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Background: The mechanism of copper-induced cell death, which is called

cuproptosis, has recently been clarified. However, the integrated role of

cuproptosis-related genes in hepatocellular carcinoma (HCC) and its

relationship with immune characteristics are still completely unknown.

Methods: In this study, the expression, genetic, and transcriptional regulation

states of 16 cuproptosis-related genes in HCCwere systematically investigated.

An unsupervised clustering method was used to identify distinct expression

patterns in 370 HCC patients from the TCGA-HCC cohort. Differences in

functional characteristics among different expression clusters were clarified

by gene set variation analysis (GSVA). The abundances of immune cells in each

HCC sample were calculated by the CIBERSORT algorithm. Next, a

cuproptosis-related risk score was established based on the significant

differentially expressed genes (DEGs) among different expression clusters.

Results: A specific cluster of HCC patients with poor prognosis, an inhibitory

immune microenvironment, and high expression levels of immune checkpoint

molecules was identified based on the expression of the 16 cuproptosis-related

genes. This cluster of patients could be well-identified by a cuproptosis-related

risk score system. The prognostic value of this risk score was validated in the

training and two validation cohorts (TCGA-HCC, China-HCC, and Japan-HCC

cohorts). Moreover, the overall expression status of the cuproptosis-related

genes and the genes used to establish the cuproptosis-related risk score in

specific cell types of the tumormicroenvironment were preliminarily clarified by

single-cell RNA (scRNA) sequencing data.
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Conclusion: These results indicated that cuproptosis-related genes play an

important role in HCC, and targeting these genes may ameliorate the inhibitory

immune microenvironment to improve the efficacy of immunotherapy with

immune checkpoint inhibitors (ICIs).

KEYWORDS

cuproptosis-related genes,multiomics data, risk score, immune characteristics, single-
cell, hepatocellular carcinoma

Introduction

Liver cancer is one of the most life-threatening cancer types

worldwide, and its main pathological type is hepatocellular

carcinoma (HCC) (Sung et al., 2021). At present, the best

treatment for HCC is still radical resection. However, many

patients have lost the chance of radical surgery at the time of

diagnosis (Su et al., 2022). Although there are some treatments

for advanced unresectable HCC, such as transcatheter arterial

chemoembolization (TACE), radiofrequency thermal ablation

(RFTA), and molecular targeted drugs, including tyrosine

kinase inhibitors (TKIs) such as sorafenib and lenvatinib,

the curative effects are still unsatisfactory (Forner et al.,

2018; Kim et al., 2021; Chen et al., 2022; Yau et al., 2022).

Therefore, it is urgent to find more effective therapeutic targets

or methods for combining existing treatments to improve the

therapeutic effects of HCC treatment and prognosis of HCC

patients.

Trace metals, such as iron, copper, and zinc, are essential for

life activities (Liu et al., 2021; Dou et al., 2022; Yang et al., 2022).

It is important that the content of these metals in cells be

appropriate. Low intracellular metal concentrations may

inhibit the function of important metal-binding enzymes, thus

impairing normal biological activities, while exorbitant

intracellular metal concentrations can lead to cell death and

disease, such as Wilson’s disease (Collins et al., 2021; Dou et al.,

2022). Metal ion-related cell death patterns, such as ferroptosis,

have been investigated in various cancers (Gan, 2022; Lei et al.,

2022). Recently, the mechanism of copper-induced cell death,

called cuproptosis, was also clarified (Tsvetkov et al., 2022). Some

cuproptosis-related genes have also been studied in HCC in

recent years. For example, copper transporter genes (ATP7A,

ATP7B, SLC31A1, and SLC31A2) have been reported to

participate in HCC progression by regulating intracellular

copper homeostasis (Davis et al., 2020). Furthermore, ATP7B

has been shown to be associated with platinum resistance in HCC

cell lines (Guttmann et al., 2018). However, these studies have

only studied the role of one or several copper transporter genes,

and the integrated role of cuproptosis-related genes in HCC

remains largely unknown.

Immunotherapy with immune checkpoint inhibitors (ICIs)

has shown good efficacy in treatment of a variety of cancers

(Petroni et al., 2022; Strickland et al., 2022). Monoclonal

antibodies targeting PD-1 or PD-L1 combined with

angiogenesis inhibitors or TKIs have also enabled

considerable progress in the treatment of advanced HCC

(Finn et al., 2020; Llovet et al., 2021). However, there are

only a few patients with good treatment response. Thus,

elucidating the immune heterogeneity of HCC will help

clinicians judge which patients are likely to benefit from

immunotherapy and will facilitate screening of synergistic

therapeutic targets to enhance therapeutic efficacy.

Numerous studies have clarified the connection between

ferroptosis and immune characteristics (Friedmann Angeli

et al., 2022; Gan, 2022). In addition, several studies have

reported that copper is correlated with immune activity (Fu

et al., 2014; Portelinha et al., 2021). However, the combined

roles of cuproptosis-related genes in immune characteristics

remain unclear.

In this study, genetic and transcriptional regulation features

of cuproptosis-related genes were systematically investigated.

Next, three distinct cuproptosis expression patterns were

identified by an unsupervised clustering method based on a

cuproptosis-related gene list. Differences in prognosis,

function, and immune characteristics among these three

clusters were clarified. In addition, a cuproptosis-related risk

score was established to quantify cuproptosis-related

characteristics. Independent prognostic values of the risk score

were validated in a training cohort and two validation cohorts.

High-risk scores predict poor prognosis, an inhibitory immune

microenvironment, and high expression levels of immune

checkpoint molecules in HCC patients. These results suggest

that cuproptosis-related genes play an important role in HCC,

which will help us assess the prognosis of HCC patients and their

response to immunotherapy, and these genes may become

potential synergistic targets to improve the efficacy of

immunotherapy for HCC.

Materials and methods

Data acquisition and preprocessing

Cuproptosis-related gene lists were acquired from recently

published literature (Tsvetkov et al., 2022). In detail, a total of

16 cuproptosis-related genes, including three copper transporters

(SLC32A1, ATP7A, and ATP7B), ferredoxin 1 (FDX1), four

lipoic acid (LA) pathway molecules (LIAS, DLD, LIPT1, and
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LIPT2), seven pyruvate dehydrogenase complex (PDHC)

molecules (DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A,

and GCSH), and an elesclomol-induced cuproptosis-related

molecule (MPC1), were analyzed in the present study. Gene

expression data in various normal tissues and organs of the

human body were downloaded from the Genotype-Tissue

Expression (GTEx) database (https://gtexportal.org/home/)

(GTEx Consortium, 2013). Gene expression data in fragments

per kilobase million (FPKM) or count forms, as well as DNA

methylation (Illumina Infinium Human

Methylation450 platform), tumor mutation burden (TMB),

copy number variation (CNV) data, and their corresponding

clinicopathological characteristics of HCC patients, were

downloaded from The Cancer Genome Atlas (TCGA) database

(https://portal.gdc.cancer.gov/) as a training cohort (TCGA-HCC).

In addition, gene expression data and corresponding clinical

information from the Zhongshan Hospital of Fudan University

(China-HCC) and LIRI-JP cohorts (Japan-HCC) were

downloaded from the NODE (https://www.biosino.org/node)

and the International Cancer Genome Consortium (ICGC)

databases (https://dcc.icgc.org/) as validation cohort 1 and

validation cohort 2, respectively (Fujimoto et al., 2016; Gao

et al., 2019). TMB data were analyzed by the “maftools”

package in R software, and CNV data were analyzed by the R

software and online tool GISTIC 2.0 (https://cloud.genepattern.

org/gp/pages/login.jsf) (Mermel et al., 2011). FPKM data were

transformed into transcripts per million (TPM) data before

analysis. The transcription factors and miRNA regulatory

networks of these cuproptosis-related genes were analyzed by

the online tool NetworkAnalyst (https://www.networkanalyst.ca/

) (Zhou et al., 2019). Except for this online network analysis, all of

the data were analyzed by R x64 4.1.0 in this study.

Clustering, survival, and immune analyses
and gene set variation analysis

Unsupervised clustering analysis was used to identify the

distinct expression patterns of the HCC patients in the training

cohort based on the expression data of these 16 cuproptosis-

related genes using the “ConsensusClusterPlus” package

(Wilkerson and Hayes, 2010). Prognosis differences among

the different clusters were analyzed by the “survMisc” and

“survminer” packages. The abundances of immune cells in

each HCC sample were calculated by the CIBERSORT

algorithm in R software based on the gene expression data

and LM22 file provided by the function developer (Newman

et al., 2015). In addition, the overall difference in gene function

among the different clusters was investigated by the “GSVA”

package using the “c2. cp.kegg.v7.2. symbols.gmt” gene set

(Hänzelmann et al., 2013). Correlations between levels of

cuproptosis-related genes and immune cells were analyzed by

the Spearman method.

Differential analysis and functional
annotation

To further explore the gene expression characteristics related

to cuproptosis, differentially expressed genes (DEGs) between

the cluster-1 and cluster-2 or cluster-3 were identified

respectively by the “DESeq2” package according to the count

data (Love et al., 2014), considering that cluster-1 has

significantly different characteristics (Figure 3C). Significant

DEGs were screened by the criteria of an adjusted p

value <0.05 and |log2FoldChange| > 1. Next, DEGs were

further identified by taking the intersection of the DEGs of

cluster-1 and cluster-2 and the DEGs of cluster-1 and cluster-

3. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) analyses were performed by the

“clusterProfiler” package using significant DEGs (Yu et al., 2012).

Establishment and evaluation of the
cuproptosis-related risk score

To quantify the cuproptosis expression patterns of individual

HCC patients, a cuproptosis-related risk score system was

established. The detailed information for the generation of the

cuproptosis-related risk score is as follows. First, prognostic

DEGs were identified by the random forest model (ntree =

100) using the “survivalsvm” and “randomForestSRC”

packages, which were further screened by univariate and

multivariate Cox analyses. As a result, a cuproptosis-related

risk score was established based on the remaining 19 most

significant prognostic DEGs (p value <0.05) and their risk

coefficients from multivariate Cox analysis. The calculation

formula is as follows: ∑ (Exp * Coef), where Exp = expression

levels of the prognostic DEGs and Coef = risk coefficients of the

prognostic DEGs. The HCC patients in each cohort were divided

into two groups (high- and low-score groups) according to the

optimal cutoff value of the risk score automatically calculated by

the “roc” method in the “ggrisk” package, and their prognoses

were identified by Kaplan–Meier plotter curves. In addition,

potential drugs targeting these 19 prognostic genes were

screened by CellMiner, a web tool based on the NCI-60 cell

line set (Reinhold et al., 2019).

Processing and analysis of
clinicopathological characteristics

Clinicopathological characteristics with a missing rate of less

than 20% from the TCGA-HCC cohort were analyzed in our

study, including age (“≤60y” and “>60y”), stage (“Stage I–II” and
“Stage III–IV”), T-stage (“T1–T2” and “T3–T4”), histological

grade (“G1–G2” and “G3–G4”), hepatitis [“Hepatitis (-)” and

“Hepatitis (+)”], surgical margin (“R0” and “R1–R2”), gender
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(“female” and “male”), and vascular invasion (“None” and

“Macro–Micro”). The missing values were interpolated by the

“mice” package. Independent prognostic values of these

clinicopathological characteristics and the risk score were

investigated by univariate and multivariate Cox regression

analyses in the training and validation cohorts (TCGA-HCC,

China-HCC, and Japan-HCC cohorts). Finally, subgroup

analysis was performed using the “forestplot” package.

Analysis of single-cell RNA sequencing
data

ScRNA sequencing data of HCC and adjacent liver tissues

from 12 primary HCC patients and six relapsed HCC patients

were downloaded from the China National GeneBank DataBase

(CNSA: CNP0000650) (Sun et al., 2021). After screening, all

16,498 effective cells were identified as 24 clusters (from cluster-0

to cluster-23) and annotated as 10 cell types [T cells, myeloid

cells, malignant cells, NK cells, B cells, endothelial cells, epithelial

cells, plasmacytoid dendritic cells (pDCs), hepatic stellate cells

(HSCs), and plasma cells] by the data provider. The proportions

of cuproptosis-related genes and prognostic DEGs in each cell

cluster were calculated by the “PercentageFeatureSet” function

using the “Seurat” package in R (Satija et al., 2015). In addition,

DEGs between tumor cell cluster-C12 and other cell clusters were

identified by the “FindMarkers” function. Significant DEGs in

C12 were screened by |average log2FC| > 2 and adjusted p

value <0.05.

Statistical analysis

All of the data were analyzed and visualized by R 4.1.0 in this

study. The survival data were statistically analyzed by the log-

rank test. The continuous variables between the two groups were

compared by Student’s t-test and Wilcoxon test. Difference

comparisons of three groups were conducted by one-way

ANOVA and Kruskal–Wallis tests. p value <0.05 was

considered statistically significant.

Results

Gene expression, genetic alteration, and
transcription regulation status of the
16 cuproptosis-related genes

We first explored the expression levels of the 16 cuproptosis-

related genes in various normal tissues and organs of the human

body. The results showed that the expression profiles of these

genes in tissues and organs of the whole body were similar, except

that a few genes were expressed at low or high levels in specific

tissues and organs, such as low expression levels of ATP7A and

CDKN2A in blood and high expression levels of GLS and DLAT

in the liver (Figure 1A). Next, the expression differences between

HCC and normal liver samples were compared in the TCGA-

HCC cohort. The results showed that the levels of most

cuproptosis-related genes were significantly highly expressed

in tumor samples, except for GCSH, MPC1, and SLC31A1,

while levels of ATP7B and FDX1 showed no significant

differences between the two groups (Figure 1B). These results

revealed that cuproptosis-related genes are significantly

differentially expressed in HCC.

To further explore the reasons for the change in cuproptosis-

related gene expression in HCC, genetic alterations were

analyzed. However, TMB (Figure 2A) or CNV

(Supplementary Table S1) only occurred in a few genes,

suggesting that genetic factors may not be the main reason for

the change in cuproptosis-related gene expression. Next, the

main type of epigenetic factor, DNA methylation status, was

investigated. The results showed that the DNA methylation

status of these cuproptosis-related genes was generally

different between tumor and normal liver tissues (Figure 2B).

We noticed that eight genes (ATP7A, DLAT, GLS, LIAS, LIPT1,

LIPT2, MTF1, and PDHB) that were significantly highly

expressed in tumors exhibited DNA hypomethylation. These

results indicated that the change in cuproptosis-related gene

expression in HCC may be caused partially by the DNA

methylation status. Under this condition, the potential

miRNA and transcription factor regulatory network was

preliminarily explored (Figure 2C), which was also one of the

factors underlying differential gene expression.

Next, Pearson’s correlation analysis was performed to assess

the correlations between the levels of these cuproptosis-related

genes to investigate their integrated role. We found that positive

correlations were more frequent, and there was a strong

correlation between the levels of seven genes (GLS, LIPT1,

ATP7A, MTF1, DLAT, DLD, and PDHA1) (Figure 2D).

Furthermore, the prognostic values of these cuproptosis-

related genes were investigated by univariate Cox analysis. As

revealed by Figure 2E, ATP7A, LIPT1, DLAT, MTF1, GLS, and

CDKN2A were adverse prognostic factors in HCC. Taken

together, these results indicate that cuproptosis-related genes

might play an important role in HCC.

Distinct expression patterns of
cuproptosis-related genes were
associated with genetic alterations

To comprehensively clarify the influence of these

cuproptosis-related genes in HCC, distinct expression patterns

were discriminated by an unsupervised clustering method based

on the expression levels of these 16 cuproptosis-related genes in

the TCGA-HCC cohort. According to the optimal number of
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clusters automatically calculated by the “ConsensusClusterPlus”

package (Supplementary Figures S1A–F), three clusters were

identified across 370 HCC samples (Figure 3A), and most of

the cuproptosis-related genes were differentially expressed

among these three clusters (Supplementary Figure S1G). The

results of prognostic analysis revealed that patients in cluster-1

had a significant survival disadvantage (Figure 3B). To explore

the biological characteristics among these three distinct clusters,

GSVA was conducted. As shown in Figure 3C, cluster-1 has

significantly different biological characteristics from those of

cluster-2 and cluster-3, while the characteristics of cluster-2

and cluster-3 are similar. Interestingly, most of the top nine

functional terms enriched in cluster-1 were associated with

genetic alterations, such as mismatch repair, base exclusion

repair, nucleotide exclusion repair, and homologous

recombination. These results indicated that cuproptosis-related

genes may affect the prognosis of HCC patients by affecting

genome stability.

Analysis of immune characteristics among
the three clusters

Numerous studies have emphasized the important role of the

immune microenvironment in the prognosis and therapeutic

response of HCC patients (Dong et al., 2020; Llovet et al., 2021).

A recent study revealed that magnesium can promote CD8 T cell

activation and high expression levels of PD-1 by regulating

metabolic reprogramming to enhance the efficacy of

immunotherapy (Lötscher et al., 2022). In addition, some

studies have shown that copper is related to T cell infiltration

and recruitment (Kaddatz et al., 2021; Wang et al., 2021).

FIGURE 1
Expression profiles of the 16 cuproptosis-related genes. (A) Expression profile of the 16 cuproptosis-related genes in normal tissues and organs
of the human body from theGTEx database. (B) Expression profile of the 16 cuproptosis-related genes in theHCC tumor tissues and normal tissues in
the TCGA-HCC cohort. Red represents tumor tissues, and yellow represents normal liver tissues. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p <
0.0001, ns: not significant.
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However, whether these cuproptosis-related genes can affect the

immune characteristics of HCC remains largely unknown. In this

study, immune cell abundances in HCC samples were calculated

by the CIBERSORT function in R, and the differences in immune

characteristics among these three clusters were compared. There

were significant differences among these three clusters, such as in

FIGURE 2
Regulation, interaction, and prognostic characteristics of the 16 cuproptosis-related genes in the TCGA-HCC cohort. (A) TMB status of the
16 cuproptosis-related genes in 364 HCC patients. (B) Differential DNA methylation levels between HCC tumor tissues and normal tissues. (C)
Transcription factor and miRNA regulation network of cuproptosis-related genes. Red represents cuproptosis-related genes, pink represents
transcription factors, and blue represents miRNAs. (D) Correlations among cuproptosis-related genes. (E) Forest plot results of univariate
analysis of cuproptosis-related genes.
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follicular helper T cells, regulatory T cells, and M0 macrophages,

which were significantly more abundant in cluster-1 than in

cluster-2 and cluster-3, while monocytes, M1 macrophages,

M2 macrophages, and resting mast cells were significantly less

abundant in cluster-1 (Figure 4A). These results indicate that

there may be an immunosuppressive microenvironment in

cluster-1 involving inhibitory immune cell infiltration and

inhibition of macrophage polarization.

To further clarify the role of these cuproptosis-related genes

in the immune microenvironment of HCC, Spearman’s

correlation analysis was performed to assess the correlations

between these genes and immune cells. The results showed that

cuproptosis-related genes have strong correlations with

many immune cells, for example, the levels of SLC31A1 were

positively associated with the abundance of M1 macrophages,

the levels of GLS were positively associated with the abundance

of M0 macrophages, and the levels of SLC31A1 was positively

associated with the abundance of M0 macrophages and

regulatory T cells (Figure 4B). Immune checkpoint inhibitors

(ICIs) are the main drugs for tumor immunotherapy at present,

so the differential expression status of immune checkpoints

among the three clusters was further investigated. To our

surprise, most of the main immune checkpoints, such as

CTLA4, PDCD1, CD274, ICOS, and LAG3, were expressed

FIGURE 3
Identification of distinct expression patterns and analysis of their prognostic and functional characteristics in the TCGA-HCC cohort. (A)
Unsupervised clustering of HCC patients based on the 16 cuproptosis-related genes. (B) Survival analyses for the three distinct expression patterns.
(C) GSVA results showing the functional characteristics in the three clusters.
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at significantly high levels in cluster-1 (Figure 4C). Taken

together, these results suggested that the proportion of

immune cells in cluster-1 was quite different from that in

the two other clusters, and most of the major immune

checkpoints were highly expressed in cluster-1. ICIs may be

more effective for HCC patients in cluster-1, and targeting

these cuproptosis-related genes may improve the inhibitory

immune microenvironment to improve the efficacy of

immunotherapy.

Differential analysis, establishment, and
external validation of the cuproptosis-
related risk score

Considering that cluster-1 has distinct functional characteristics

than the other two clusters (Figure 3C), DEGs between cluster-1

and cluster-2 or cluster-3 were identified. After screening by the

criteria of an adjusted p value <0.05 and |log2FoldChange| > 1 and

taking intersection of the DEGs of cluster-1 and cluster-2 and the

FIGURE 4
Differential analysis of immune characteristics among the three clusters in the TCGA–HCC cohort. (A) Differences in the 22 immune cell types
among the three expression clusters. (B) Correlations between the 16 cuproptosis-related genes and 22 immune cells. (C) Differences in the
13 immune checkpoint molecules among the three expression clusters. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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DEGs of cluster-1 and cluster-3, a total of 3,854 significant DEGs

were identified (Supplementary Table S2). Functional enrichment

analyses were performed based on these significant DEGs. As

revealed by Supplementary Figure S2A, the results of biological

process (BP) analysis showed that these genes were enriched for

nuclear division, organelle fission, chromosome segregation, sister

chromatid segregation, etc. DEGs were enriched for cellular

components (CC), including synaptic membrane, condensed

chromosome, kinetochore, and centromeric region. DEGs were

enriched for molecular function (MF), including gated channel

activity, iron channel activity, and receptor–ligand activity. The

results of KEGG analysis showed that DEGs were enriched for

neuroactive ligand–receptor activity, cell cycle, drug metabolism,

etc. (Supplementary Figure S2B).

To quantify the cuproptosis expression patterns of individual

HCC patients, a cuproptosis-related risk score was established.

First, a total of 168 prognostic genes among these 3,854 DEGs

were identified by the random forest method and were further

screened by subsequent univariate and multivariate Cox analyses

(Supplementary Table S3). As a result, a cuproptosis-related risk

score was generated based on the remaining 19 most significant

prognostic DEGs and their risk coefficients (Table 1). HCC

patients in the TCGA-HCC cohort were separated into two

risk groups (high- and low-score groups) according to the

optimal cutoff value of the risk score automatically calculated

by the “roc” method in the “ggrisk” package (Figure 5A). The

results of survival analyses showed that most of these

19 prognostic genes were highly expressed in the high-score

group (Figure 5A), and patients in the high-score group had a

significantly poorer prognosis than those in the low-score group

(Figure 5B). In addition, most of these 19 prognostic genes and

the risk score were highly expressed in cluster-1 (Supplementary

Figures S2C,D). Next, the prognostic value of the risk score was

further validated by two external HCC cohorts (China-HCC and

Japan-HCC cohorts). In these two cohorts, risk scores were

calculated using the same formula as that used in the TCGA-

HCC cohort. It should be noted that only 14 genes for the

generation of the risk score existed in the Japan-HCC data, so the

risk score was calculated by these 14 genes (CDH10, CLDN6,

EPO, FCN3, GNGT1, HOXA7, ITGAM, KIF24, MSC, PFN2,

SEPT14, TEX15, TTK, and YJEFN3) and their corresponding

risk coefficients. After that, patients in the China-HCC and

Japan-HCC cohorts were also separated into two groups

(high- and low-score groups) according to the optimal cutoff

value of the risk score automatically calculated by the “roc”

method in the “ggrisk” package (Figure 6A; Supplementary

Figure S3A). The results of survival analyses also showed that

most of these prognostic genes were highly expressed in the high-

score groups (Figure 6A; Supplementary Figure S3A), and

patients in the high-score groups had a significantly poorer

prognosis than those in the low-score groups (Figure 6B;

Supplementary Figure S3B). In addition, potential therapeutic

drugs targeting these 19 prognostic genes were preliminarily

screened by CellMiner (Supplementary Table S4). After

comparing the expression levels of the 19 prognostic genes

and the IC50 values of drugs that have been approved by the

Food and Drug Administration (FDA) or are in clinical trials, the

twelve most significant correlation pairs are visualized in

Supplementary Figure S4, such as the SR16157–GNGT1 and

Imexon–PFN2 pairs. These results suggested that these drugs

may help prolong the OS time and response to immunotherapy

in HCC patients by targeting the 19 prognostic genes.

Finally, to explore the differences in biological characteristics

among these two risk groups, GSVA was conducted in the

TCGA-HCC cohort. As shown in Figure 5C, the high-score

group had significantly different biological characteristics from

those of the low-score group, while the most significant terms

enriched in the high-score group were consistent with the results

of cluster-1 analysis (Figure 3C, Figure 5C). These results

revealed that the high-score group had prognostic and

functional characteristics similar to those of cluster-1.

Immune analyses in the high- and low-
score groups

To further explore the relationship between the risk score and

immune characteristics, immune analyses were performed. There

were also significant differences in immune characteristics

between the high- and low-score groups (Figure 7A).

TABLE 1 Significant prognostic DEGs and their corresponding
coefficients.

Gene Coefficient

AC012512.1 0.64716

CCT7P2 −0.58323

CDH10 0.235,149

CLDN6 0.265357

EPO 0.231876

FCN3 −0.208

GNGT1 −0.54705

HOXA7 0.238912

ITGAM −0.15749

KIF24 −1.13771

MEP1AP4 0.527339

MSC 0.193459

PFN2 0.126459

RN7SL368P 0.944861

RP1-63M2.5 1.476354

SEPT14 0.35305

TEX15 0.886103

TTK 0.600176

YJEFN3 −0.21253
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Consistent with the immune characteristics in cluster-1, follicular

helper T cells, regulatory T cells, and M0 macrophages were

significantly abundant in the high-score group, while monocytes,

M1 macrophages, M2 macrophages, and resting mast cells were

significantly abundant in the low-score group (Figure 7A). As

revealed by the results of Spearman’s correlation analysis, the

levels of prognostic DEGs had more significant correlations with

the abundance of immune cells than with the levels of

cuproptosis-related genes (Figure 7B). We also noticed that

the levels of almost all prognostic DEGs were significantly

positively associated with the abundances of M0 macrophages

and follicular helper T cells, which had significantly different

abundances between the high- and low-score groups (Figures

7A,B). Finally, the expression levels of immune checkpoints

between the two risk groups were compared. The results

showed that most of the immune checkpoint molecules were

significantly highly expressed in the high-score group, except for

IDO1 and IDO2 (Figure 7C).

FIGURE 5
Establishment and evaluation of the cuproptosis-related risk score in the TCGA–HCC cohort. (A) Survival status of HCC patients and expression
of the 19 significant prognostic DEGs in the high- and low-score groups. (B) Kaplan–Meier curve for the two risk groups. (C) GSVA results showing
the functional characteristics in the two risk groups.
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Taken together, these results indicated that the high-score

group had immune characteristics similar to those of cluster-1,

while the prognostic DEGs used for the generation of the risk

score had more significant correlations with the abundances of

immune cells. In this context, ICIs may be more effective for

HCC patients in the high-score group, and targeting these

prognostic DEGs may be a potential way to improve the

inhibitory immune microenvironment to improve the efficacy

of immunotherapy.

Analysis of the relationship between
clinicopathological characteristics and the
risk score

There were no significant differences in clinicopathological

characteristics before and after interpolation (Supplementary

Figure S5; Supplementary Table S5) in the TCGA-HCC

cohort, so we used the interpolated data for follow-up

analysis. The results of Cox and subgroup analyses suggested

FIGURE 6
External validation of the efficiency of the cuproptosis-related risk score in validation cohort 1 (China-HCC). (A) Survival status of HCC patients
and expression of the 19 significant prognostic DEGs in the high- and low-score groups. (B) Kaplan–Meier curve for the two risk groups in the China-
HCC cohort. (C) Forest plot of clinicopathological features and risk scores in the China-HCC cohort.
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FIGURE 7
Differential analysis of immune characteristics between the two risk groups in the TCGA–HCC cohort. (A) Differences in the 22 immune cell
types between the two risk groups. (B)Correlations between the 19 prognostic DEGs for the establishment of the risk score and 22 immune cells. (C)
Differences in the 13 immune checkpoint molecules between the two risk groups. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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that the risk scores were independent prognostic factors in the

training and validation cohorts (Supplementary Tables S6–S8;

Figure 6C; Figure 8A; Supplementary Figure S3C), and the

patients with a large tumor size (“> 5 cm”) had a worse

prognosis than the patients with a small tumor size (“≤
5 cm”) (Figure 6C; Supplementary Figure S3C). Next, risk

FIGURE 8
Clinicopathological features and clinical subgroup analysis. (A) Forest plot of clinicopathological features and risk scores in the TCGA-HCC
cohort. (B–I) Boxplot results of the expression levels of the risk score among different clinical subgroups, including (B) age, (C) stage, (D) T stage, (E)
histological grade, (F) hepatitis status, (G) surgical margin, (H) gender, and (I) vascular invasion. *p < 0.05, **p < 0.01, and ***p < 0.001, ns: not
significant.
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scores between the different clinical subgroups were compared in

the TCGA-HCC cohort. The results showed that HCC patients

with higher stage (“Stage III–IV”), higher T stage (“T3–T4”),

higher histological grade (“G3–G4”), nonradical resection

(“R1–R2”), and vascular invasion (“Macro–Micro”) had higher

risk scores (Figures 8B–I). These results were consistent with

clinical experiences that patients with these adverse

clinicopathological characteristics have high risk scores.

Overall expression analyses of the
cuproptosis-related genes and prognostic
DEGs for the establishment of the risk
score through scRNA sequencing data

To further clarify the overall expression status of these

cuproptosis-related genes and prognostic DEGs in each cell

cluster, scRNA sequencing data were analyzed. In general,

cells expressing these two gene sets had a higher proportion

of the total number of cells in HCC tumor tissues than in adjacent

liver tissues (Figures 9A,C). In detail, cells expressing

cuproptosis-related genes account for a certain proportion of

all cell types in the tumor microenvironment, although they

account for a higher proportion in some tumor cell clusters (C9,

C12, C14, and C16) (Figure 9B). However, the proportion of cell

expression prognostic DEGs in almost all cell clusters in the

tumor microenvironment was very low, except for in a tumor cell

cluster-C12 (Figure 9D). On this condition, significant DEGs

between C12 and other cell clusters were identified for

subsequent functional enrichment analysis. The results of GO

and KEGG analyses showed that tumor cell cluster-C12 was

closely associated with T cell activation and the T cell receptor

signaling pathway (Figures 9E,F). These results indicated that

tumor cells, especially C12, are the main target cell types for

subsequent intervention of these cuproptosis-related genes and

prognostic DEGs in the HCC immune microenvironment to

synergistically improve the efficacy of immunotherapy.

Discussion

Copper is an important trace metal used to maintain normal

life activities, but its excessive high or low expression will cause

diseases (Dou et al., 2022; Kahlson and Dixon, 2022). For a long

time, the mechanism of copper-induced cell death was unclear

until a recent study showed that copper-induced cell death, called

cuproptosis, was associated with the disorder of metabolites

related to the tricarboxylic acid cycle (Tsvetkov et al., 2022).

However, the integrated role of cuproptosis-related genes and

their functional characteristics in HCC remain largely unknown.

Inthisstudy,acuproptosis-relatedgenelistwassortedaccording

to the recent literature. The expression status and biological

characteristics of these cuproptosis-related genes in HCC were

comprehensively analyzed. In detail, based on the 16 cuproptosis-

related genes, threedistinct expressionpatterns (cluster-1, cluster-2,

andcluster-3)wereidentifiedintheTCGA-HCCcohort.Thesethree

clusters had significantly distinct prognostic, functional, and

immune characteristics. It is noteworthy that functional terms of

cluster-1 with poor prognosis were enriched in genetic alterations

such as mismatch repair and homologous recombination, as

revealed by GSVA. In addition, the results of immune analysis

revealed that there was significant enrichment for inhibitory

immune cells in cluster-1, such as follicular helper T cells and

regulatory T cells, and most of the main immune checkpoint

molecules were also expressed at significantly high levels in

cluster-1. These results suggest that the functional roles of

cuproptosis-related genes in HCC may be partly achieved by

causing genetic alterations and immune dysfunction.

To quantify the characteristics of cuproptosis in each HCC

patient, a cuproptosis-related risk score was established. As

revealed by the results of prognostic and functional analyses,

HCC patients in the high-score group had a significantly poorer

prognosis and inhibitory immune cell infiltration and as high

expression levels of the main immune checkpoint molecules.

These results indicated that this risk score system can well-

integrate the functional characteristics of cuproptosis-related

genes. It has been reported that an inhibitory immune

microenvironment is usually related to poor prognosis and a

non-sensitive response to immunotherapy (Li et al., 2016; Zhao

et al., 2019; Eschweiler et al., 2021; Gao et al., 2022). Therefore,

HCC patients with higher cuproptosis-related risk scores may be

more responsive to immunotherapy with ICIs due to the high

expression levels of immune checkpoint molecules. Targeting

these cuproptosis-related genes or prognostic DEGs used for

establishment of the risk score may ameliorate the inhibitory

immune microenvironment to improve the efficacy of

immunotherapy and thus prognosis. In addition, we noticed

that there was a significantly increased abundance of unpolarized

macrophages (M0 macrophages) in cluster-1 and the high-score

group and a decreased abundance of polarized macrophages

(M1macrophages andM2macrophages). These results indicated

that macrophages in the high-score group may have strong

plasticity and that inducing M0 macrophages to polarize into

M1 macrophages (classic activated macrophages) may also be a

potential strategy to improve the efficacy of immunotherapy in

HCC patients in the high-score group.

Thetumormicroenvironmentincludesavarietyofcomplexcell

components, such as immune cells, stromal cells, and tumor cells

(Shietal.,2022;VandenBosscheetal.,2022).Thedifferenceintheir

composition and expression is one of the main reasons for tumor

heterogeneity (Srinivasan et al., 2022). Clarifying tumor immune

heterogeneity will help identify effective synergistic targets to

enhance the efficacy of immunotherapy. In this context, scRNA

sequencingdatawereanalyzed in this study toclarifywhichkindof

cells expressed the cuproptosis-related genes and the prognostic

DEGs. As revealed by Figure 9, cuproptosis-related genes are
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expressed to some extent in all cell types of tumor

microenvironments, while prognostic DEGs are mainly

expressed in tumor cells. These results indicate that cuproptosis-

related genes may affect the function of a variety of cells in the

immune microenvironment of HCC, resulting in changes in the

expressionofprognosticDEGsintumorcellstoaffect theprognosis

of HCC patients and their response to immunotherapy.

There are still some limitations in this study. First, the

prognostic and immune predictive value of this cuproptosis-

related risk score needs to be validated in more HCC patients

from real-world multicenters. Second, whether HCC patients

with higher risk scores are more sensitive to ICIs needs to be

confirmed by further preclinical and clinical studies. Third,

strategies for ameliorating the inhibitory immune

FIGURE 9
Analysis of the proportion of cell expression two gene sets in the HCC tumor microenvironment by scRNA data. (A) Differences in the
proportion of cell expression cuproptosis-related genes betweenHCC tumor tissues and adjacent liver tissues. (B) Proportion of cuproptosis-related
genes in all cell types. (C) Differences in the proportion of cells expressing the prognostic DEGs between HCC tumor tissues and adjacent liver
tissues. (D) Proportion of cells expressing the prognostic DEGs in all cell types. (E) GO analysis results of the significant DEGs in tumor cell
cluster-C12. (F) KEGG analysis results of the significant DEGs in tumor cell cluster-C12.
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microenvironment by targeting these cuproptosis-related genes

or prognostic DEGs for establishment of the risk score need to be

further researched by experimental and clinical studies.

Conclusions

In this study, a list of cuproptosis-related genes was identified

and comprehensively analyzed in HCC for the first time.

Cuproptosis-related genes can be used to identify a specific

cluster of HCC patients with poor prognosis and an

inhibitory immune microenvironment and may be sensitive to

ICI treatment. This cluster of patients could be well-identified by

a cuproptosis-related risk score system. In addition, this risk

score can be used as an independent prognostic factor for HCC

patients. Moreover, the overall expression status of cuproptosis-

related genes and the genes for establishing the cuproptosis-

related risk score in specific cell types of the tumor

microenvironment were preliminarily clarified by scRNA

sequencing data. Taken together, these results revealed that

cuproptosis-related genes play an important role in HCC, and

targeting these genes may ameliorate the inhibitory immune

microenvironment to improve the efficacy of immunotherapy

with ICIs and thus improve the prognosis of HCC patients.
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SUPPLEMENTARY FIGURE S1
Unsupervised clustering and difference analysis in the training cohort.
(A–D)Consensus matrices for k = 2-5 in the training cohort. (E) Delta
area plot. (F) Consensus CDF plot. (G) Differential expression of the
16 cuproptosis-related genes in the three clusters. *P< 0.05, **P< 0.01,
***P<0.001, and ****P<0.0001, ns: not significant.

SUPPLEMENTARY FIGURE S2
Differential analysis and functional enrichment analysis in the training
cohort. (A) Dot plot of GO analysis results. BP: biological process, CC:
cellular components, and MF: molecular function. (B)Dot plot of KEGG
analysis results. (C)Differential expression of the 19 significant prognostic
DEGs for the generation of the risk score in the three clusters. (D)
Differential expression of the risk score in the three clusters.

SUPPLEMENTARY FIGURE S3
External validation of the efficiency of the cuproptosis-related risk score
in validation cohort 2 (Japan-HCC). (A) Survival status of HCC patients
and expression of the 14 significant prognostic DEGs in the high- and
low-score groups. (B) Kaplan–Meier curve for the two risk groups in the
Japan-HCC cohort. (C) Forest plot of clinicopathological features and
risk scores in the Japan-HCC cohort.

SUPPLEMENTARY FIGURE S4
Pearson correlation analysis between the 19 prognostic genes and drugs.
Twelve representative scatter plots of the relationship between drug
sensitivity (IC50) and the expression levels of the 19 hub genes.

SUPPLEMENTARY FIGURE S5
Comparison of clinicopathological features before and after
interpolation. (A) Missingness map of the clinical data. (B) Graphical
illustration of information before and after interpolation. Blue
represents before interpolation, and red represents after interpolation.
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