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Abstract Chimeric antigen receptor (CAR) T cell therapy has exhibited dramatic anti-tumor effi-

cacy in clinical trials. In this study, we reported the transcriptome profiles of bone marrow cells in

four B cell acute lymphoblastic leukemia (B-ALL) patients before and after CD19-specific CAR-T

therapy. CD19-CAR-T therapy remarkably reduced the number of leukemia cells, and three

patients achieved bone marrow remission (minimal residual disease negative). The efficacy of

CD19-CAR-T therapy on B-ALL was positively correlated with the abundance of CAR and

immune cell subpopulations, e.g., CD8+ T cells and natural killer (NK) cells, in the bone marrow.

Additionally, CD19-CAR-T therapy mainly influenced the expression of genes linked to cell cycle

and immune response pathways, including the NK cell mediated cytotoxicity and NOD-like recep-

tor signaling pathways. The regulatory network analyses revealed that microRNAs (e.g., miR-148a-
nces and
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Table 1 Clinical information of the f

Patient Gender Age
Presence of

BCR-ABL

NR-B Male 29 �
R-A Female 59 �
R-D Male 53 +

R-C Female 52 �
Note: The four B-ALL patients, A, B, C,

for the time course of CAR-T therapy. ‘‘

acute lymphoblastic leukemia; CAR-T,

FaraA, fludarabine; CTX, cetuximab; T
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3p and miR-375), acting as oncogenes or tumor suppressors, could regulate the crosstalk between

the genes encoding transcription factors (TFs; e.g., JUN and FOS) and histones (e.g., HIST1H4A

and HIST2H4A) involved in CD19-CAR-T therapy. Furthermore, many long non-coding RNAs

showed a high degree of co-expression with TFs or histones (e.g., FOS and HIST1H4B) and were

associated with immune processes. These transcriptome analyses provided important clues for fur-

ther understanding the gene expression and related mechanisms underlying the efficacy of CAR-T

immunotherapy.
Introduction

As one of the main types of leukemia, B cell acute lymphoblas-
tic leukemia (B-ALL) is caused by the occurrence of genetic

abnormalities in B cells, leading to the aberrant arrest of nor-
mal lymphoid maturation, evasion of apoptosis, and uncon-
trolled cell proliferation [1]. Given the limited success of

chemotherapy and radiotherapy, the recently-emerging
immunotherapy shows potent efficacy in treating cancers
including B-ALL [2]. In particular, T cells with reprogrammed

chimeric antigen receptors (CARs) for B cell malignancy-
specific antigen CD19 (CD19-CAR-T) are considered to be a
promising tool in the immunotherapy for B-ALL. CD19-

CAR-T can recognize and eliminate tumor cells and has
demonstrated remarkable efficacy on inducing remission in
patients with relapsed/refractory B-ALL [3]. Notably, 70%–
90% of patients with refractory B-ALL achieved a complete

response (CR) at 2 weeks post CD19-CAR-T infusion [4].
Despite the side effects, such as cytokine release syndrome
(CRS), neurologic toxicities, low blood cell counts, a weakened

immune system, and even death [5], CAR-T therapy is
regarded as a revolutionary treatment regimen for patients
with advanced blood cancers, and thus one of the most suc-

cessful immunotherapeutic approaches [6].
Most studies on CAR-T immunotherapy were focused on

the clinical efficacy and new antigen development. However,
few studies have investigated the alterations in gene expression

and regulation of patients after CAR-T therapy. Transcrip-
tome profiling has been widely used to investigate molecular
mechanisms underlying the recurrence and therapy of cancers

[7,8], and to explore candidate target antigens for the improve-
ment of immunotherapy efficacy [9]. Additionally, microRNAs
(miRNAs) and transcription factors (TFs) represent two main

regulators of gene expression [10,11]. They could form regula-
tory modules and play critical roles in the development of
immune cells [12] and tumorigenesis [13], thereby affecting

immunotherapy [14]. Moreover, surveying the transcriptome
our B-ALL patients for CAR-T t

fusion gene
Pretreatment (mg/m

2
)

FaraA 30 + CTX 750

FaraA 30 + CTX 750

FaraA 30

FaraA 30

and D, were classified to be R and

+” indicates the presence of MRD

chimeric antigen receptor T cell;

B, tumor burden; MRD, minimal
profiling and regulatory networks of patients under different
conditions (e.g., remission or non-remission) could provide
insights into the underlying molecular mechanisms involved
in CAR-T therapy.

In this study, we investigated the clinical outcome and
analyzed transcriptome profiles of bone marrow (BM)
samples before and post CD19-CAR-T therapy from 4 adult

patients with refractory B-ALL. Based on the analysis of
differentially-expressed genes (DEGs), long non-coding RNAs
(lncRNAs), and miRNAs, we proposed a schematic model of

regulatory networks involved in the CD19-CAR-T therapy
on B-ALL.

Results

Clinical information and outcomes in four cases with CD19-

CAR-T therapy

Four patients approved for clinical trials of CD19-CAR-T

therapy were selected in this study for further analysis
(Table 1). The workflow of CAR-T therapy as well as clinical
and biochemical examinations is shown in Figure 1A. The

detailed procedures, including the construction of a 2nd gener-
ation CAR vector and CAR-T cell preparation, are presented
in the Materials and methods section. After CD19-CAR-T
infusion, the minimal residual disease (MRD) level was mark-

edly decreased in all patients. Moreover, three out of the four
patients, which were named as R-A, R-C, and R-D (Table 1),
became MRD negative and achieved a molecular remission

one month after CD19-CAR-T therapy. These results imply
that the anti-tumor effects of CD19-CAR-T therapy played a
profoundly positive role in the 4 patients, which was consistent

with previous reports [15].
According to a previous report that the concentration of

CAR-T cells reaches a peak in vivo at 2 weeks post infusion

[16], we monitored alterations in the levels of cytokines and
CAR-T cells on day 0 (D0, before CAR-T infusion) and
herapy in this study

TB (%)

D0

MRD

D0

MRD

D30

CRS grade

D14
Relapse

65.46 + + 2 NR

17.92 + � 1 1.5 months

0.5 + � 1 Remission and followed by

transplantation

0.25 + � 1 13 months

NR, depending on their response to the CAR-T therapy. See Figure 1A

and ‘‘�” indicates the MRD levels below detection limit. B ALL, B cell

NR, non-remissive; R, remissive; BCR-ABL, BCR-ABL fusion gene;

residual disease; CRS, cytokine release syndrome.
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Figure 1 The schedule of CD19-CART clinical trial and levels of CRS-related factors and CAR-T cells

A. The time course of CAR-T clinical trial and sampling arrangement for various examinations. The day before the CAR-T infusion was

defined as D0. Patients were infused with CD19-CAR-T cells at 1/3 dose on D1 and 2/3 dose on D2, respectively. B. The levels of CRS-

related cytokines in the serum. The scale for the concentrations of TNF, TNF-a, IL-6, IL-8, and IL10 is shown on the left, and the right Y

axis shows the concentration for IL-2R. The four B-ALL patients were named A, B, C, and D, and the prefix of patients represent the

effect of CAR-T therapy. C. The proportion of CAR-T cells. Percentage of CAR-T cells in CAR-T cell culture after ex vivo expansion

(D0-EV) as well in the PB and BM samples collected from patients on D14 was determined using flow cytometry. B-ALL, B cell acute

lymphoblastic leukemia; NR, non-remissive; R, remissive; CAR, chimeric antigen receptor; PB, peripheral blood; BM, bone marrow;

CRS, cytokine release syndrome; FaraA, fludarabine; CTX, cetuximab.
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day 14 (D14, 14 days after CAR-T infusion). The concentra-

tions of IL-6/8/10/2R were dramatically increased after
CAR-T infusion in the non-remissive (NR) patient (named
as NR-B), suggesting a severe CRS (Figure 1B). The numbers
of CAR-T cells were dramatically increased both in the

peripheral blood (PB) and BM after CAR-T therapy in two
patients and the proportion of CAR-T cells in PB was
increased to 20% at D14 (Figure 1C). CAR-T cells accounted

for 7.61%–17.74% of the CAR-T cell culture after ex vivo
expansion (D0-EV, Figure 1A), whereas this ratio varied
greatly in patients on D14 after CAR-T therapy, being

9%–27% in the PB and 5%–55% in the BM (Figure 1C).
Notably, the ratio of CAR-T cells in the BM was twofold
of that in the PB in patient R-C on D14. Coincidentally,

the R-C patient with the highest ratio of CAR-T cells in both
PB and BM remained in remission up to 13 months, whereas
the patient NR-B with the lowest ratio of CAR-T cells did
not achieve remission (Table 1).
Transcriptome profile of BM from patients before and post

CD19-CAR-T therapy

To investigate the transcriptional profiles of neoplastic nidus
before and after CD19-CAR-T therapy, we performed RNA-

seq and miRNA-seq analyses for BM samples from these 4
patients. As a result, we identified 10,263 genes and 470 miR-
NAs expressed in these samples with the threshold of frag-
ments per kilobase of exon model per million reads mapped

(FPKM) >1 for genes and transcripts per million reads
mapped (TPM) >10 for miRNAs (Table S1). Basic statistics
of sequencing data and gene expression profiles are presented

in Table S2 and Figure S3, respectively. Among them, 85
protein-coding genes were highly expressed (FPKM >100)
in all samples, whose functions were mainly associated with

the structural constituent of ribosome and translation in the
GO annotation (Figure S2). Meanwhile, expression of 5–10
miRNAs (such as let-7 family members) accounted for 70%
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of the entire miRNA expression abundance across the 4
patients (Figure S3B), suggesting their potential important reg-
ulatory roles in the BM. The partial least squares discriminant

analysis (PLS-DA) shows that the transcriptome profiling of
NR-B was different from those of other patients in remission
(Figure S3C). In addition, according to the variable impor-

tance in projection (VIP) score, the top 20 genes contributing
to the discrimination of all four samples shown in Figure S3C
and histone genes stood out.

To investigate whether CAR-T therapy influenced the com-
position of T cell receptors (TCRs) in the neoplastic nidus, we
examined the distribution of complementarity-determining
region 3 (CDR3) sequences in RNA-seq data. A total of 685

CDR3 sequences were identified across samples. The R-D-
D14 sample contained the highest number of CDR3 sequences,
while the R-C-D14 sample had the lowest number. The num-

ber of CDR3 sequence varied among samples, and no domi-
nant CDR3 sequence was found. The frequency of CDR3
sequences varied from 1% to 23% (Figure S3D), suggesting

the absence of a dominant TCR clonotype in most of the sam-
ples before and after CAR-T therapy. These findings were con-
sistent with a previous study, which shows that the CAR-based

therapy may be independent from TCR signals or clone-
specific events requiring antigen presentation and TCR
recognition [17].

The CAR-T therapy may lead to alterations in the tumor

microenvironment and immune cell populations [18]. We
found that the expression levels of microenvironment-
related genes were markedly increased (fold change >2) in

patients with a shorter remission time (R-A and R-D), in
comparison with the best prognosis sample (R-C)
(Figure 2A). In particular, expression of chemokines and

immunostimulators was activated after CAR-T infusion in
remissive patients, while these factors seemed not to respond
to CAR-T therapy in the NR patient (Figure 2A, Table S3).

The proportion of B cells and CD8+ T cells in the NR
patient was notably different from the others (Figure 2B),
suggesting a higher number of residual leukemic pre-B cells
and a lower efficacy of CAR-T therapy in the NR patient.

The expression levels of marker genes (e.g., CD19/CD10/
CD22/CD34) in leukemic pre-B cells were markedly
decreased after CAR-T infusion in remissive patients (Fig-

ure 2C). Notably, compared to the patients in remission,
T cells were rarely detected and the expression levels of genes
involved in the activity of CD8+ T cells were much lower in

the NR patient (Figure 2C).
The accessibility of antigen-presenting cells and the abun-

dance of CAR-T cells could positively influence the effect of
CAR-T immunotherapy on B-ALL [19,20]. Thus, we exam-

ined the correlation between the CAR and CD19 levels. As
expected, the expression levels of CAR and CD19 showed
an opposite trend in D14 samples, which was consistent

with the clinical outcomes (Figure 2E and Table 1). Mean-
while, we determined the correlation coefficients between the
expressed membrane-protein genes and the relative abun-

dances of CD19 and CAR. As a result, we found that the
expression levels of 89 membrane-protein genes were highly
correlated with the CAR and/or CD19 levels (Figure 2D),

among which 16 have been reported to be associated with
leukemia, such as CD63, a marker for malignant B cells
[21].
Differentially-expressed genes and functional modules

relevant to the CD-19-CAR-T therapy

In total, we detected 585–976 differentially-expressed genes
(DEGs) when comparing the gene expression levels before

and after CD19-CAR-T infusion for each patient (Table S1).
Eighty percent of DEGs were protein-coding genes, and
�5% of which were TFs (Figure 3A). The highest number of
DEGs was observed in the R-D patient carrying the BCR-

ABL gene fusion. The three remissive patients shared 35 over-
lapping DEGs (Figure 3B), but only 9 genes showed the same
expression trend (Figure 3B and C), implying their pivotal

roles in the CAR-T therapy. For example, expression of
NRBP1, the gene that encodes a tumor suppressor involved
in cell death regulation, was up-regulated in remissive samples

[22], while the expression of the poor prognosis indicators
JCHAIN and TCL1A was both down-regulated [23,24].

To further investigate biological functions of DEGs under-

lying CD19-CAR-T therapy, we performed the KEGG path-
way and Gene Ontology (GO) enrichment analysis for all
DEGs found in each patient. The top 20 enriched pathways
and top 15 biological process terms are presented in Figure 3D.

Although the enrichment results exhibited profound hetero-
geneity, most of the enriched terms were related to immune
response and cell cycle. Notably, the up-regulated DEGs in

the remissive patients were enriched in pathways including
the natural killer (NK) cell mediated cytotoxicity and phago-
some (Figure 3D). Consistent with the clinical outcome that

the NR-B patient had a severe CRS and no remission (Fig-
ure 1B and Table 1), the up-regulated DEGs in the NR-B sam-
ple were mainly enriched in the cytokine-related terms and the
acute inflammatory response processes (Figure 3D), while the

down-regulated DEGs were enriched in the apoptosis and
endocytosis related pathways. Interestingly, the osteoclast dif-
ferentiation pathway was enriched in up-regulated DEGs for

all patients after CAR-T therapy (Figure 3D).
Co-expression and regulatory network analysis revealed the

gene/lncRNA/miRNA modules involved in CAR-T therapy

In addition to the functional enrichment analysis, we applied
weighted gene correlation network analysis (WGCNA) to

identify functional biological modules. In total, 18 co-
expression modules were detected (Figure S4A), among which
histone genes were significantly enriched (Chi-square test,
P = 1.55E�9). Notably, 9 of 18 modules were highly corre-

lated (R> 0.9, P < 1E�6) with the apoptosis, cell cycle,
and immune-related pathways, such as the NK cell mediated
cytotoxicity, NOD-like receptor signaling pathway, and

phagosome terms (Figure S4B and Table S4). The turquoise-
colored module contained a number of lncRNAs, and the
protein-coding genes contained in this module were enriched

in NK cell mediated cytotoxicity, phagosome, and NOD-like
receptor signaling pathway (P values: 2.26E�4, 1.32E�4,
and 4.7E�3, respectively) (Figure S4B and Table S4), which

were markedly up-regulated after the CAR-T infusion (Figure 4
and Figure S4C). While the black-colored module containing
fewer lncRNAs was mainly involved in the processes of cell
cycle, HTLV-I infection, and Epstein–Barr (EB) virus infection

(P values: 1.63E�11, 5.83E�5, and 1.65E�4, respectively)
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Figure 2 Expression of CAR, CD19, and genes associated with immune functions in BM samples before and after CAR-T infusion

A. Heatmap of immune microenvironment and immunostimulator genes. The blue to red coloring in the legend indicates the gene

expression level (Z score scaled) from low to high. Hierarchical clustering analysis was carried out by calculating the Euclidean distances.

The categories of the microenvironment and immunostimulator genes determined by gene functions are indicated below the heatmap.

B. The distribution of immune cell populations within the BM of patients among patients on D0 and D14. C.Heatmap of marker genes of

B cells (including pro-B and pre-pro-B cells) and key genes related to the cytotoxic function of CD8+ T cell. D. Pearson’s correlation of

membrane protein genes for CD19 and CAR expression (P < 0.05, |correlation| �0.5). The red dot indicates the gene that was found to be

involved in leukemia. E. The expression levels of the CAR and CD19 genes in the BM of patients on D0 and D14. All the data shown in

this figure were based on RNA-seq analyses. TNF, tumor necrosis factor; TNFR, TNF receptor; TLR, toll like receptor; IMP, tissue

inhibitor of metalloproteinase; MMP, matrix metallopeptidase; IL, interleukin; ILR, IL receptor; IFNR, interferon alpha and beta

receptor; GF, growth factor; GFR, GF receptor; NK, natural killer.
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A. The distribution of DEGs across the four patients with the percentage of the up-regulated DEGs provided. The number of total DEGs

and those encoding TFs in each patient is presented in the center. B. Venn diagrams showing all (top), up-regulated (bottom left), and
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(Figure S4B and Table S4). These results suggested that the
lncRNAs in these modules may be involved in the cell prolif-

eration and immune response processes, and thus play critical
roles in the CD19-CAR-T therapy on B-ALL.

To further examine the functions of lncRNAs in these mod-

ules, we selected the top 200 gene–lncRNA pairs of high corre-
lation (R> 0.9 and P < 1E�6) (Table S5). The lncRNAs that
are highly correlated with histone and TF genes in our mod-

ules may be involved in the immune response/osteoclast differ-
entiation/FOXO signaling (Figure S4C and Figure 4).
Although the majority of highly co-expressed lncRNAs lack
functional annotation, most of them may play important roles

in the immune system. For example, the lncRNA RN7SL1 in
the turquoise module, which was reported to be associated
with immune processes [25], displayed a high degree of co-
expression with histone genes including HIST1H4B and
HIST1H2BL (Figure 4).

Meanwhile, the expression levels of 16–173 miRNAs were
significantly changed after CD19-CAR-T therapy (Figure 5A
and Table S1), which were named as differentially expressed

miRNAs (DEMs). The patient R-C with the best clinical out-
come (Table 1) had the largest number of DEMs, while the
patient NR-B had the least, suggesting important post-

transcriptional roles of miRNAs involved in the CD19-
CAR-T therapy on B-ALL. To further investigate how DEMs
participating in the CD19-CAR-T therapy on B-ALL, we con-
structed a miRNA–TF–gene network to uncover potential reg-

ulatory modules (Figure 5B). This network contained 22
DEMs with a similar expression tendency in the remissive
patients (Figure 5C). The 22 DEMs regulated the expression
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Figure 5 The miRNA–TF–gene regulatory network involved in the CAR-T therapy

A. The distribution of DEMs across the four patients. The number of total DEGs and percentage of the up-regulated ones are provided.

B. Important miRNA–TF–gene regulatory network. DEMs with a similar expression tendency in remissive patients were defined as

important miRNAs, which together with TFs and their target genes formed the important miRNA-TF-gene regulatory network. The

outer circle represents the KEGG pathways, the second circle represents the 9 co-expression modules depicted in different colors as shown

in the legend box. The inner circle displays the 15 up-regulated miRNAs (red) and 7 down-regulated miRNAs (green) in the remissive

samples. TFs and their target gene(s) are indicated in triangles and circles, respectively. Edges indicating miRNA–target regulation, TF–

target regulation, co-expression between genes from different modules, and links between genes and pathways are shown in red, blue,

green, and gray, respectively. C. Heatmap for DEMs with the same expression tendency in remissive patients. The color gradient from

green to red indicates the fold change (log2 of post-VS-pre-CD19-CAR-T) of expression from low to high. DEM, differentially expressed

miRNA.
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of 208 genes (20 TFs) in 9 functional modules, and a set of
genes acted as key nodes crosslinking various pathways related
to the immune system and cell cycle (Figure 5B). For instance,

genes encoding TFs FOS, JUN, and CEBPB acted as crosstalk
nodes in the biological processes related to apoptosis and the
development of ALL (Figure 5B). The three TFs could regu-

late the expression of HIST1H4A and HIST2H4A [26,27],
which were targeted by miR-148a-3p in our network, suggest-
ing that this regulatory loop may have an important role in the

CD19-CAR-T therapy on B-ALL (Figure 5B). In addition,
miRNA-375, whose expression was down-regulated in the
remissive patients (Figure 5C), may regulate the expression
of genes encoding TFs CHD4 and JUN, as well as HIST1H4C,

that are involved in the NOD-like receptor signaling in our
network (Figure 5B). Expression of miR-27a-3p, a tumor sup-
pressor in B-ALL cell lines [28], was up-regulated after CAR-T

therapy in samples from all four patients on D14 (Figure 5C).
In our network, miR-27a-3p potentially regulates expression of
a set of crosstalk genes (e.g., CEBPE and CHD4) and partici-

pates in the immune response pathways (Figure 5B).

Discussion

Previous clinical trials have reported that CAR-T therapy dis-
played dramatic efficacy in patients with B-ALL and non-
Hodgkin’s lymphoma [29]. In this study, we investigated the

transcriptome profiling and regulatory networks of four B-
ALL patients with different prognoses after CD19-CAR-T
therapy. The co-expression and mRNA–miRNA regulatory

network were constructed in an effort to identify potential
functional modules underlying the CD19-CAR-T therapy on
B-ALL. To the best of our knowledge, this is the first study

to investigate the transcriptome profiling and regulatory mech-
anisms involved in CD19-CAR-T therapy.

Impressive results have been reported using CD19-CAR-T
cells to treat patients with refractory B-ALL [4,15,16]. Our

results are consistent with these reports that the malignant cells
were eliminated, and 3 of 4 patients have achieved CR after
CAR-T therapy (Figure S3D and Table 1). In addition, our

findings demonstrate that the effect of CD19-CAR-T therapy
on B-ALL is positively related to the abundance of CARs
and the proportion of immune cell types in the BM (Figure 2B).

In our trial, although ex vivo CAR-T cells comprised random
T cell subtypes, the absence of NK and CD8+ T cells in the
NR patient (Figure 2B) may be associated with the poor out-

come and the low expression level of markers for functional
CD8+ T cells (PRF1, GZMA, GZMB, etc.). Furthermore,
the expression levels of tumor microenvironment related genes
were dramatically changed after CAR-T infusion, such as

immunostimulator/IL family/IFNR/GFR/chemokine families
members, which may enhance the proliferation and activation
of CAR-T cells and thus increase the anti-tumor activity [30].

Despite the differences in transcriptome profiles among
these patients, most of the enriched DEG terms are related
to the immune response and cell cycle (Figure 3). Our data

demonstrate that histone family members were jointly and
dynamically implicated and widely distributed in different
functional modules associated with immune processes (Fig-
ure S4C and Figure 4), indicating their important roles in

the CAR-T therapy on B-ALL. Moreover, our data show that
histone and TF genes are strongly connected with most
lncRNAs in the regulatory networks, suggesting the possible
involvement of these lncRNAs in the CD19-CAR-T therapy
(Figure S4). Functional relationships in the miRNA–TF–his-

tone regulatory loop may play an essential role in CAR-T ther-
apy. For example, miR-148a-3p, miR-27a-3p, and miR-375,
which function as oncogenes or tumor suppressors, can also

regulate the expression of hub TF genes JUN or CEBPB
and histone genes HIST1H4A, HIST1H4C, and HIST1H4E
[26–28,31]. Expression of HIST1H4A and HIST2H4A is regu-

lated by the TFs JUN and CEBPB as well [32,33]. In our
study, these TFs were co-expressed with the highest number
of lncRNAs including lncRNA HCG4P7. HCG4P7 is report-
edly as an important immune regulatory molecule [34] and

highly co-expressed with the gene encoding leukemia regulator
FOS [35]. These networks could provide a valuable resource
for investigating the transcriptional regulatory relationships

involved in the effect of CD19-CAR-T therapy on B-ALL.
Although biological replications are limited due to the

restrictions of medical ethics, previous studies have shown that

the cancer cells of leukemia are homogeneously dispersed in
the BM compared with the solid cancers [36]. Meanwhile,
given the different genetic background of patients, the conver-

gent results obtained from transcriptional profiling of the dif-
ferent patients could only partially explain the mechanisms
underlying the processes of CAR-T therapy. In this study,
the transcriptional profiling of BM from patients was per-

formed using bulk RNA-seq, and alterations of the composi-
tion of cell types and their transcriptome profiles within the
BM may provide valuable insights into the biological processes

underlying CAR-T therapy. Although the alterations of
important immune cell compositions were surveyed via bioin-
formatics approaches (Figure 2B), other types of cells in the

BM, such as stromal and hematopoietic cells, have not been
investigated.

Genetically-modified CAR-T cells act as ‘‘living drugs” to

enable constant cytotoxic attacks on targeted malignant cells.
The efficacy of CAR-T therapy depends on the tumor-
specific antigens and further in vivo expansion of CAR-T cells
[37]. Our results have shown the impact of in vivo expansion of

CAR-T cells and the resulting alterations in immune cell pop-
ulation of CD19-CAR-T therapy on B-ALL. These could help
to characterize clinically important features and develop treat-

ments for patients with different conditions. Furthermore, our
study suggests that the histone genes combined with their co-
expressed lncRNAs and TFs, as well as the miRNA–TF–gene

regulatory networks, may play vital roles in CD19-CAR-T
therapy on B-ALL. These findings indicate an impact of these
factors or modules for the CD19-CAR-T therapy on B-ALL,
and may provide valuable clues for understanding the tran-

scriptional and post-transcriptional regulatory mechanisms
underlying CAR-T immunotherapy on cancers.

Materials and methods

Patient enrollment

All procedures in this trial, including sample collection, pro-
cessing, freezing, and laboratory analysis etc., were performed

according to established standard operating procedures and
protocols in the central laboratory at the Wuhan Union
Hospital, China. Huazhong University of Science and
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Technology and the Wuhan Union Hospital ethics committees
reviewed and approved this trial. All patients enrolled and
treated in this trial gave written informed consent before

participation. All clinical investigations were consistent with
the Declaration of Helsinki. Only patients with relapsed or
refractory B-ALL after standard therapies were deemed

eligible for the CD19-CAR-T therapy.

Preparation and fusion of CD19 CAR-T cells

The CD19-CAR transgene comprises five parts: CD19 single-
chain variable fragment, CD8 hinge, CD8-a transmembrane,
4-1BB costimulatory domain, and CD3 zeta chain (Figure S1).

The transgene was constructed into the lentiviral vector as
shown in Figure S1, and then transferred into the donor T cells
according to the protocols of Wuhan Sian Medical Technology
(Wuhan, China). Briefly, the leukocytes were separated from

the patient’s blood with the remainder of the blood returned
to the patient’s circulation. Subsequently, the leukocytes were
incubated with the lentiviral vector encoding the CAR for

10 days (Figure 1) according to the protocol [38].
To improve the efficacy of CAR-T therapy, patients

were pre-treated with a conditioning chemotherapy agent

(30 mg/m2 fludarabine and 750 mg/m2 cetuximab) for 5 days
to control the MRD level below 20%. Afterward, patients
received a fractionated infusion of CD19-CAR-T cells
(1/3 dose at D1 and 2/3 dose at D2, respectively).

Clinical and biomedical examinations

The PB and BM samples were obtained from patients on D0,

D14, and D30. The percentage of CAR-T cells and normal
cells in the CAR-T cell culture after ex vivo expansion (D0-
EV) and in the PB and BM samples collected from patients

on D14 were determined with flow cytometry. The MRD level
in BM samples was measured using flow cytometry (FAC-
SAria II, BD Pharmingen, San Diego, CA) on D0 and D30.

Patients with the MRD level <0.5% after 2 weeks were con-
sidered as CR. The presence of BCR-ABL fusion transcript
in BM samples was detected with a real-time PCR system (Ste-
pOnePlus, Applied Biosystems) with the primers (F: 50-ACAT

CACGCCAGTCAACAG-30 and R: 50-GACGTA
GAGCTTGCCATCAGA-30). The tumor burden (TB) was
calculated as the percentage of tumor cells among all kary-

ocytes in BM samples on D0. Concentrations of cytokines in
PB samples were determined with ELISA and with CRS
grades (1–4) evaluated accordingly.

RNA sequencing

Total RNA was isolated from the BM samples of all four

patients on D0 and D14 using the standard TRIzol protocol.
The RNA quality was determined with the Agilent 2100 Bio-
analyzer. Libraries for RNA-seq (Ribo-Zero) and small
RNA sequencing were prepared according to Illumina’s Tru-

Seq protocol. The libraries were sequenced on the Illumina
Hiseq platform with the 2 � 150 bp paired-end strategy at
BGI-Shenzhen (Wuhan, China). Base-calling was performed

using the Illumina CASAVA v1.8.2 pipeline.
RNA-seq reads containing <35 bp after adapter trimming

or with poly-N or many low-quality bases (quality score �5
and the ratio of low-quality bases >10%) were removed.
For small RNA sequencing reads, we filtered reads containing
any N base or with a length >40 nt or <17 nt. The Q20, Q30,

and GC content of the clean sequencing reads were calculated.
All of the downstream analyses were based on the clean and
high-quality sequencing reads.

Bioinformatics analyses

Sequencing data obtained from the BM at day 0 and 14 days

after CAR-T infusion were analyzed using various bioinformat-
ics tools. The detailed procedures of transcriptome profiling,
such as gene/miRNAs expression analysis, immune cell propor-

tion estimation, functional enrichment analysis, and co-
expression regulatory network analysis are presented in File S1.

Data availability
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at http://bigd.big.ac.cn/gsa.
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