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Abstract: Protein function and flexibility is directly related to the native distribution of its structural
elements and any alteration in protein architecture leads to several abnormalities and accumulation
of misfolded proteins. This phenomenon is associated with a range of increasingly common human
disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic
amyloidosis characterized by the accumulation of amyloid aggregates both in the extracellular space
of tissues and as intracellular deposits. Post-translational modifications are known to have an active
role in the in vivo amyloid aggregation as able to affect protein structure and dynamics. Among
them, a key role seems to be played by non-enzymatic glycation, the most unwanted irreversible
modification of the protein structure, which strongly affects long-living proteins throughout the
body. This study provided an overview of the molecular effects induced by glycation on the amyloid
aggregation process of several protein models associated with misfolding diseases. In particular,
we analyzed the role of glycation on protein folding, kinetics of amyloid formation, and amyloid
cytotoxicity in order to shed light on the role of this post-translational modification in the in vivo
amyloid aggregation process.

Keywords: amyloid aggregation; protein glycation; AGEs; protein misfolding; amyloidosis

1. Introduction

The increase in life expectancy observed over the last century has led to the appear-
ance of a new set of pathologies that constitute new challenges to scientists and clinicians.
Among these, neurodegenerative disorders like Alzheimer’s, Parkinson’s, and prion dis-
eases are debilitating and incurable disorders with an increasing impact on society, because
the number of diagnosed patients has dramatically increased over the past twenty years
and it is expected to further increase in developing countries [1,2]. The histological hallmark
of these disease is the presence of proteinaceous aggregates, which form deposits called
amyloid plaques that usually accumulate both in the extracellular space of tissues and
as intracellular deposits [3,4]. Although the amyloid aggregation process of the proteins
involved has been widely characterized in vitro, the molecular mechanisms underlying
the formation of amyloid species in vivo and in pathological conditions are still poorly
understood. In this respect, post-translational modifications are known to have an active
role as able to affect protein structure and dynamics [5,6]. Among them, a key role seems to
be played by non-enzymatic glycation, an irreversible modification of the protein structure,
which strongly affects long-living proteins throughout the body [7,8]. Indeed, proteins in
amyloid deposits are often found glycated in patients, thus suggesting a direct correlation
between protein glycation and amyloidosis [9–12]. For this reason, much attention has
been paid to the role played by non-enzymatic glycation in promoting amyloid aggregation
and cytotoxicity. This study provided an overview of the molecular effects induced by
glycation on the amyloid aggregation process of several protein models associated with
misfolding diseases in order to shed light on the role of this post-translational modification
in the in vivo amyloid formation.
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2. Protein Glycation

During their lifetime, proteins are exposed to several altering factors, including en-
zymatic and non-enzymatic mechanisms. Among the non-enzymatic mechanisms, pro-
tein glycation is one of the most important post-translational modification in which pro-
tein is covalently modified through the addition of functional groups to its amino-acid
residues [13,14]. This process is different from glycosylation which is a selective protein
modification driven by specific enzymes, generally associated with a gain of function (or
stabilization) of the target protein. Differently, non-enzymatic glycation is a non-selective
modification and it is generally associated with a loss of function of the target protein due
to modifications of its native structure.

Glycation reaction is a naturally occurring process common to all cell types: Glycated
products slowly accumulate in vivo leading, in addition to cellular modifications involved
in the aging process, to several different protein dysfunctions [8,15,16]. Protein glycation is
initiated by a spontaneous nucleophilic addition reaction between the free amino group
of a protein, generally belonging to N-terminal and lysine side chain, and the carbonyl
group of a reducing sugar. This reaction rapidly forms a reversible Schiff base, which
rearranges over a period of weeks to produce ketoamine or Amadori product. This reaction
is reversible depending on the concentration of the reactants. Thereafter, the Amadori
product undergoes an irreversible cascade of reactions involving dehydration, hydrolysis,
and rearrangements leading to the formation of advanced glycation end products (AGEs)
(Figure 1) [17,18].
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Figure 1. General mechanism of protein glycation. The process is initiated by a spontaneous
nucleophilic addition reaction between the free amino group of a protein, generally belonging to
N-terminal and lysine side chain, and the carbonyl group of a reducing sugar. This reaction rapidly
forms a reversible Schiff base, which rearranges over a period of weeks to produce ketoamine or
Amadori product. The Amadori product undergoes an irreversible cascade of reactions involving
dehydration, hydrolysis, and rearrangements leading to the formation of advanced glycation end
products (AGEs).
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Although the formation of the Schiff base and the Amadori product constitutes the
central pathways along this mechanism, the whole process becomes much more complex
due to collateral autoxidative reactions of reducing sugars, Schiff bases, and the Amadori
product. In particular, these reactions produce highly reactive carbonyl species and free
radicals that can further react with free amino acid side chains contributing to the AGEs
formation [19,20] (Figure 1). In fact, although glycation can be started by all reducing
sugars, the activity of dicarbonyl compounds like glyoxal (GO) and methylglyoxal (MGO)
in the reaction is much higher even at negligible concentrations [20]. The main targets of
protein glycation are side-chains of arginine and lysine residues, the N-terminus amino
group, and thiol groups of cysteine residues. The kinetics of the process depends on several
conditions: concentration and reactivity of the glycation agent, the presence of catalytic
factors (metals, buffer ions, and oxygen), pH, temperature, exposure of glycating sites, and
half-life of the protein. All reducing sugars can promote glycation reactions and, between
them, D-ribose is the most active, while D-glucose, glucose 6-phosphate, mannose, and
fructose are much less reactive [16,21].

Glycated species are very heterogeneous and generally classified in cross-linking
and non-cross-linking AGEs on the basis of their ability to form covalent cross-links,
both intra- and inter-molecular, within the polypeptide chains (Figure 2). AGEs accu-
mulate slowly throughout lifetime and are considered a marker for several diseases,
such as arteriosclerosis, renal failure, Alzheimer disease, or diabetes, although they nor-
mally increase in aging [22]. In fact, due to their chemical, pro-oxidant, and inflamma-
tory activities, clear evidence suggests the involvement of modified AGE proteins in
degenerative disorders such as neurodegenerative pathologies, cardiovascular disease,
and diabetes complications [23–25]. At the cellular level, AGEs can contribute to these
pathologies in two different ways: (1) by binding specific receptors on cell membrane,
mainly the receptor for advanced glycation end-product (RAGE), which trigger inflamma-
tory and oxidative processes implicated in the pathogeny of several diseases processes,
and (2) through an independent-receptor manner, cross-linking proteins and altering their
structure, properties, and functions [18,26]. Indeed, as positively charged Lys and Arg
residues are the preferential glycating sites, modifications at these residues not only affect
their local microenvironment and the protein charge, but also shield them from the for-
mation of hydrogen bonds that stabilize the protein structure. In addition, formation of
covalent cross-links within different polypeptides strongly contribute to modify protein
structure thus affecting its physiological function.

Moreover, glycation at lysine residues would also impair the clearance by the ubiquitin–
proteasome system because ubiquitination of lysine residues, a modification that targets
the protein to the proteasome for degradation, would be prevented in glycated proteins. In
this respect, protein glycation, besides affecting protein structure and function, might also
favor accumulation of proteins as aggregates or inclusion in tissues [27–29].
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3. Amyloid Aggregation Process

The conversion of native soluble proteins into insoluble amyloid deposits has attracted
considerable interest in the last decades as associated with several disorders known as
“amyloid diseases”. So far, there are approximately 50 disorders, with a multitude of symp-
toms, associated with the misfolding of soluble, functional proteins or peptides, and their
following conversion into amyloid fibrils [3,30,31]. This wide range of diseases includes
neurodegenerative disorders like Alzheimer’s, Parkinson’s, and prion diseases, as well
as non-neuropathic conditions such as type II diabetes [3,4,32]. With the increase of life
expectancy, these disorders are no longer rare, but are rapidly becoming among the most
common and debilitating medical conditions. In these diseases, the physiological alter-
ations are associated with the formation of fibrillar aggregates, known as amyloid fibrils,
which regardless of the protein involved, share a common ultrastructure [33,34]. These
protein aggregates interfere with neuronal function and induce toxicity that ultimately
drives cell death. Amyloid aggregates usually accumulate both in the intra- and extra-
cellular space and promote a dual toxicity: loss of natural protein function mechanism
(by improper folding, degradation or localization) and/or gain of toxic novel functional
mechanism (toxic structures that accumulates in an incorrect location) [35,36].

The formation of amyloid structures is not a rare phenomenon and it reflects a well-
defined structural form of the protein that is an alternative to the native state, a form that
may in principle be adopted by many, if not all, polypeptide sequences [3,37,38]. Indeed,
it is now believed that many, if not all, proteins can form amyloid fibrils in appropriate
experimental conditions. This is because protein folding and protein aggregation, although
being distinct processes, are in competition and the environmental conditions can instruct
polypeptide chains on the conformation to adopt. Extensive studies have been performed
in vitro to shed light on the structural transitions between natively folded states and
amyloid-aggregation prone states. Natively folded globular proteins possess a small but
significant tendency to convert into the amyloid state without crossing a major energy
barrier for unfolding, by populating native-like conformations as a consequence of local
unfolding, thermal fluctuations, or ligand release. The dangerous aggregation-prone
states, although quite similar to the native state, seem to display altered surface charge



Int. J. Mol. Sci. 2021, 22, 6609 5 of 20

distribution, alternative β-sheet topology, increased exposure of hydrophobic surfaces,
and aggregation-prone sequences of the polypeptide chain [39–41]. The formation of the
aggregation-prone conformation has been well characterized in vitro for different model
proteins and it has been shown to be promoted by low pH, high temperature, high ionic
strength, point-mutations, or organic solvents able to destabilize the native state [41–46].

The kinetics of amyloid aggregation originates with the formation of monomeric states,
highly disordered, that possess an intrinsic propensity to further assembly into oligomeric
species that are heterogeneous and highly reactive. The soluble oligomeric species rapidly
evolve to the formation of insoluble protofibrils and, eventually, the fibril growth proceeds
by further association of protofibrils [3,32] (Figure 3). The protein fibrils, regardless of the
protein sequence and structure, share common properties such as a core rich in β-sheet
structure adopting a characteristic cross-β topology, the resistance to degradation and
significant mechanical properties with high tensile strength. Thus, amyloid fibrils are
highly resistant to in vivo degradation as extremely stable thermodynamically and thus
difficult to unfold and processed by the proteasome. In addition, their thermodynamic
stability contributes to convert close native proteins into amyloid species [47,48]. While
insoluble amyloid fibrils correlate with disease progression, the soluble oligomeric species
are generally associated with cellular toxicity as able to interact with biological membranes.
The mechanisms of cellular toxicity of amyloid oligomers include both the membrane
disruption, resulting in calcium imbalance, mitochondrial dysfunction and intracellular
reactive oxygen species, as well as the direct interaction with membrane proteins, leading
to the alteration of their native function [30,49].
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Figure 3. Schematic representation of the amyloid aggregation process. The process originates with the formation of
amyloidogenic states, which are highly disordered and which possess an intrinsic propensity to further assembly into
oligomeric species that are highly reactive (nucleation phase). The oligomeric species rapidly evolve to the formation of
insoluble protofibrils and, eventually, the fibril growth proceeds by further association of protofibrils (elongation phase).

Although the molecular mechanisms underlying the amyloid formation has been
well characterized in vitro, poor information is available on the molecular determinants
that trigger amyloid formation in vivo. Post-translational modifications such as phospho-
rylation, nitration, acetylation, methylation, and glycation are known to have an active
role in protein aggregation as they are able to affect protein structure and function [6,7].
Clearly, the understanding of the molecular mechanisms that trigger formation and propa-
gation of amyloid species in vivo is a prerequisite for developing new treatment options
for amyloidosis.

4. Glycation Role in Amyloid Aggregation

Although the amyloid aggregation process has been widely studied in vitro for differ-
ent amyloidogenic proteins, and many physiological (environmental and genetic) factors in-
volved have been identified, the molecular mechanisms underlying the amyloid formation
in vivo and in pathological conditions are still poorly understood. Most neurodegenerative
diseases are sporadic, suggesting that external factors might contribute to the onset and
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the progression of these disorders. Post-translational modifications are known to affect
amyloid aggregation process as able to affect protein structure and function [5,6]. Among
them, protein glycation seems to have a key role in amyloid formation both in vivo and
in vitro. In addition, proteins in amyloid deposits are often found glycated in patients thus
suggesting a direct correlation between protein glycation and amyloidosis [9–12]. In this
respect, the effect of glycation in the amyloid aggregation process of proteins related to
misfolding diseases has been widely studied in order to identify the role of glycation in
the in vivo amyloid aggregation and cytotoxicity. In this study, we have analyzed the most
recent advances in the field for different protein models.

4.1. Aβ-Peptide

Alzheimer’s disease is characterized by the deposition in the brain of senile plaques,
composed largely of the β-amyloid peptide (Aβ). The Aβ amyloid aggregation originates
from an unstructured random coil conformation (monomeric form) that rapidly proceeds
to β-sheet structure during aggregation (oligomers, protofibrils, fibrils) [50,51]. Although
the Aβ-induced neurotoxicity is directly responsible for the pathology of AD, the in vivo
toxic forms of Aβ-peptide remain poorly characterized. Non-enzymatic glycation seems to
play a key role in the in vivo Aβ-toxicity. Indeed, the amyloid plaques in the AD brains are
colocalized with AGEs and the plaque enriched fractions contain approximately threefold
higher AGE adducts than that of the age-matched controls, suggesting that Aβ may be
glycated in AD [12,52,53]. The long-live proteins are preferentially modified to form AGEs
and the high stability of Aβmakes it an ideal substrate for non-enzymatic glycation and
formation of AGEs. A role of blood sugars would also explain the link observed between
the apparently unrelated diabetes and AD; diabetic patients have a 2-5-fold higher tendency
to develop AD compared with nondiabetic individuals [54–58].

To clarify the role of glycation in amyloid aggregation process of the Aβ-peptide,
several studies have been performed in vitro on different AGE-derived Aβ-peptide. In
particular, glycation of lysine residues has been shown to strongly affect oligomers stability,
secondary structural content, structural disorder, and propensities of inter-peptide salt
bridges [59]. The glycated peptide resulted in a more rigid assembly associated with a
greater beta-sheet component, suggesting that glycation results in structural modifications
of key self-assembling entities making them more aggregation prone [59]. In this study, it
has been also explored the effect of glycation on the stabilities of pre-formed protofibrillar
Aβ-peptide species. Interestingly, glycation has been found to also induce major stabilizing
effects on putative pre-formed protofibrillar structures corresponding to those found in
brains of AD patients [59].

Differential effects of glycation between single-lysine and double-lysine CEL-modifications
have been recently observed. Indeed, while little effect has been observed for single CEL-
modifications (Lys-16, Lys-18) in amyloid aggregation rate, a stronger effect has been
obtained in the double lysine CEL-modifications. In particular, CEL-modifications at
both Lys-16 and Lys-18 promote a substantial decrease in free energy change, which con-
tributes to fibril destabilization, and an increased aggregation rate. In this respect, the
amyloid aggregation of the double CEL-modified Aβ-peptide produced a lower amount
of amyloid fibrils compared to the unglycated peptide and a higher percentage of soluble
oligomers [60]. Similar results (reduced amount of amyloid fibrils and a higher concentra-
tion of oligomers) have been observed in the amyloid aggregation of Aβ-peptide glycated
in the presence of MGO [61].

With regards to the role of glycation on the toxicity of Aβ amyloid aggregates, only
poor information is available. It is well established that the conformational state of this
peptide is a key factor for its neurotoxicity. In particular, increasing evidence have sug-
gested that the more toxic species for Aβ are the soluble oligomers both in vitro and
in vivo [62–68].

So far, different toxicity effects have been observed for glycated Aβ aggregates ac-
cordingly to the glycating agent used. In particular, glycation performed with MGO has
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been shown to promote higher neurotoxicity of Aβ aggregates although this effect seems
not to be associated with amyloid aggregates but to a specific upregulation of RAGE by
Aβ-peptide [53]. In fact, RAGE is known to possess a surface binding site both for AGE
species and Aβ-peptide [69,70]. Differently, glycation performed with glucose, fructose
and chondroitin sulfate has been shown to stabilize the fibrillar aggregates in Aβ associated
with very low toxicity [71]. Recent data performed on the double CEL-modified Aβ-peptide
have shown that, although glycation stabilize the formation of soluble oligomers, lysine
modification of Aβ abolish its neurotoxicity, and this seems to be associated with the
key role of these lysine residues in the binding of Aβwith the cell membrane [60]. Even
though further studies will be needed for a better understanding of the role of glycation
in the toxicity of Aβ aggregates, this seems to be strongly dependent on the structural
modification induced by the glycating agents.

4.2. α-Synuclein

α-Synuclein (α-Syn) misfolding and aggregation is a hallmark in several neurode-
generative diseases including Parkinson’s disease (PD) and dementia characterized by
the presence of intraneuronal deposition of Lewy bodies (LB), and multiple system atro-
phy [72,73]. Although α-Syn amyloid aggregates are known to be the main component of
the LB, which cause the loss of dopaminergic neurons in the disease, there is no consensus
on what mechanisms trigger α-Syn in vivo aggregation, neuronal cell loss, and degenera-
tion. Post-translational modifications such as glycation, sumoylation, and phosphorylation
are known to be directly involved in α-Syn misfolding and aggregation [10,74–76]. In
particular, glycation seems to have a key role in α-Syn aggregation as advanced glycation
end-products (AGEs) and α-Syn are co-localized in the brain of the patients at both the early
and advanced stages of PD [10,77]. In addition, accumulation of AGEs on LBs becomes
more relevant to people suffering from diabetes mellitus (DM), which could explain the
increased prevalence of PD in DM patients [78,79]. Glycated α-Syn also induces lipid
peroxidation in vivo and results in lesions within cells [80,81]. For these reasons, glycation
may play a key role in in the amyloid aggregation of α-Syn associated with Lewy body
formation in PD [10,76].

Normally in neurons, the N-terminal domain of α-Syn adopts an amphipathic α-
helical conformation that associates with membranes where it assembles into multi-
mers [82–84]. This region is the one responsible for in vivo amyloid aggregation and,
interestingly, it contains several lysine residues that can be glycated both in vitro and
in vivo [85–88]. For this reason, several studies have been performed with different gly-
cating agents in order to clarify the role of glycation in α-Syn in vivo aggregation. In
particular, glycation performed in the presence of D-ribose, MGO, and GO as glycating
agents has been shown to strongly stabilize the N-terminal domain thus inhibiting amyloid
fibril formation in α-Syn. Despite restraining fibril formation, glycation was promoting
the formation of stable cross-linked oligomeric species, able to induce oxidative stress and
high cytotoxicity [85,86,89]. Most likely, the structure of this aggregates hinders further
aggregation and makes the formation of amyloid fibrils difficult. The fact that glycation
of α-Syn leads to the formation of stable oligomers and inhibits fibril formation can be
relevant for the study of synucleinopathies as α-Syn oligomers are more toxic than larger
aggregates [90,91]. Different results have been recently obtained in the CEL-modified α-Syn
that is unable to form both amyloid fibrils and oligomeric species [92]. In this study, the
different behavior observed upon glycation could be due to the fact that the fifteen lysine
residues in α-Syn were synthetically modified with CEL moieties thus not able to form
protein cross-links underlying the oligomers formation observed with D-ribose, MGO, and
GO. The CEL-modifications were shown to strongly stabilize the α-Syn structure and even
the presence of zinc, able to induce amyloid aggregation in α-Syn, was unable to promote
aggregation in the CEL-modified protein [92].

Recently, the effect of glycation in α-Syn has been investigated in vivo using different
models [77]. This study has shown that glycation might play an important and underappre-
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ciated role in PD and other synucleinopathies by modulating α-Syn biology. In particular,
glycation is proven to also primarily affect the N-terminal region of α-Syn in animal models,
thus reducing its ability to bind to lipid membranes. In this way, glycation promotes α-Syn
accumulation and formation of oligomers that result as highly cytotoxic both in human
cell lines and, importantly, in differentiated patient-derived iPSCs [77]. The toxic effects of
glycation in α-Syn aggregation were also detected in animal models of Parkinson’s disease:
α-Syn transgenic drosophila and mice. Indeed, in α-Syn expressing flies, glycation reduces
both the motor performance and survival while in mice, MGO injection in the substantia
nigra causes an impressive loss of neuronal cells. Besides stimulating the accumulation
of toxic α-Syn oligomers that impair neuronal synaptic transmission, glycation is proven
to block α-Syn ubiquitination thus also impairing its clearance and release [77]. Taken
together, these findings confirm that glycation may perturb the physiological role of α-
Syn on vesicular trafficking by promoting protein accumulation and amyloid aggregation
associated with LB.

4.3. Insulin

Insulin amyloid-like fibrils are the hallmark of a clinical condition observed in insulin-
dependent diabetic patients, called insulin injection amyloidosis in which insulin fibrils
are found at the site of insulin injections [93–95]. Native insulin is mainly organized in an
α-helical structure and its amyloid aggregation is proposed to occur via partial unfolding of
a monomeric intermediate that promotes protein oligomerization and the α to β transition
underlying the amyloid formation [96–98].

Insulin is associated with glycemia and is susceptible to in vivo glycation by glucose
and other highly reactive carbonyls especially in diabetic conditions [99–101]. When
glycated, human insulin is unable to regulate glucose homeostasis and stimulate glucose
transport and adipose tissue lipogenesis [102–104]. Indeed, glycation has been reported
to affect insulin structure, stability and amyloid aggregation depending on glycating
agent and/ or environmental conditions. Insulin can be glycated by glucose in vitro
and glycated species possess different structural features depending on the experimental
conditions used [105–107]. In particular, glycation in reducing conditions promotes insulin
oligomerization thus accelerating amyloid aggregation, while, in non-reducing conditions,
it strongly inhibits amyloid formation in a way proportional to the glycation extent [107].
Human insulin can be also glycated by MGO that promotes the formation of native-like
species and reduces the ability of insulin to form amyloid fibrils by impairing the formation
of the seeding nuclei. Although MGO reacts with a single residue in insulin (Arg22), it
strongly stabilizes the native structure as glycated species are soluble, non-fibrillar and
retain a native-like structure [108]. A similar effect has been observed when glycation is
performed in the presence of D-ribose, able to react with N-terminus and Lys29 in human
insulin. Indeed, glycation by D-ribose strongly stabilize insulin native structure and impair
the α to β transition underlying the amyloid formation [109]. The overall data suggest
that, at least in non-reducing conditions, glycation seems to have a protective effect in
insulin amyloid formation as it is able to stabilize insulin-native structures, thus preventing
amyloid aggregation. Moreover, as accumulation of AGEs has been suggested as one of
the main responsible factors of diabetes-associated complications, such as retinopathy,
nephropathy, and atherosclerosis, further examination of the molecular bases underlying
the toxic effect produced by AGE-modified insulin on neighboring cells might help to
identify new therapeutic interventions.

4.4. Islet Amyloid Polypeptide

The presence of amyloid fibrils in pancreatic β-cells, arising from the aggregation of
human islet amyloid polypeptide (hIAPP), is a hallmark of type 2 diabetes (T2DM) [110,111].
hIAPP is a 37-residue natively unstructured polypeptide that is prone to aggregate into
amyloid fibrils, thus inducing pancreatic β-cell dysfunction, cell death, and loss of islet
β-cell mass. Therefore, the aggregation of hIAPP is considered one of the major causes
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of T2DM [112–117]. The amyloidogenicity of IAPP is very sensitive to residue changes or
post-translational modifications including glycation [118–123].

hIAPP is likely to be glycated in vivo as AGE immunoreactivity colocalizes with
regions of immunoreactive IAPP-derived amyloid and it has been proposed that AGE-
modified IAPP acts as a template in the nucleation-dependent aggregation of IAPP into
amyloid fibrils. In particular, in vitro glycation of IAPP with glucose has been shown
to promote the formation of protein aggregates showing a better seeding efficiency than
freshly dissolved IAPP and also exhibited higher cytotoxicity than control IAPP [118–120].
Similar data were recently obtained on the chemically synthesized AGE-IAPP by modifica-
tion of Lys1, the only Lys residue, with carboxymethyl-lysine (CML) AGE [124]. Indeed,
this CML-modified IAPP was forming amyloid aggregates faster than non-modified IAPP,
and higher molecular weight AGE-IAPP oligomers were also observed in the early stage of
aggregation. In addition, AGE-IAPP can promote amyloid aggregation in non-modified
IAPP, and its fibrils can also act as templates to trigger IAPP aggregation. Moreover, the
AGE-modified IAPP, such as normal IAPP, is able to interact with synthetic membranes
and also to exhibit cytotoxicity [124]. Recently, glycation of IAPP has been studied in
the presence of MGO as glycating agent [125]. In this study, MGO has been shown to
efficiently react only with IAPP Lys1 inducing both a slowdown of the IAPP aggregation
process and changes in the aggregate morphology [125]. This study suggests that, although
the only AGE-modified residue is Lys1 as in the CML-derived IAPP, differences in the
AGEs produced and in the experimental conditions may play a key role in the dynamic
effects induced by glycation on the aggregation process. The overall data suggest that
glycation modifications of hIAPP might strongly modulate the amyloidogenic properties
of this protein, and this could play a key role in accumulating additional amyloid during
T2DM progression.

4.5. Albumin

Human serum albumin (HSA), the most abundant serum protein with versatile ap-
plications both in vivo and in vitro, has been a widely used model for understanding
the structural effects of glycation as it contains 83 potential glycation sites (59 lysine and
23 arginine residues, N terminus) [126–129]. Glycated HSA accounts for 80% of the cir-
culating glycated protein and it has been implicated in several complications associated
with diabetes [130–132]. Although HSA is a highly soluble protein mainly organized in
α-helical structure, it is able to form amyloid fibrils through partial unfolding of the tertiary
structure and conformational changes of the secondary structure [133–135]. In addition,
this protein can be efficiently glycated in vitro by several glycating agents as glucose, D-
ribose, MGO and GO and similar effects on the amyloid propensity have been observed
with all of them [126–128,136–138]. In particular, glycation has been shown to promote
strong conformational changes in HSA that affect both secondary and tertiary structure and
markedly reduce the protein stability. In this way, glycation promotes amyloid aggregation
in HSA both reducing the helical content and supporting the formation of β-cross structure
that rapidly evolve to the formation of amyloid aggregates [129,139–141]. Interestingly,
glycation of albumin performed in the presence of D-ribose, besides promoting amyloid
formation, has been shown to stabilize the amyloid oligomeric species that result highly
cytotoxic in neuronal cells [129]. Indeed, amyloid aggregates of ribosylated albumin were
able to induce oxidative stress ROS-mediated and apoptosis in neurotypic cells. The overall
data suggest that non-enzymatic glycation reaction could have a key role in the in vivo BSA
glycation as both promoting amyloid formation and stabilizing toxic oligomeric species.

4.6. Superoxide Dismutase 1

Amyloid aggregation of copper, zinc superoxide dismutase SOD1, an essential com-
ponent of the cellular antioxidant defense system, is associated with amyotrophic lateral
sclerosis (ALS), a neurological disease causing the death of motor neurons and muscular
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paralysis. ALS it is predominantly a sporadic disease, in some cases (10%) it has been
described as familial [142–144].

In vitro studies have shown that human SOD1, when lacking both its metal ions
(ApoSOD), forms amyloid aggregates under physiological conditions of pH and tem-
perature. Indeed, loss of metal binding not only induces protein unfolding and loss of
enzymatic activity in SOD1, but also promotes amyloid formation [145–149]. Although the
molecular mechanisms underlying amyloid aggregation of SOD1 has been widely studied
in vitro, poor information is available on the mechanism that trigger amyloid formation
in vivo and in the pathological conditions of ALS.

In this respect, SOD1 glycation seems to have a determining role both in sporadic and
familial forms of ALS; in fact, spinal cord and brain samples have been found to be glycated
in patients [150,151]. Moreover, SOD1 has been shown to be glycated in vivo and glycation
sites have been identified and they are six lysine residues (number 3, 9, 30, 36, 122, 128)
spread along the protein sequence [152]. SOD1 glycation has been studied in vitro in the
presence of different glycating agents and the effects of glycation in amyloid aggregation
has been also evaluated [153–155]. In particular, SOD1 can be efficiently glycated in vitro by
glucose, D-ribose, GO, and MGO and glycation was shown to promote protein unfolding,
loss of copper binding and inhibition of the enzymatic activity [154,156–158]. These
results have been confirmed by ex vivo experiments reporting that SOD1 extracted from
erythrocytes of diabetic patients was significantly more glycated and has a lower enzymatic
activity, with respect to controls [159]. Although promoting SOD1 unfolding and loss
of metal binding, glycation has been shown to inhibit amyloid aggregation in SOD1
and promote the formation of stable cross-linked AGEs [153,155]. Taken together, these
results suggest that glycation, besides having protective role in SOD1 amyloid aggregation,
could impair the correct maturation of SOD1 in vivo as promoting protein unfolding,
demetallation, and loss of enzymatic activity, thus triggering cellular oxidative stress.

4.7. Lysozyme

Amyloid aggregation of human lysozyme is responsible for lysozyme amyloidosis, a
non-neuropathic hereditary amyloidosis in which protein mutations favor the formation
of misfolded conformers which in turn leads to lysozyme aggregation and accumulation
of amyloid deposits in several organs [160–164]. Hen egg white lysozyme (HEWL), a
structural homolog of human lysozyme, has been widely used to study the amyloid
aggregation of lysozyme in vitro. Wild-type HEWL is a globular protein with antibacterial
activity and has a low aggregation tendency under physiological-like conditions, although
it can form amyloid fibrils in denaturing conditions able to destabilize the native structure
of the protein [165–168]. At the same time, this protein possesses six Lys as potential
glycation sites and, for this reason, HEWL represents an ideal model to study if glycation
per se induces amyloid aggregation.

HEWL has been shown to be susceptible to glycation by several glycation agents, such
as D-glucose, D-ribose, D-fructose, and MGO [169–171]. Glycation strongly affects the
structure of HEWL and inhibits its enzymatic activity thus increasing the susceptibility to
bacterial infections [172,173]. Moreover, glycation affects the amyloid aggregation process
of HEWL. Generally, glycation promotes the formation of oligomeric aggregates in HEWL
but the mechanism underlying the process depends on the chemical nature of the glycating
agent due to the different residues involved in the AGEs formation.

At first, the effect of glycation on HEWL aggregation has been studied using D-
glucose, D-fructose and D-ribose as glycating agents and glycation was found to promote
the formation of oligomeric species stabilized by covalent cross-links [174,175]. In these
studies, it was hypothesized that glycation was inducing partial unfolding in HEWL
promoting the α- to β-transition underlying oligomeric formation. However, through
a more detailed study, it has been shown that HEWL ribosylation involves a chemical
multistep conversion that induces covalent modifications on lysine side chains without
altering the protein structure but changing the protein charge and enlarging its hydrophobic
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surface. The increase of surface hydrophobicity triggers the assembly of ribosylated HEWL
into native-like small spherical oligomers highly toxic, which further evolve into insoluble
native-like protofibrils [176].

The glycation of HEWL has been also performed with glycolaldehyde as glycat-
ing agent and two different effects on protein aggregation were observed depending on
HEWL concentration regime [177]. In particular, at low HEWL concentration (below 2µM),
non-cross-linking fluorescent AGEs were formed on Lys side chains, and they did not
affect the protein structure but inhibit its enzymatic activity. These AGEs were having
little impact on HEWL surface hydrophobicity and, therefore, a negligible effect on its
aggregation propensity. Upon increasing HEWL concentration (20–100 µM), the glycation
mechanism was shifting toward the formation of intermolecular cross-links, which trigger
a polymerization cascade involving the formation of insoluble spherical-like aggregates
through a concentration-dependent nucleation mechanism [177]. Recently, a different effect
on glycation mediated HEWL aggregation has been reported using MGO as glycating
agent [178]. In this study it has been shown that, upon incubation with MGO for three
weeks, the stress-induced aggregation of HEWL was strongly reduced. Indeed, upon
thermal and chemical stress, while the non-modified HEWL was rapidly forming amyloid
fibrils, the MGO-modified protein was not showing any fibril formation but only small
amorphous structures. Structural analysis has shown that MGO-glycation only affects argi-
nine residues and induces changes in tertiary structure of the protein without significantly
affecting its secondary structure. The authors have hypothesized that the MGO-induced
modification of HEWL arginine residues to neutral AGE adducts could be responsible for
the reduced susceptibility to amyloid aggregation [178]. These results notably differ with
the aggregation-modulation mechanism of ribosylated HEWL directed by hydrophobic
interactions clearly showing that the mechanism underlying the aggregation of a glycated
protein strongly depends on the chemical nature of the glycating agent.

4.8. Hemoglobin

Human hemoglobin (Hb) has been the first glycated protein to be identified in vivo
and it is widely used in diagnostics as it indicates the presence of excessive sugar in the
bloodstream [179,180]. Indeed, the subfraction HbA1c, glycated at the amino-terminal
valine residue of the β chain, may be significant with increased level of blood glucose over
prolonged periods of time and, for this reason, is considered an important biomolecular
marker for evaluating long term control of diabetes.

Hb can be glycated by glucose, fructose, and methylglyoxal [181–183], and several
studies have been published on glycation-induced structural and functional modifications
of Hb [182,184,185]. In particular, it has been shown that the glucose-induced glycation
(both in vitro and in vivo) promotes iron release and enhances free-radical mediated oxida-
tive stress [181]. Exposure to fructose directly promotes strong conformational changes
in Hb driving the native α-helical structure into non-native often β-sheet rich structure,
favors the unfolded conformation and stimulates Hb aggregation [182,186,187]. Glyoxal is
the more efficient glycating agents so far tested for Hb and it has been shown to promote
considerable retention of secondary structure and loss of tertiary structure as suggested
by increased heme exposure and reduced hydrophobic surface. Glycation by glyoxal also
promotes the formation of partially unfolded molecules that are aggregation-prone thus
inducing aggregation in Hb [188,189]. The overall data suggest that glycation modifications
of Hb might strongly modulate the amyloidogenic properties of this protein, and this could
play a key role in accumulating additional amyloid during diabetes progression.

5. Conclusions and Perspectives

Protein glycation is a spontaneous age-dependent post-translational modification that
can affect the structure and function of several proteins. Glycation reaction is strongly
affected by concentration and reactivity of the glycating agent (reducing sugar, carbonyl
compound), oxidative conditions, number of glycation sites, and their exposure in the
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protein structure. In this respect, the effect of glycation on the protein structure strongly
depends on the exposure of glycating sites in the protein structure, the type of AGEs
formed, and the environmental conditions. The data presented for the different model
proteins clearly suggest that glycation affects the aggregation properties of polypeptides
unevenly; it stimulates amyloid aggregation in some proteins, whereas it slows down the
process for other proteins. Indeed, glycation is shown to accelerate the aggregation rate in
some model proteins as Aβ-peptide in the double lysine CEL-AGE, IAPP in the presence of
glucose and hemoglobin in the presence of fructose and GO [60,120,182,186]. At the same
time, glycation can inhibit amyloid aggregation as in IAPP with MGO; in α-synuclein with
D-ribose, MGO, and GO; in insulin with D-ribose and MGO; and in SOD1 with glucose, D-
ribose, GO, and MGO [85,86,107,108,156,158,182,186]. In addition, glycation has been also
shown to promote amyloid aggregation in natively folded proteins as in human albumin in
the presence of glucose, D-ribose, MGO, and GO [126–128,136,138]. The different effect can
be ascribed both to the type of AGE formed and, also, to the molecular mechanisms under-
lying the aggregation process of the protein involved. Indeed, being a post-translational
modification, glycation to specific residues can affect amyloid aggregation and the related
cytotoxicity if the residues or their microenvironment are directly involved in the amyloid
formation. In addition, protein glycation seems to strongly stabilize protein aggregates
make them more difficult to remove from the proteasome system.

As oxidative stress is a triggering factor both in the glycation reaction and in the amy-
loid formation and induced toxicity, a potential therapeutic strategy for amyloid diseases
could involve the use of molecules with antioxidant activity. In this respect, much attention
has been paid to natural compounds, such as polyphenols, well known for their antiox-
idants and anti-inflammatory properties, able to prevent/protect by neurodegenerative
diseases [190–196]. Several studies have suggested that natural phenolic compounds can
interfere both with protein glycation and with the amyloid aggregation process of several
model proteins [194,197–206]. In this context, polyphenols could represent an efficient
additional therapy capable of acting on several mechanisms common to the pathologies of
diabetes and amyloidosis simultaneously. They also have the advantage of being naturally
found in the diet, so that their therapeutic implementation can be through a dietary alter-
ation or nutritional supplements, which is more cost-effective, easier to implement, socially
acceptable, and generally safer.
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