48 × 448. This is subsequently cropped to produce a final segmentation image of size 256 × 288
× 224. However, when segmenting the larger brain in the in vivo dataset, DeepBrainIPP resamples the
data into 60 µm × 48 µm × 60 µm, and then zero pads the images to produce an output image of size
448 × 48 × 448. For ex vivo data, DeepBrainIPP resamples the image to 60 µm isotropic resolution and
then crops it to produce an image size of 256 × 288 × 224. When cropping or padding, DeepBrainIPP
first locates the image center by calculating the center of mass (COM) using image intensity values.
The pipeline then adds or removes slices at the ends of the axes while preserving the COM (Alam et al.,
2022).

As a result, the segmentations had different sizes and resolutions from each other as well as from
the original input image. Moreover, some of the images were translated due to the cropping and
padding. Therefore, we reversed all resampling and resizing processing steps to restore the masks to their
original size and resolution. We used nearest-neighbor interpolation for resampling because DeepBrainIPP
employs this method for resampling their training data and predicted labels. Lastly, we combined the
brain and paraflocculus masks into a single mask by taking the union of the two masks.

B.2 antsBrainExtraction

AntsBrainExtraction is an atlas-based method and requires a brain MRI template with the skull still
attached and a corresponding probability map of the brain region. We generated six separate MRI
templates and corresponding brain probability maps using the images from the training datasets. Two
templates were rendered using Chd8 and TBI training dataset. We created one template to represent the
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in vivo EAE, aging, and NeAt training datasets. We generated three additional templates using the ex
vivo EAE dataset, which we subdivided into groups with similar MR contrasts. We created the templates
using ANTs’ antsMultivariateTemplateConstruction2.sh script 1 (Avants et al., 2011). Using this
script, we performed pairwise linear registration within each cohort to render four template images. Next,
images were non-linearly registered to this template image and averaged to produce the final template
image. The probability maps of the brain region were generated by applying the resulting transforms to
the corresponding brain masks. Finally, antsBrainExtraction was applied to all of the images in the test
dataset using the derived templates and brain priors. We note that in order to run antsBrainExtraction
without error, we multiplied the pixel dimension sizes by 10 to approximate human MRI resolution.

1https://github.com/ANTsX/ANTs/blob/master/Scripts/antsMultivariateTemplateConstruction2.sh
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