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CONTEMPORARY REVIEW

Device- Based Approaches Targeting 
Cardioprotection in Myocardial Infarction: 
The Expanding Armamentarium of 
Innovative Strategies
Francisco José Romeo , MD; Renata Mazurek , MD; Tomoki Sakata , MD, PhD;  
Spyros A. Mavropoulos, MD, PhD; Kiyotake Ishikawa , MD, PhD

Coronary reperfusion therapy has played a pivotal role for reducing mortality and heart failure after acute myocardial infarc-
tion. Although several adjunctive approaches have been studied for reducing infarct size further, both ischemia– reperfusion 
injury and microvascular obstruction are still major contributors to both early and late clinical events after acute myocardial 
infarction. The progress in the field of cardioprotection has found several promising proof- of- concept preclinical studies. 
However, translation from bench to bedside has not been very successful. This comprehensive review discusses the impor-
tance of infarct size as a driver of clinical outcomes post- acute myocardial infarction and summarizes recent novel device- 
based approaches for infarct size reduction. Device- based interventions including mechanical cardiac unloading, myocardial 
cooling, coronary sinus interventions, supersaturated oxygen therapy, and vagal stimulation are discussed. Many of these 
approaches can modify ischemic myocardial biology before reperfusion and offer unique opportunities to target ischemia– 
reperfusion injury.
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Irreversible myocardial damage due to acute myo-
cardial infarction (AMI) is a global health problem 
and a significant cause of chronic heart failure (HF) 

with an annual incidence of 805,000 in the United 
States alone.1 Reperfusion of the coronary obstruc-
tion with primary percutaneous coronary intervention 
(PCI) has dramatically reduced mortality among pa-
tients with AMI.2 Despite significant advances in the 
field of PCI for AMI, both morbidity and maladap-
tive left ventricular (LV) remodeling leading to HF still 
play a pivotal role in short-  and long- term outcomes 
post- AMI.3,4 Tremendous efforts have been made to 
develop therapeutic approaches to protect myocar-
dial tissue during the acute ischemic insult. Despite 
success in both animal and clinical proof- of- concept 
studies, translation of adjunct cardioprotection to 

clinical practice has remained an unfilled gap.5,6 
Nevertheless, recent technological advances now 
provide a novel platform for device- based interven-
tion to potentially fill this gap.

The purpose of this comprehensive review is to 
summarize cutting- edge knowledge in preclinical and 
clinical studies of novel device- based approaches for 
reducing infarct size (IS). We first cover the pathophys-
iological mechanisms of both ischemia– reperfusion 
injury (IRI) and microvascular obstruction (MVO) post 
AMI, which is closely linked to IS. We also discuss 
how these novel interventions modulate both the car-
diomyocyte and noncardiomyocyte milieus, which 
provides clues for understanding how LV function 
post- AMI can be restored/preserved and leads to im-
proved clinical outcomes.
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ACUTE MYOCARDIAL INFARCTION 
AND PROGRESSION TO HEART 
FAILURE
Beginning with the “open artery theory” in the 1970s, 
the field of AMI management has been ruled by the 
fundamental principle “time is muscle,” indicating that 
prolonged coronary occlusion leads to increased myo-
cardial injury.7 Of note, from the onset of coronary oc-
clusion, the death of myocardial tissue spreads from 
the endocardial to the epicardial layer, the so- called 
“wavefront phenomenon.”8 Therefore, if reperfusion of 
the coronary artery is performed during the very early 
phase of coronary occlusion, myocardial death will 
be limited to the endocardial side, the IS will be small 
and cardiac function will be preserved. Alternatively, 
late reperfusion will result in a more transmural infarct 
with severe LV dysfunction and subsequent HF.9 In 
a clinical setting, it has been established that the re-
lationship between the total ischemic time and clini-
cal outcomes is closely related. Most important, both 
clinical and preclinical studies indicate that the shorter 
the time to reperfusion, the less cardiomyocyte cell 
death.3 Reperfusion by PCI with a door- to- balloon time 
within 90 minutes after hospital presentation is recom-
mended by current guidelines.10 However, recent data 
suggest that further shortening of door- to- balloon time 
does not reduce IS.11 According to these findings, 
novel complementary cardioprotective interventions 
are required to maximize myocardial salvage.

ISCHEMIA– REPERFUSION INJURY 
DURING ACUTE MYOCARDIAL 
INFARCTION
In 1960, Jennings et al first presented the histological 
features and pathological characteristics of myocardial 
IRI in a canine model.12 Despite successive demonstra-
tion of IRI in several organs in various animal models, 
whether it also exists in humans remains ambiguous. 
Although lack of efficacy in IRI- targeting pharmaceu-
tical therapies in previous clinical trials raises doubt 

as to the importance of IRI in humans, there is also 
much supportive evidence that suggests its presence, 
such as myocardial edema13 and arrhythmias14,15 that 
immediately follow reperfusion. Previous research in 
animals has shown that reperfusion itself is a “double- 
edged sword” because of the paradoxical myocardial 
injury driven by various mechanisms including oxida-
tive stress, inflammation, intracellular Ca2+ overload, 
and irreversible cell death.16 The loss of equilibrium 
between reactive oxygen species (ROS) and endog-
enous antioxidant molecules leading to cardiomyocyte 
cellular damage defines oxidative stress. Notably, the 
accumulation of ROS such as oxidized glutathione or 
reduced nicotinamide adenine dinucleotide phosphate 
can modify proteins, membranes, and even DNA, 
leading to free radical damage.17 ROS accumulation 
starts at the early phase of ischemia, uncoupling the 
mitochondrial respiratory chain and subsequently fol-
lowed by a sudden burst in ROS generation at reperfu-
sion, mainly driven by xanthine oxidase activation and 
neutrophils, which are responsible for delivering toxic 
agents to the myocardium.18 To reduce ROS- induced 
myocardial injury during IRI, natural antioxidants such 
as vitamins C and E as well as other agents like res-
veratrol (a plant- derived polyphenol) have been stud-
ied as potential therapies.19 Vitamins might also have 
effects beyond the expected antioxidative properties. 
For instance, a recent article published by Lee et al20 
demonstrated that vitamin D administration in a mouse 
IRI model reduced cardiomyocyte apoptosis and ROS, 
increased mitochondrial membrane potential and pre-
served mitochondrial structure by avoiding mitophagy 
(mitochondrial autophagy). However, the clinical ben-
efit of antioxidants during AMI remains to be clarified. 
The IRI cascade also triggers an intense inflammatory/
immune response characterized by infiltration of neu-
trophils, followed by macrophages and lymphocytes 
at both infarct core and peri- infarct myocardial areas. 
Interestingly, T cell lymphocyte accumulation can be 
seen minutes after reperfusion21 indicating that im-
munity is a viable target in IRI.22,23 These cells release 
various cytokines including interleukin- 1 alfa and beta 
and promote activation of both proinflammatory and 
anti- inflammatory signaling pathways. Meanwhile, clin-
ical data on immune modulatory drugs such as cor-
ticosteroids have not been able to demonstrate clear 
efficacy,24 which might be partly related to the side 
effects.

SIGNALING PATHWAYS INVOLVED IN 
ISCHEMIA– REPERFUSION INJURY
Several signaling pathways have been studied as po-
tential targets in cardioprotection post- AMI. However, 
2 of them have been in the spotlight in recent years for 

Nonstandard Abbreviations and Acronyms

IRI ischemia– reperfusion injury
IS infarct size
MVO microvascular obstruction
PICSO pressure- controlled intermittent coronary 

sinus occlusion
SSO2 supersaturated oxygen
TTM targeted temperature management
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exerting their beneficial effects through downstream 
cascade activation (Figure  1). The reperfusion injury 
salvage kinase (RISK) pathway25 confers cardioprotec-
tion when activated specifically at the time of reperfu-
sion. The RISK pathway refers to a group of prosurvival 
protein kinases that include the phosphatidyl inositol- 
3- phosphate kinase/Akt pathway and the extracellular 
signal- regulated kinases- 1 and - 2, downstream me-
diators of mitogen- activated protein kinases pathway, 
which have been shown to limit IRI- induced cell death 
when activated at the onset of myocardial reperfusion.26 
Furthermore, the RISK pathway can be also activated 
by ischemic preconditioning and postconditioning. The 
survivor activating factor enhancement (SAFE) path-
way is another pro- survival cascade for cardioprotec-
tion27 and animal models have demonstrated that the 
activation of the SAFE pathway has been able to limit 
IRI through the downstream protective effects of tumor 
necrosis factor signaling. Interestingly, a crosstalk be-
tween RISK and SAFE pathways via signal transducers 
and activators of transcription- 3 has been suggested 
in mouse models under sphingosine- 1- phosphate 
treatment. In recent years, several reports have pro-
posed that Janus tyrosine kinase/signal transducers 

and activators of transcription signaling is associated 
with IRI post- AMI.

Finally, the mitochondrial permeability transition 
pore is a critical mediator of lethal IRI,28 whose opening 
at the onset of myocardial reperfusion induces cardio-
myocyte death by uncoupling oxidative phosphoryla-
tion and inducing mitochondrial swelling. Preclinical 
studies suggest that its opening may contribute to up 
to 50% of the final IS. Pharmacologically inhibiting its 
opening by administering the mitochondrial permeabil-
ity transition pore inhibitor, cyclosporine- A, at the onset 
of myocardial reperfusion has been demonstrated in 
animal studies to limit IS and prevent IRI in human myo-
cardial tissue. However, the CIRCUS (Clinical Outcome 
in ST Elevation Myocardial Infarction Patients) clinical 
trial evaluating the role of pharmacological administra-
tion of intravenous cyclosporine- A at the time of reper-
fusion failed to show benefit in its primary efficacy end 
point, which was a composite of 1- year all- cause mor-
tality, rehospitalization for HF or HF worsening during 
initial hospitalization, and LV adverse remodeling as de-
termined by serial transthoracic echocardiography.29 
The reason for this could potentially be explained by 
confounders between animals and humans such as 

Figure 1. Schematic representation of the survivor activator factor enhancement (SAFE) and 
reperfusion injury salvage kinase (RISK) pathways.
Tumor necrosis factor (TNF) at low concentrations binds to its TNF receptor- 2, which activates in 
sequence Janus kinase (JAK) and signal transducer and activator of transcription- 3 (STAT- 3), leading to 
cardioprotection via the SAFE pathway. RISK pathway involves phosphatidylinositol- 3- kinase (PI3K- AKT) 
and/or mitogen- activated protein kinase/ERK kinase (MEK)/extracellular- signal- regulated kinase (ERK).
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age, comorbidities, and comedications and issues re-
garding the trial design such as cyclosporine dosing, 
timing and selection of end points.

ROLE OF INFARCT SIZE 
AND MICROVASCULAR 
OBSTRUCTION FOR EVALUATING 
CARDIOPROTECTION
IS is the most frequently used endpoint in cardiopro-
tection studies.30 Regarding jeopardized myocardium, 
the total amount of myocardial tissue suffering is-
chemic insult is known as area at risk. Restoration of 
coronary blood flow, however, can paradoxically result 
in additional damage to the myocardium, namely IRI, 
as discussed previously. In order to determine the po-
tential efficacy of innovative therapies in animal mod-
els of IRI, myocardial salvage, the ratio of IS to area at 
risk, is often used as an outcome variable.31 In clinical 
studies, the gold standard for IS assessment is car-
diac magnetic resonance imaging. The infarct can 
be visualized on T1- weighted imaging approximately 
10 minutes after intravenous contrast administration, 
known as late gadolinium enhancement. In acute in-
farct (generally days 2– 5), late gadolinium enhance-
ment is reflected as the extravasation of gadolinium 
into the disrupted wall membranes. In chronic infarc-
tion (>30 days), late gadolinium enhancement results 
from increased gadolinium retention in the extracellular 
space because of collagen deposition and prolonged 
washout associated with reduced capillary density in 
the infarcted tissue.

Infarct healing is the repair process where col-
lagenous scar tissue is produced to provide stabil-
ity and tensile strength to necrotic myocardium. The 
greater infarct relative to total myocardial mass re-
sults in an inability to maintain LV geometry in light 
of mechanical stresses post- AMI, leading to adverse 
LV remodeling and increased sphericity.32 Of note, 
cardiac magnetic resonance can also assess MVO, 
which occurs when capillaries become obstructed 
by cellular debris and thrombus, resulting in non- 
perfusion of the infarct core despite culprit vessel 
reperfusion.33 Angiographically called no- reflow, and 
electrocardiographically manifested as persisting ST- 
elevation in the infarcted myocardial area, MVO leads 
to worse outcomes including larger IS and maladap-
tive remodeling.34 Importantly, the presence of severe 
myocardial edema on T2- weighted imaging has been 
associated with worse MVO/IS and presence of in-
tramyocardial hemorrhage.35 Of note, intramyocardial 
hemorrhage has been recently associated with a 4- 
fold greater loss in salvageable myocardium within 72 
hours of AMI reperfusion and known to worsen clinical 
outcomes including HF hospitalizations and cardiac 

death. From the time perspective, for every 30- minute 
delay from symptom onset to myocardial reperfusion, 
IS increases by nearly 30% and 1- year mortality in-
creases by 5% to 7%.36 Finally, the relationship be-
tween IS and clinical outcomes was evaluated in a 
meta- analysis of 10 randomized clinical trials involving 
2632 patients with ST- elevation AMI in whom IS was 
measured by cardiac magnetic resonance imaging or 
technetium(tc)- 99m sestamibi single- photon emission 
computed tomography. IS measured within the first 
month of PCI was strongly associated with all- cause 
mortality and HF hospitalization during 1 year of fol-
low- up,37 reinforcing the importance of this parameter 
in preclinical and clinical studies.

CARDIOPROTECTION FOR INFARCT 
SIZE REDUCTION: READY FOR 
PRIMETIME?
The majority of adjunct therapies for AMI cardiopro-
tection have failed so far to translate from bench to 
bedside.5,6 Novel targets such as noncardiomyocyte 
cells, coronary circulation, innate immunity, circulating 
hematopoietic cells, extracellular vesicles, and cardiac 
innervation still have promise in future translation to 
the clinical arena. Moreover, addressing confounders 
between preclinical and clinical cardioprotective trials 
such as collateral coronary circulation, IS, infarct lo-
cation, risk factors (aging, sex, obesity), comorbidities 
(hypertension, diabetes) and comedications38 as well 
as establishing consortium groups for rigorous and 
standardized study designs are among the ongoing ef-
forts to translate promising preclinical results to patient 
care.39 From the mechanistic perspective, Davidson et 
al40 divided adjunct cardioprotection according to the 
protective modality, time of application, cellular target, 
and intracellular target. Briefly, they classified protec-
tive modalities into 3 areas of active research: ischemic 
conditioning, pharmacologic cardioprotection, and 
physical interventions. Ischemic conditioning, which 
refers to application of brief episodes of ischemia, can 
be further divided into preconditioning, before ischemic 
insult; post conditioning, after ischemia; and remote is-
chemic conditioning, for remote application such as in 
the limbs. Remote postconditioning is unique in that 
it can be applied to patients with AMI and extensive 
research has been in place both in clinical and preclini-
cal areas.41 Pharmacologic cardioprotection involves 
chemical substances administered to exert beneficial 
effects during ischemia or reperfusion including an-
tiplatelet agents, antidiabetic drugs among others.42 
Finally, device- based approaches include targeted 
temperature management (TTM), vagal stimulation as 
well as other device- based interventions,43 which are 
the main focus of this review.
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DEVICE- BASED APPROACHES FOR 
MINIMIZING INFARCT SIZE
The vast majority of previous studies focused on phar-
macological approaches to target IRI, either with or 
without ischemic postconditioning therapies.42 Despite 
improving long- term clinical outcomes, the P2Y12 in-
hibitors do not provide substantial IS reduction.44 None 
of the other pharmacological approaches translated to 
clinical practice since the introduction of PCI. There are 
several possible explanations regarding lack of suc-
cess in pharmacological interventions including de-
layed drug delivery to the jeopardized myocardium until 
coronary artery reperfusion, insufficient drug gastric 
absorption, hepatic drug biotransformation (affected 
by age, sex, liver perfusion, drug– drug interactions, 
cytochrome P450 polymorphisms), and reduced renal 
clearance. Importantly, deleterious effects of reperfu-
sion are expected to cause myocardial damage within 
a few minutes with subsequent rapid cell swelling and 
electrolyte accumulation within 2 minutes after reper-
fusion.45 In contrast to pharmacological approaches 
that require coronary reperfusion for the drugs to exert 
effects in the ischemic myocardium, device- based 
approaches have the potential ability to alter myocar-
dial biology by directly affecting the myocardium from 
the endocardial side, coronary sinus side, or through 
the nervous system. In this review we will dissect the 
mechanistic pathways and the rationale of why these 
device- based interventions may in fact add substantial 
benefit for reduction in IS during the ischemic insult in 
patients presenting with AMI.

CONCEPT OF LV UNLOADING
A contributing factor of myocardial necrosis burden 
during AMI is the shift toward increased myocardial 
metabolic demands with concomitant wasting of re-
sidual supply of oxygen to the injured myocardium. 
Once a coronary artery becomes occluded, both myo-
cardial chronotropic and inotropic responses increase 
to compensate for reduced stroke volume, which re-
sults in impaired myocardial oxygen supply- to- demand 
ratio reducing the potential for myocardial salvage. This 
concept was first introduced by Maroko et al46 in 1971 
identifying oxygen supply and demand as main de-
terminants of IS in the setting of AMI. Following this 
dogma, the term LV unloading has been employed to 
describe approaches that are aimed to reduce cardiac 
workload. Recently, Burkhoff et al47,48 defined acute 
LV unloading as any maneuver, therapy, or interven-
tion aiming to reduce the total mechanical power ex-
penditure of the LV, which correlates with reductions 
in myocardial oxygen consumption and hemodynamic 
forces that lead to adverse LV remodeling. In this 
sense, the objective of cardiac unloading is two- fold 

during AMI: to achieve myocardial salvage and to avert 
adverse ventricular remodeling and HF development. 
In addition, it has been demonstrated in multiple pre-
clinical models that IS correlates directly with oxygen 
consumption during AMI49: in other words, less oxygen 
consumption is associated with smaller IS.

MECHANICAL LV UNLOADING
Understanding the interplay of LV hemodynamics and 
myocardial oxygen consumption has been of para-
mount importance for the development of cardiac 
unloading devices in the recent years. Upon devel-
opment of percutaneous ventricular assist devices 
like the Impella (Abiomed, Inc., Danvers, MA), rapid 
and effective ventricular unloading became clinically 
possible. The rationale for LV unloading with Impella 
before reperfusion during AMI and subsequent car-
dioprotection has been demonstrated in several large 
animal models. Initial research by Meyns et al50 in 
2003, demonstrated that LV unloading using Impella 
reduced myocardial oxygen consumption resulting 
in correlated IS reduction in a sheep model of AMI. 
In addition, sustained mechanical LV unloading dur-
ing the acute myocardial ischemia has been dem-
onstrated to improve both myocardial perfusion and 
collateral flow index which inversely correlated with 
IS.51 We also demonstrated the relationship between 
increased microvascular perfusion in the infarct tis-
sue and decreased LV end- diastolic wall stress during 
mechanical LV unloading using microsphere injec-
tion.52 Kapur et al dissected the signaling pathways 
underlying the beneficial effects of mechanical LV 
unloading on myocardial tissue during AMI, includ-
ing activation of the endogenous RISK pathway within 
the infarct zone, augmentation of stromal cell- derived 
factor- 1α (SDF- 1α) levels, activation of antiapoptotic 
pathways with inhibition of B- cell lymphoma- 2 (BCL- 2) 
and B- cell lymphoma associated X (BAX)53 as well as 
maintenance of both myocardial energetics and mito-
chondrial integrity54 (Figure 2).

These preclinical studies led to the STEMI- DTU 
(ST- Elevation Myocardial Infarction- Door to Unload) 
pilot trial in humans initiated by Kapur and colleagues 
assessing the safety and feasibility of mechanical LV 
unloading with Impella followed by delayed reperfusion 
in patients with AMI.55 Recent results of the study con-
firmed the safety and feasibility of LV unloading before 
reperfusion and showed that primary LV unloading and 
delayed reperfusion for 30 minutes did not increase IS. 
Moreover, in the subgroup of patients with ST elevation 
≥6 mm, IS normalized to the area at risk was signifi-
cantly smaller in patients who underwent 30 minutes of 
LV unloading before reperfusion compared with imme-
diate reperfusion despite a longer total ischemic time. 
The trial is currently in the second phase, which aims to 
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test the efficacy of Impella- mediated LV unloading for 
reducing IS and improving clinical outcomes in a pro-
spective, multicenter, randomized control trial involving 
up to 60 centers in the United States and additional in-
ternational sites (NCT03947619). The estimated study 
end date is October 2027.

MYOCARDIAL COOLING
TTM as a strategy of tissue protection has been stud-
ied for decades in several diseases such as stroke and 
is an approved treatment for brain protection after re-
covery of spontaneous circulation in patients suffering 
out- of- hospital cardiac arrest.56 In the ischemic heart, 
TTM has shown IS reduction in several preclinical 
models with a variety of animal species, ischemia du-
ration, cooling methods, cooling duration, magnitude 
of cooling, and timing of cooling initiation.57,58 Most of 
these studies used target temperature between 32 °C 
and 35 °C. Meanwhile, experimental data suggest that 
even small changes of temperature within normother-
mic range can affect IS significantly. In fact, one rab-
bit study demonstrated linear relationship between 
IS and temperature in the 35 °C to 42 °C range with 
controlled heart rate.59 Importantly, IS reduction may 
be achieved only when cooling is initiated during the 
ischemic phase with lack of benefit once reperfusion 
has started.60 Of note, some studies postulated reduc-
tion in MVO with no impact on IS reduction, pointing to 
TTM’s unique salutary effects at the myocardial micro-
vasculature level.61

When translating TTM to clinical application, sev-
eral approaches and devices for achieving targeted 
temperature have been employed. However, none of 
them has fulfilled the ideal features for rapid enough 
cooling for AMI with minimal side effects.62 In contrast 
to strong evidence in preclinical studies, a recent pa-
tient level pooled analysis of 6 published randomized 
clinical trials including a total of 629 patients treated 
with endovascular TTM found that the IS reduction is 
limited to patients with anterior wall involvement and 
those cooled below 35 °C.63

Several limitations may account for the lack of ben-
efit of TTM. First, previously used systemic cooling 
methods cannot guarantee that ischemic myocar-
dium be cooled in a timely manner before reperfu-
sion. Optimization of delivery systems will likely reduce 
the time for achieving sufficient myocardial cooling. 
Second, hypothermia might have confounded the 
platelet inhibition. Both oral (clopidogrel, ticagrelor, and 
prasugrel) as well as intravenous (cangrelor) P2Y12 in-
hibitors exert efficient platelet inhibition in patients who 
are normothermic, but the efficacy is reduced in pa-
tients undergoing therapeutic hypothermia.64,65 Third, 
systemic delivery of hypothermia can induce shivering 
in patients, which can increase systemic oxygen de-
mand and enhance the adrenergic state. Fourth, ad-
dition of any device including TTM requires extra time, 
which prolongs symptom- to- reperfusion time. Fifth, 
when cold fluid infusion is used, large amount of flu-
ids to cool the whole body can potentially induce pul-
monary edema in patients who are hemodynamically 

Figure 2. Schematic representation of Impella- assisted mechanical left ventricular (LV) unloading.
LV unloading improves myocardial perfusion in the infarct zone, preserves mitochondrial structure, and augments collateral coronary 
circulation driving to reduction in final infarct size (IS). Created using Biore nder.com. RISK indicates reperfusion injury salvage kinase.

http://biorender.com
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compromised. For example, the COOL- AMI EU trial 
(prospective, open- label, multicenter randomized trial) 
evaluated cooling as an adjunctive therapy to PCI in 
patients with AMI.66 In total, 111 patients were ran-
domized to endovascular hypothermia (33.3 °C) (Zoll 
Proteus Intravascular Cooling System) versus con-
trol (standard of care). No differences were seen in 
the primary end point of IS at 4 to 6 days post AMI 
or in 30- day major adverse cardiac events. Moreover, 
the hypothermia strategy resulted in a 44- minute in-
crease in total ischemic time due to complexities in 
delivery system logistics. The EURO- ICE (European 
Intracoronary Cooling Evaluation in Patients With 
ST- Elevation Myocardial Infarction) trial67 is currently 
ongoing and will clarify whether selective intracoro-
nary hypothermia (Figure  3)68 (normal saline infusion 
at room temperature for 10 minutes through balloon 
catheter followed by normal saline at 4 °C infused for 
10 minutes during the reperfusion phase) can reduce 
IS in a safe and timely manner (NCT03447834). This is 
an elegant approach differentiated from previous trials 
by limiting the cooling to the infarcted region without 
inducing systemic hypothermia, being more aligned 
with PCI with the option of therapy through radial ac-
cess, no requirement for antishivering medications, 
less cold saline for infusion (147 mL versus 1028 mL for 
systemic hypothermia), and rapid onset of cooling with 
only 6- minute cooling- related delay in total door- to- 
balloon time.69 The first 50 enrolled patients revealed 

promising results with no in- hospital mortality.70 The 
estimated study completion date is December 2022.

CORONARY SINUS INTERVENTIONS
The purpose of intervening in coronary venous circu-
lation relies on a fundamental principle: a controlled 
pressure increase of the coronary sinus is able to 
induce a retrograde perfusion gradient in ischemic 
myocardium with improvement in myocardial tissue 
perfusion.71 Overall, 3 main classes of coronary sinus 
interventions have been proposed and tested: (1) ret-
roperfusion technique, (2) retroinfusion technique, and 
(3) coronary sinus occlusion techniques. The retroper-
fusion technique, which refers to active blood pumping 
into the coronary sinus, has demonstrated efficacy in 
improving myocardial metabolism and reducing IS in 
animal models.72 The retroinfusion technique, which 
refers to active pumping of substances into the coro-
nary sinus with or without blood, has shown to be safe 
to deliver cell therapy in preclinical models. However, 
these retroperfusion/infusion techniques have been 
mainly designed for investigational purposes as well 
as for delivering cardioplegia during heart surgery and 
so are technically not feasible for providing cardiopro-
tection in AMI. Coronary sinus occlusion techniques 
include both intermittent and pressure- controlled in-
termittent coronary sinus occlusion (PICSO). Both of 
them use a balloon- tipped catheter equipped with a 

Figure 3. Intracoronary hypothermia for infarct size reduction.
This local cardiac cooling method is currently tested in a clinical trial. Aortic pressure (Pa) in red, distal coronary pressure (Pd) in 
green, and intracoronary temperature in blue. Note that during the reperfusion phase, Pd rises (balloon is deflated) and coronary flow 
is (partially) restored. Numeric values of Pa, Pd, and temperature during both phases are displayed on the right. Reproduced with 
permission from El Farissi et al.68 Copyright © [2022], [Mary Ann Liebert, Inc.].
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sensor for coronary sinus pressure monitoring placed 
at the ostium of the coronary sinus. During balloon in-
flation, a pulsatile and progressive increase in coronary 
sinus pressure is observed at each cardiac cycle until 
a pressure plateau is achieved. Then, the balloon is 
deflated allowing systolic venous drainage (Figure 4).73 
The capacity of these techniques to provide cardiopro-
tection relies on several aspects. First, canine models 
have shown that increasing coronary sinus pressure 
allows redistribution of blood flow to the endocardial 
layers.74 Moreover, PICSO has been recognized also 
in a canine model for its ability to reduce myocardial 
edema and hasten the clearance of deleterious mol-
ecule buildup during the acute ischemic phase,75 likely 
by plasma skimming into the venous microcirculation.

The clinical relevance of this intervention to protect 
the ischemic myocardium against IRI has been evalu-
ated in both preclinical and clinical studies. For exam-
ple, Khattab et al76 found in a closed- chest swine MI 
model that PICSO was safe and effective in improving 
coronary perfusion pressure with subsequent ame-
lioration in myocardial oxygen consumption. In the 
clinical field, small studies using PICSO showed feasi-
bility, safety, and increased coronary wedge pressure 
through coronary sinus pressure augmentation.77

In 2015, the Prepare RAMSES study evaluated this 
technique in addition to primary PCI in patients with 
anterior AMI.78 In total, 30 patients were randomized 
to coronary sinus occlusion versus standard of care. 
PICSO was initiated in 19 patients (63%); however, it 
could be maintained for 90 (±2) minutes in only 12 pa-
tients (40%). Comparing all patients treated with PICSO 

to matched controls, no significant differences in IS or 
LV function were found. However, IS reduction from 2– 5 
days to 4 months was greater for patients successfully 
treated with PICSO compared with matched controls 
(41.6±8.2% versus 27.7±9.9%, P=0.04). Although this 
trial showed PICSO was safe as an adjunct therapy 
for reducing IRI and IS during AMI, logistic aspects 
required further troubleshooting. A recent propensity 
score- matched population of patients with AMI in 5 
UK hospitals showed that PICSO is associated with 
reduced IS at 5 days post AMI.79 The benefits of PICSO 
during AMI are not only directed to IS reduction but also 
salutary on the myocardial microcirculation. As shown 
recently by De Maria et al, applying PICSO to patients 
with AMI and an index of microvasculature resistance 
>40 before PCI demonstrated microvascular function 
improvement in addition to IS reduction. Currently, 
the PICSO- AMI- I trial is ongoing and will shed light on 
whether PICSO started after coronary flow restoration 
can reduce IS in AMI (NCT03625869). The estimated 
study completion date is July 2025.

SUPERSATURATED OXYGEN 
THERAPY
Experimental studies have shown focal patchy areas 
of microvascular ischemia during reperfusion in the 
area at risk, reducing capillary density and creating 
arteriovenous shunts that can potentially affect final 
IS and myocardial recovery. In order to improve myo-
cardial oxygen delivery and enhance coronary micro-
vascular function, higher oxygen concentrations are 
required because of low plasma solubility.81 In fact, the 
recent randomized trial DETO2X- AMI82 (Determination 
of the Role of Oxygen in Suspected Acute Myocardial 
Infarction) showed that routine administration of stand-
ard oxygen therapy in patients with suspected AMI 
without hypoxemia had no clinical benefit on all- cause 
mortality at 1- year follow- up. Although this trial did not 
evaluate IS, the lack of benefit can potentially be related 
to limited oxygen delivery to the ischemic myocardium. 
The rationale for investigating the benefit of increas-
ing plasma oxygen tension during myocardial ischemia 
has been provided by experiments that revealed both 
increase in coronary blood flow and ischemia allevia-
tion during hyperoxia.83,84 Hyperbaric oxygen therapy 
can provide oxygen with an atmospheric pressure 2 to 
3 times higher than normal air pressure resulting in an 
increase in oxygen tension above 10 to 15 times normal 
plasma concentration.85 Initial experimental studies 
with hyperbaric oxygen therapy in the prereperfusion 
era demonstrated a reduction in ventricular arrhythmias 
and survival improvement.86 Moreover, a Cochrane 
Systematic Review noted that in acute coronary syn-
drome, individual small trials suggested the addition of 

Figure 4. Coronary sinus intervention for retrograde 
perfusion.
Example of continuous coronary sinus pressure measured 
during pressure- controlled intermittent coronary sinus occlusion 
(PICSO) balloon deflation and inflation. A balloon- tipped catheter 
is introduced in the coronary sinus. The catheter, which is 
connected to a console, is able to monitor coronary sinus 
pressure and automatically repeat inflations and deflations. 
Reproduced from Vidal- Calés et al73 under the terms and 
conditions of the Creative Commons Attribution (CC- BY) license 
(https://creativecommons.org/licenses/by/4.0/).
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hyperbaric oxygen therapy reduces the risk of major 
adverse cardiac events, dysrhythmias, and the time to 
relief from ischemic pain but does not reduce mortal-
ity.87 Although hyperbaric oxygen therapy incorporated 
new data about the benefits of highly concentrated 
oxygen for the postreperfusion ischemic myocardium, 
this treatment is not technically feasible during AMI. 
Local infusion of blood hyperbarically oxygenated with 
aqueous oxygen is termed supersaturated oxygen 
(SSO2) delivery. Aqueous oxygen is an infusible physi-
ological solution (usually normal saline) containing oxy-
gen dissolved at high partial pressures, on the order of 
40 bars or greater, yielding an oxygen concentration of 
>1.1.88 The delivery of SSO2 with a partial pressure of 
oxygen (PaO2) of 760 to 1000 mm Hg in the affected 
artery immediately after successful reperfusion has 
markedly reduced IS in both canine and swine coro-
nary occlusion models (Figure  5)89,90 by decreasing 
capillary endothelial cell swelling, reducing myeloper-
oxidase levels (a marker of free radical oxygen tissue 
damage), altering nitric oxide synthase expression, and 
inhibiting leukocyte activation and adherence as well 
as endothelial preservation.91 Following promising pilot 
study results,92 269 patients with anterior or large infe-
rior AMI undergoing successful PCI within 24 hours of 
symptom onset were randomly assigned to SSO2 or 
control treatment in the AMIHOT- I (Acute Myocardial 
Infarction With Hyperoxemic Therapy- I) trial.93 In this 
study, IS measured by technetium (tc)- 99m-  sestamibi 
single photon emission computed tomography imag-
ing at 14 days was not significantly different between 

the 2 treatment groups. However, the 105 patients with 
anterior AMI reperfused within 6 hours in the SSO2 
group had a smaller IS, less post- PCI residual ischemic 
burden measured by ST- segment Holter monitoring, 
and improved echocardiographic regional wall motion 
at 3 months (P=0.04, by intent- to- treat analysis). These 
findings motivated a second, prospective, randomized 
trial of SSO2 therapy, the AMIHOT- II trial,94 randomiz-
ing a total of 304 patients. This time the trial targeted 
only the patients with large anterior AMI undergoing 
PCI within 6 hours of symptom onset. The trial followed 
a Bayesian statistical design, where the results of the 
Phase II study were incorporated into those of the fol-
low- up trial, with weighting of the Phase II data accord-
ing to degree of similarity between trials. A statistically 
significant smaller median IS, measured at 2 weeks by 
single photon emission computed tomography, was 
noted in the treatment group compared with the con-
trol group (18.5% versus 25% of LV mass, or a rela-
tive IS reduction of 26%). Moreover, in patients with a 
baseline LV ejection fraction <40%, even greater myo-
cardial salvage was noted with an absolute IS of 33.5% 
in controls and 23.5% in patients treated with SSO2. 
Regarding clinical outcomes, SSO2 was noninferior to 
the control group in terms of 30- day major advanced 
cardiac events, but increased risk of bleeding was ob-
served (SSO2 delivery requires 7– 8 Fr femoral access). 
These results need to be taken with caution however, 
because the AMIHOT- II was an underpowered trial in 
terms of IS reduction at 14 days but was positive only 

Figure 5. Supersaturated oxygen therapy. Blood is directed towards an oxygenation polycarbonate chamber to achieve a 
partial pressure of oxygen (PO2) of 760– 1000 mm Hg.
Hyperoxemic blood is then returned at 100 mL/min for 60 minutes through a dedicated 5 French (Fr) intracoronary infusion catheter 
placed at the ostium of the left coronary artery, providing supersaturated oxygen to the whole left coronary artery. Images courtesy 
of Zoll Medical Corporation (Zoll.com).

http://zoll.com
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when pooling the positive subgroup from AMIHOT- I 
cohort.

Although nonsignificant, the SSO2 arm showed a 
trend for increased stent thrombosis in these studies. 
The safety of SSO2 therapy was later confirmed in 
100 patients with anterior AMI treated with 60 minutes 
of intracoronary SSO2 post PCI (IC- HOT [Evaluation 
of Intracoronary Hyperoxemic Oxygen Therapy in 
Anterior Acute Myocardial Infarction Patients] single 
arm trial). This study demonstrated smaller IS in SSO2 
group by cardiac magnetic resonance at 30 days. It 
also showed logistical improvement in the SSO2 de-
livery technique through infusion via a guide catheter 
into the left main coronary artery using either 5- Fr ra-
dial access or 7- Fr femoral access and increased rate 
of 60- minute SSO2 infusion (100 mL/min). Infarct size 
reduction was comparable to the AMIHOT- II trial and 
total 30- day net adverse cardiac events were 7.8% ver-
sus 13.1% (AMIHOT- II) and 10.7% set as performance 
goal. At 1- year follow- up, there were lower rates of both 
all- cause mortality and new- onset HF/HF hospitaliza-
tions.95 In light of these results, SSO2 is the first Food 
and Drug Administration- approved device- based ther-
apy for AMI cardioprotection.

In 2021, the ISO- SHOCK (Incorporating Super saturated 
Oxygen in Shock) trial started patient recruitment and will 
improve the gap of knowledge through a multicenter, pro-
spective randomized (1:1) study to evaluate the safety and 
feasibility of SSO2 therapy delivered for 60 minutes selec-
tively into the affected coronary artery of patients present-
ing with AMI and cardiogenic shock (NCT04876040). The 
estimated study completion date is June 2025.

VAGAL STIMULATION
The activation of efferent vagal nerves by electrical 

stimulation or by reflexes (baroreflex, chemoreflex) re-
duces heart rate as well as increases coronary blood 
flow through a nitric oxide- dependent mechanism.96 
Moreover, the interplay between IRI and autonomic 
balance enhances sympathetic activity with conse-
quent decreased vagal activity, worsening IRI.97 Several 
mechanisms have been related to cardioprotection 
through efferent vagal stimulation including improved 
mitochondrial function, attenuation of ROS formation, 
antiapoptotic cardiomyocyte signaling, and reduc-
tion of systemic and local inflammatory responses.97 
For instance, in a canine model of IRI, Zhang et al98 

Figure 6. Vagus nerve stimulation. Electrical signal delivered to the tragus stimulate the auricular branch of the vagus 
nerve (afferent fibers).
The excitation then enters the medulla oblongata at the brainstem, which excites the vagus efferent fibers to modulate cardiac 
function. Low- level tragus stimulation reduces infarct size (IS) and relieves left ventricular (LV) remodeling after myocardial infarction. 
Figures created using Biore nder.com and tragus stimulation image reproduced from Jiang et al104 under the terms and conditions of 
the Creative Commons Attribution (CC- BY) license (https://creativecommons.org/licenses/by/4.0/).

http://biorender.com
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demonstrated the capacity of averting IRI through cho-
linergic anti- inflammatory pathway activation. Moreover, 
a rat model evaluating vagal activation during remote 
ischemic conditioning has shown to provide cardiopro-
tection through the release of a humoral factor, possibly 
glucagon- like peptide 1 from the gut.99 Vagal stimulation 
in preclinical models has been shown to both reduce 
IS and preserve LV function and performance. Uemura 
et al100 demonstrated that vagal stimulation attenuated 
myocardial IRI by inducing TIMP- 1 (tissue inhibitor ma-
trix metalloproteinase 1) expression and reducing ac-
tive MMP- 9 (matrix metallopeptidase 9 ). In addition, 
Arimura et al101 demonstrated in a canine MI model that 
bradycardia induction by transvenous superior vena 
cava pacing for a total of 60 minutes starting before 
coronary reperfusion not only reduced IS but also pre-
served LV function at 1- month follow- up. Interestingly, 
electrical stimulation of efferent vagal nerves has been 
shown to reduce IS and MVO in experimental mod-
els,102 even in the absence of heart rate reduction.103 In 
patients with AMI, a proof- of- concept study using vagal 
stimulation by low- electrical transcutaneous stimulation 
at the right auricular tragus (Figure 6),104 starting at cath-
eterization room arrival to 2 hours post- reperfusion, re-
duced IS (P<0.05), reduced ventricular arrhythmias and 
improved LV ejection fraction (P=0.01) compared with 
sham procedure.105 Unfortunately, the TREATMI trial 
(2017) aiming to evaluate the impact of transcutaneous 
vagal stimulation and autonomic modulation of inflam-
mation in AMI failed to enroll the expected number of 
patients (NCT03284281).

FUTURE APPLICATIONS AND 
PERSPECTIVES
The details of each device- based therapy and on-
going clinical trials are summarized in the Table. 
Understanding the pathophysiology and molecular 
mechanisms of IRI and myocardial repair after AMI 
will promote the development of new cardioprotective 
strategies. Regarding the techniques highlighted here, 
the combination of these interventions seems to be a 
reasonable path in the upcoming years. For example, 
our laboratory is exploring the cardioprotective effects 
in swine MI models by application of both mechani-
cal LV unloading and TTM106 for maximum myocar-
dial salvage. Currently, the most important barrier to 
overcome is related to logistic issues as previously de-
scribed, including standardized access in underserved 
populations, improving delivery feasibility, lowering the 
total time of application, and reducing risk of periop-
erative complications.

CONCLUSIONS
This review summarizes key concepts in the field of 
device- based approaches for cardioprotection. The 
armamentarium of novel therapeutics for tackling IS to 
prevent future clinical events is promising but still faces 
complex logistic challenges and requires adequately 
powered clinical trials. The near future will need these 
interventions in order to change the prognosis of the 
growing population with HF after AMI.

Table. Device- Based Therapies for ST- Elevation Myocardial Infarction

Approach
Clinical 
evidence Target

Time of 
application

Treatment 
duration

Extravascular 
access requirement Ongoing studies

Regulatory 
status

Myocardial 
cooling

RCT 
studies

IRI/MVO Before 
and after 
reperfusion

Median time 3 h 
across studies

Yes, for endovascular 
cooling (venous, 8– 9F)

Euro- ICE (European 
Intracoronary Cooling 
Evaluation in Patients 
With ST- Elevation 
Myocardial Infarction) 
RCT

FDA approved in 
cardiac arrest

Left 
ventricular 
unloading

Non- RCT 
studies

IRI Before 
and after 
reperfusion

30 min before 
and continues 
after reperfusion 
(more than 3 h)

Yes, large bore 
arterial (13– 14 F)

STEMI- DTU (ST- 
Elevation Myocardial 
Infarction- Door to 
Unload) pivotal RCT

FDA approved 
and CE market for 
cardiogenic shock 
and high- risk PCI

PICSO Non- RCT 
studies

IRI/MVO After 
reperfusion 
but before PCI

50 min (10 min for 
coronary sinus 
cannulation)

Venous (8– 9 F) PICSO- AMI- I FDA breakthrough 
designation 
(investigational)

SSO2 RCT 
studies

MVO After 
reperfusion

60 min Yes, PCI access can 
be used

ISO- Shock 
(Incorporating 
Supersaturated 
Oxygen in Shock) RCT

Both FDA and CE 
market approval 
in AMI

Vagal RCT IRI Before PCI 2 h No None None

Stimulation Proof- of- 
concept

TREATMI failed to 
enroll patients

AMI indicates acute myocardial infarction; CE, Conformité Européenne; F, French; FDA, Food and Drug Administration; IRI, ischemia– reperfusion injury; 
MVO, microvascular obstruction; PCI, percutaneous coronary intervention; PICSO, pressure- controlled intermittent coronary sinus occlusion; RCT, randomized 
controlled trial; and SSO2, supersatured oxygen.
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