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2 Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4,
02-109 Warszawa, Poland

* Correspondence: m.nycz@ibem.uz.zgora.pl; Tel.: +48-789-441-696

Received: 18 June 2019; Accepted: 24 July 2019; Published: 25 July 2019
����������
�������

Abstract: This paper presents the comparison of the effects of three methods of production of silver
spherical and near-spherical nanoparticles (AgNPs) on the titanium dioxide nanotubes (TNT) base:
cyclic voltammetry, chronoamperometry, and sputter deposition. It also evaluates the influence of
silver nanoparticles on the electrochemical properties of the developed electrodes. The novelty of
this research was to fabricate regular AgNPs free of agglomerates uniformly distributed onto the
TNT layer, which has not been accomplished with previous attempts. The applied methods do not
require stabilizing and reducing reagents. The extensive electrochemical characteristic of AgNP/TNT
was performed by open circuit potential and electrochemical impedance spectroscopy methods. For
AgNPs/TNT obtained by each method, the impedance module of these electrodes was up to 50%
lower when compared to TNT, which means that AgNPs enabled more efficient electron transfer
due to the effective area increase. In addition, the presence of nanoparticles increases the corrosion
resistance of the prepared electrodes. These substrates can be used as electrochemical sensors due to
their high electrical conductivity, and also as implants due to the antibacterial properties of both the
TNT and AgNPs.

Keywords: titanium dioxide (TiO2); titanium nanotubes (TNT); silver nanoparticles (AgNPs);
electrochemical impedance spectroscopy; sputter deposition; chronoamperometry; cyclic voltammetry

1. Introduction

In recent years, the rapid development of sensors for biomedical applications has been observed
because of the urgent need for non-standard diagnostic methods for fast and effective diagnosis of
various disease entities. The sensor platform may be composed of many materials, the most frequently
used being carbon [1–3] or silica-based compounds [4], polymers [5,6], or gold [7]. Platforms for
sensors in the form of composites with two or more compounds [8] are becoming more and more
popular. The main aim of using this kind of platform is to increase the sensitivity. Metal oxides and
metallic nanostructures [9–11] are most widely applied. Among them, particular attention is paid to
titanium dioxide nanotubes (TNT), which are characterized by high surface area, biocompatibility,
good electrical conductivity, good adsorption properties, thermal and chemical stability, ease, and
low production costs [12]. Improvement of the sensor sensitivity is obtained by the doping of metal
nanoparticles, mainly gold nanoparticles (AuNPs) [13]. Silver nanoparticles (AgNPs) seem to be an
alternative to these compounds. Its advantages are: ease and low cost of production, ease of binding
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with proteins in reaction with thiol group (–SH), and the best electrical conductivity among metals,
so AgNPs may facilitate more efficient electron transfer than AuNPS. These properties make the
AgNPs the most promising compound to be applied in electrochemical sensors [14–17]. However, the
application of the AgNPs/TNT platform in sensing is rarely described [18,19]. At present, to the best of
the authors’ knowledge, there are no publications reporting results on electrochemical characterization
of the electrodes containing silver nanoparticles on titanium dioxide nanotubes. Most frequently, the
characteristics of these platforms is limited only to evaluation of its photocatalytic and antimicrobial
properties [20–23].

Besides traditional methods of silver nanoparticles production like chemical reduction of silver
salts [24,25] using various (often expensive and toxic) reagents, new methods have been developed in
recent years. The AgNPs have been produced by electrochemical methods [26], laser synthesis [27],
sputter deposition [28], microwave irradiation [29], sonochemical synthesis [30] and photoreduction [31].
The methods of depositing AgNPs on TNT, which do not require the use of additional agents, are
electrodeposition [32], i.e., potentiostatic [33,34] and galvanostatic [34] polarization, pulse method [35].
Similar results are obtained using sputtering [36]. However, the results obtained in previous
studies [32,33] are not satisfactory due to the large number of agglomerates in the prepared substrates,
or do not contain electrochemical analyses of these substrates [34–36].

The aim of this study was to compare the effects of three methods of silver spherical and
near-spherical nanoparticles production on the titanium dioxide nanotubes base: cyclic voltammetry,
chronoamperometry and sputtering, as well as to assess the influence of silver nanoparticles on the
electrochemical properties of the developed electrodes. In the case of cyclic voltammetry, the variable
parameter was the number of cycles, in the case of chronoamperometry and sputtering deposition
time, so the influence of these parameters on the formation of agglomerates and the electrochemical
characteristics of the samples were examined. For reference, an electrochemical study of TNT and TNT
with a micro silver layer was also performed.

2. Materials and Methods

2.1. Materials

Titanium foil (purity 99.7%), ethylene glycol (assay 99.8%), ammonium fluoride (purity ≥ 98%),
phosphate buffered saline (0.01 M PBS, 0.0027 M potassium chloride and 0.137 M sodium chloride
pH 7.4) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Silver nitrate (AgNO3, analytical
grade) was purchased from Stanlab (Lublin, Poland). All solutions were prepared from Milli-Q water.

2.2. TiO2 Nanotubes Fabrication

The titanium foil was sonicated in acetone, distilled water and dried under nitrogen atmosphere.
The TiO2 nanotube layers were prepared by electrochemical anodization of titanium foils using Autolab
PGSTAT302N (Metrohm, Herisau, Switzerland) at 17 V for 3750 s. Ethylene glycol (85% wt.) with
ammonium fluoride (0.65% wt.) were used as the anodizing electrolyte. Scanning electron microscopy
(FESEM, JEOL JSM-7600F, Tokyo, Japan) and energy-dispersive X-ray spectroscopy (EDS, INCA, Oxford
Instruments, Oxford, UK) were used to investigate the surface morphology and chemical composition.

2.3. Thermal Modification

TNT layers were annealed in the AMP furnace (AMP, Zielona Góra, PL) in argon atmosphere at
450 ◦C for 2 h with the heating and cooling rate of 6 ◦C min−1. Annealing was performed to convert
the as-formed (amorphous) structure of the nanotubes into the crystalline structure of anatase and
rutile, which results in an increase in the conductivity of the TNT.
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2.4. Modification of TNT with Silver Nanoparticles

2.4.1. Cyclic Voltammetry Method (CV)

Deposition of AgNPs on TNT was carried out in 1 mM solution of AgNO3 in the potential range
of −1.25 to −0.7 V in the three-electrode configuration with titanium dioxide nanotubular layer on
the titanium foil as the working electrode, silver chloride electrode (EAg/AgCl = 0.222 V vs. Standard
Hydrogen Electrode, SHE) by Metrohm as the reference electrode, and platinum mesh as the auxiliary
electrode, with the scan rate of 0.05 V s−1 and a number of cycles in the range of 5–30. After deposition,
the surface of the working electrode was washed with distilled water and dried under a nitrogen
atmosphere. The samples will be hereinafter called x cycles_AgNPs/TNT, where x stands for the
number of cycles.

In addition, to investigate the effect of silver nanoparticles on electrochemical characterization of
TNT layers, TNT with a micro silver layer, hereinafter referred to as Ag/TNT, was used to compare their
performance. For this purpose, the micro silver layer was produced by cyclic voltammetry in 50 mM
solution of AgNO3 in the potential range −1.25 to −0.7 V with the scan rate of 0.05 V s−1 for 25 cycles.

2.4.2. Chronoamperometry Method (CA)

Deposition of AgNPs on TNT was carried out in 1 mM solution of AgNO3 with constant potential
of −1.2 V in the three-electrode system described in 2.4.1., during 60–300 s. After deposition, the surface
of the working electrode was washed with distilled water and dried under nitrogen atmosphere. The
samples are hereinafter referred to as x chrono_AgNPs/TNT, where x stands for the time of deposition.

2.4.3. Sputter Deposition (SD)

For the deposition of AgNPs a sputter coater (Quorum Q150T ES, Quorum Technologies, Laughton,
UK) equipped with a silver target (70-AG5710 Silver Target 99.97% pure, Micro to Nano V.O.F., Haarlem,
Netherlands) were used to prepare a set of samples with different AgNPs loadings, which depends on
the sputtering time in the range of 10–60 s at 50 mA. The samples will be hereinafter referred to as x
target_AgNPs/TNT, where x stands for the time of sputtering.

Table 1 presents the summary of the naming of the performed electrodes.

Table 1. Summary of the naming of the performed electrodes.

Sample Description

x cycles_AgNPs/TNT TNT with AgNPs deposited using CV in 1 mM AgNO3; where x –
number of cycles: x = 5, 10, 15, 20, 25, 30.

x chrono_AgNPs/TNT TNT with AgNPs deposited using CA in 1 mM AgNO3; where x – time
of deposition: x = 30, 60, 120, 180, 240, 300.

x target_AgNPs/TNT TNT with AgNPs deposited using SD; where x – time of deposition: x =
10, 20, 40, 60.

Ag/TNT TNT with silver micro layer deposited using CV in 50 mM AgNO3 for
25 cycles.

2.5. Electrochemical Measurements

The open circuit potential (OCP) tests and electrochemical impedance spectroscopy (EIS) scans
were recorded using a standard three-electrode configuration with TNT or AgNPs/TNT platforms as
the working electrode, standard silver chloride electrode (EAg/AgCl = 0.222 V vs. SHE) by Metrohm as
the reference electrode, and the platinum mesh as auxiliary electrode.

OCP measurements were carried out at room temperature (25 ± 2 ◦C) for 1800 s. EIS spectra were
performed over a frequency range of 105–0.1 Hz with a signal amplitude of 10 mV. All experiments
were performed in PBS solution (0.01 M, 20 mL, pH 7.4).
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All measurements were repeated three times (for three samples n = 3) using the
potentiostat/galvanostat model PGSTAT 302N from Autolab (Metrohm).

3. Results and Discussion

3.1. Characterization of Reference Platforms: TNT and Ag/TNT

SEM images of TNT (Figure 1a) show opened from the top, closed at the bottom, and vertically
oriented regular nanotubes with 50 ± 5 nm outer diameter and 1000 ± 100 nm in length completely
covering the titanium foil. No damage on the TNT layers after annealing at 450 ◦C for 2 h was observed.
Figure 1b presents an irregular silver layer with an uneven height in which silver completely closes the
nanotubular morphology of TNT (63.18 ± 8.60 % wt. of silver).
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Figure 1. SEM top-view and cross-sectional (on insets) images of: (a) TNT and (b) Ag/TNT
reference electrodes.

As a result of thermal treatment, the amorphous structure of the TiO2 (originally present in
nanotube structures) changes into a crystalline form of rutile and/or anatase. The most important
advantage of annealing is that it causes the formation of oxygen vacancies, which results in improved
TNT conductivity, and thus facilitates the transfer of charge that is attributed to the conversion
of Ti4+ to Ti3+ [37–40]. The crystalline phases indicate also more corrosion resistance than the
amorphous phase [38]. Studies show that annealing in argon generates more oxygen vacancies in
TiO2 than annealing in the air, oxygen, or nitrogen [41–43]. The TiO2 nanotubes annealed at 450 ◦C
are characterized by the predominance of anatase in their structure [37,42,44], which is advantageous
when using this substrate for biosensing, because anatase has a higher affinity for biomolecules than
rutile [45]. On the other hand, Liang et al. [46] indicate that rutile structure may retard the formation of
silver nanoparticles.

3.2. Characterisation of AgNPs/TNT Platforms with Silver Nanoparticles Obtained by Cyclic Voltammetry

Figure 2 presents SEM photographs of silver spherical and near-spherical nanoparticles on TNT
platforms produced by cyclic voltammetry method, with the variable number of cycles. Only platforms
after 20 and 25 cycles of CV of deposition do not contain silver nanoparticles agglomerates, and their
size is between 5–40 nm. Distribution of the AgNPs after 20–25 cycles of CV (Figure 2d,e) of deposition
is regular and well organized. Nanoparticles are concentrated mostly around nanotube edges, which
can be caused by higher electric current density in those places [47]. The AgNPs, to a lesser extent, also
fill the space between the nanotubes. Moreover, cross-sectional images of AgNPs/TNT (Figure 2g,h)
show that some nanoparticles permeate into the nanotubes and embed in their inner walls. The
mechanism of AgNPs formation consists of the nucleation of Ag metal at the initial stage. Ag metal has
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not completely evolved, with masses of the agglomerates on the top of the tubes. Afterwards, the Ag
nuclei are created, and they become nucleation and growth sites for silver nanoparticles. After a time,
nanoparticles can connect with each other and form into agglomerates [46]. For that reason samples
5–15 cycles_AgNPs/TNT (Figure 2b–d) contain agglomerates, which after 20–25 cycles of CV separate,
resulting in the creation of homogeneously dispersed nanoparticles on TiO2 nanotubes substrate. The
layer becomes supersaturated and agglomerates are created again with an increasing number of cycles
of CV (around 30 cycles).

Nanomaterials 2019, 9, 1072 5 of 15 

 

silver nanoparticles. After a time, nanoparticles can connect with each other and form into 
agglomerates [46]. For that reason samples 5–15 cycles_AgNPs/TNT (Figure 2b, 2c and 2d) contain 
agglomerates, which after 20–25 cycles of CV separate, resulting in the creation of homogeneously 
dispersed nanoparticles on TiO2 nanotubes substrate. The layer becomes supersaturated and 
agglomerates are created again with an increasing number of cycles of CV (around 30 cycles). 

The particle size distribution histograms for the 20 and 25 cycles_AgNPs/TNT samples 
determined from the SEM images are shown in Figure 2i and 2j, respectively. From Figure 2i, it is 
clear that the frequency peak for 20 cycles_AgNPs/TNT electrode comes at approximately 15 nm–25 
nm, and particles, whose sizes range from 5 nm to 30 nm, account for about 88% of the total particles 
observed. For 25 cycles_AgNPs/TNT sample the frequency peak comes at 25–30 nm, and particles, 
whose sizes range from 20 nm to 40 nm, account for about 75%. 

 

  
Figure 2. SEM top-view images of AgNPs/TNT platforms prepared by voltammetric method by: (a) 
5, (b) 10, (c) 15, (d) 20, (e) 25, (f) 30 cycles, (g), (h) crss-sectional images of 25 cycles_AgNPs/TNT and 
histograms of particle-size distribution for: (i) 20 cycles_AgNPs/TNT, (j) 25 cycles_AgNPs/TNT. 

Table 2. The values of OCP and size of AgNPs deposited on TNT platforms prepared by voltammetric 
method. 

 AgNPs/TNT Ag/TNT 

Number of 

cycles 
5 10 15 20 25 30 25 

Size of AgNPs 5–80a nm 5–50a nm 5–40a nm 5–40 nm 5–40 nm 5–70a nm layer a 

OCP [mV] 

versus Ag/AgCl 
−18.0 ± 24 8.11 ± 15 27.0 ± 23 −18.9 ± 9 −2.6 ± 2 −16.7 ± 13 26.9 ± 18 

a – platform with agglomerates 
Table 2 presents the results of measurements of the stationary potential of AgNPs/TNT 

platforms produced by cyclic voltammetry method and sizes of the obtained nanoparticles. Platforms 
that contain AgNPs and Ag/TNT are characterized by higher OCP value in comparison to TNT (−66 
± 14 mV). Electrodes 10–15 cycles_AgNPs/TNT and Ag/TNT structure are characterized by positive 
OCP value. It results from the occurrence of a higher number of unreduced silver ions in the structure 
rich in agglomerates. 

Figure 2. SEM top-view images of AgNPs/TNT platforms prepared by voltammetric method by: (a)
5, (b) 10, (c) 15, (d) 20, (e) 25, (f) 30 cycles, (g, h) crss-sectional images of 25 cycles_AgNPs/TNT and
histograms of particle-size distribution for: (i) 20 cycles_AgNPs/TNT, (j) 25 cycles_AgNPs/TNT.

The particle size distribution histograms for the 20 and 25 cycles_AgNPs/TNT samples determined
from the SEM images are shown in Figure 2i,j, respectively. From Figure 2i, it is clear that the frequency
peak for 20 cycles_AgNPs/TNT electrode comes at approximately 15 nm–25 nm, and particles, whose
sizes range from 5 nm to 30 nm, account for about 88% of the total particles observed. For 25
cycles_AgNPs/TNT sample the frequency peak comes at 25–30 nm, and particles, whose sizes range
from 20 nm to 40 nm, account for about 75%.

Table 2 presents the results of measurements of the stationary potential of AgNPs/TNT platforms
produced by cyclic voltammetry method and sizes of the obtained nanoparticles. Platforms that contain
AgNPs and Ag/TNT are characterized by higher OCP value in comparison to TNT (−66 ± 14 mV).
Electrodes 10–15 cycles_AgNPs/TNT and Ag/TNT structure are characterized by positive OCP value.
It results from the occurrence of a higher number of unreduced silver ions in the structure rich
in agglomerates.

Table 2. The values of OCP and size of AgNPs deposited on TNT platforms prepared by
voltammetric method.

AgNPs/TNT Ag/TNT

Number of cycles 5 10 15 20 25 30 25
Size of AgNPs 5–80 a nm 5–50 a nm 5–40 a nm 5–40 nm 5–40 nm 5–70 a nm layer a

OCP [mV] versus Ag/AgCl −18.0 ± 24 8.11 ± 15 27.0 ± 23 −18.9 ± 9 −2.6 ± 2 −16.7 ± 13 26.9 ± 18
a – platform with agglomerates.
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Figure 3 shows that along with the increased number of cycles (up to 25) comes a linear growth
(R2 = 0.991) of silver content, whereas at a later stage the silver content does not increase, probably due
to layer saturation.

Nanomaterials 2019, 9, 1072 6 of 15 

 

Figure 3 shows that along with the increased number of cycles (up to 25) comes a linear growth 
(R2 = 0.991) of silver content, whereas at a later stage the silver content does not increase, probably 
due to layer saturation.  

 

Figure 3. Chart presenting a number of deposition cycles dependence on silver weight content in 
produced AgNPs/TNT platforms. 

 

Figure 4. Summary of impedance parameters (a), Nyquist (b) and Bode (c) plots of AgNPs/TNT 
platforms differing in the number of cycles of silver nanoparticles deposition and reference layers: 
TNT and Ag/TNT. Spectra were recorded in the PBS solution (0.01 M, 10 ml, pH 7.4) over the 
frequency range 0.1–105 Hz with amplitude 10 mV. 

Figure 3. Chart presenting a number of deposition cycles dependence on silver weight content in
produced AgNPs/TNT platforms.

Figure 4a shows the Nyquist diagrams determined for AgNPs/TNT platforms differing in the
number of cycles of silver nanoparticles deposition using cyclic voltammetry and for reference layers:
TNT and Ag/TNT. The highest resistive character, which indicates the lower electrical conductivity,
was observed for the TNT layer. On the other hand, the highest conductivity values were observed
for AgNPs/TNT platform after 25 cycles of CV and for Ag/TNT (2919 ± 451 Ω). Both substrates
are characterized by a similar value of impedance module, but the AgNPs/TNT platform (25 cycles)
contains approximately 56% of silver weight less than Ag/TNT, which indicates that the elaborated
electrode has a large surface area. Achieved results, according to results described in literature [48–55]
in which the addition of silver nanoparticles is deposited onto various substrates, caused a decrease in
the impedance module of the created sensor, in some cases even more than by 50%. Structures formed
after 10, 15, and 30 cycles of deposition were characterized by lower conductivity, possibly due to the
presence of agglomerates, which impede the electron transfer along a tubular structure. The phase
angle values presented in Bode plots (Figure 4b) recorded in the lowest frequencies (0.1 Hz) in the
range 79◦ to 71◦ are related to the porosity of the sample surface. The lowest porosity value of the
phase angle was observed for the Ag/TNT.
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Figure 4. Summary of impedance parameters (a), Nyquist (b) and Bode (c) plots of AgNPs/TNT
platforms differing in the number of cycles of silver nanoparticles deposition and reference layers: TNT
and Ag/TNT. Spectra were recorded in the PBS solution (0.01 M, 10 ml, pH 7.4) over the frequency
range 0.1–105 Hz with amplitude 10 mV.

3.3. Characterization of AgNPs/TNT Platforms in which Silver Nanoparticles Were Obtained
by Chronoamperometry

Figure 5 presents SEM photographs of silver spherical and near-spherical nanoparticles on TNT
platforms produced by the chronoamperometry method where the duration of the process was a
variable. Only platforms 60–180 chrono_AgNPs/TNT do not contain agglomerates and the distribution
of AgNPs is regular and almost uniform, and the majority of them are present in the upper part of
nanotubes, similar to the platforms produced by the CV method. The mechanism of nanoparticles
formation corresponds to the one described in the previous subchapter.
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Figure 5. SEM top-view images of AgNPs/TNT platforms prepared by chronoamperometry for: (a)
30 s, (b) 60 s, (c) 120 s, (d) 180 s, (e) 240 s, (f) 300 s and histograms of particle-size distribution for: (g)
60 chrono_ AgNPs/TNT, (h) 120 chrono_ AgNPs/TNT, (i) 180 chrono_ AgNPs/TNT.

The particle size distribution histograms for the 60–180_AgNPs/TNT samples determined from
the SEM images are shown in Figure 5g–i. From Figure 5g, it is clear that the frequency peak for 60 and
120 chrono_AgNPs/TNT electrodes came at 10 nm–15 nm (Figure 5h) for 180 chrono_AgNPs/TNT at
15–20 nm (Figure 5i). For 25 cycles_AgNPs/TNT sample the frequency peak comes at 25–30 nm. As the
deposition time increased, the spread of the obtained nanoparticles sizes increased.

Table 3 presents the results of measurements of the stationary potential of AgNPs/TNT platforms
produced by the chronoamperometry method and sizes of the obtained nanoparticles. Platforms
that contain Ag are characterized by higher OCP value in comparison to TNT without nanoparticles.
AgNPs/TNT obtained after 60 and 120 s of deposition are characterized by positive OCP value. A
similar tendency has been observed in the voltammetric method of nanoparticles production. Initially,
the nanoparticles were not stable and their surface area was very easily oxidized, but the longer
deposition time indicated the greater nanoparticles’ stability, which results in lower OCP value (despite
higher silver content in the structure in comparison to AgNPs/TNT produced after 60 and 120 s).
Figure 6 shows that along with an increase in the process duration, there comes exponential growth of
the silver content (R2 = 0.9754) in the obtained substrates.
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Table 3. The values of OCP and size of AgNPs deposited on TNT platforms prepared by
chronoamperometry method.

AgNPs/TNT

Time [s] 30 60 120 180 240 300
Size of AgNPs 5–30a nm 5–25 nm 5–35 nm 5–45 nm 10–50 nm 10–70 a nm

OCP [mV] versus Ag/AgCl 4.00 ± 19 21.6 ± 23 17.2 ± 13 −18.9 ± 20 −13.6 ± 12 −26 ± 1
a – platform with agglomerates.
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Figure 7 shows the Nyquist diagrams determined for AgNPs/TNT platforms differing in time of
silver nanoparticles deposition and for reference layers TNT and Ag/TNT. The addition of nanoparticles
caused a decrease in the impedance module and thus improvement in electrical conductivity of the
created platforms, which was connected to a large effective area facilitating the electron transfer [56].
The formation of agglomerates and plugging the nanotubes by nanoparticles has a negative effect on
the structure conductivity, which is confirmed by research [57] showing that the highest impedance
module is characteristic of the structures where the tubular structure is not blocked. The lowest
impedance module is characteristic of the 120 chrono_AgNPs/TNT platform.
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3.4. Characterisation of AgNPs/TNT Platforms in which Silver Nanoparticles Were Obtained by
Sputter Deposition

Figure 8 presents SEM micrographs of AgNPs/TNT platforms produced by sputter deposition.
Figure 8a,b show that the distribution of AgNPs is regular, well organized and focused on the edges
of nanotubes. The AgNPs, to a lesser extent, fill the space between the nanotubes and also permeate
into the nanotubes and embed in their inner walls (Figure 8e,f). The nanoparticles have a spherical
and near-spherical shape, and after 20 seconds of sputtering, AgNPs are located around the ring of
nanotubes and the formation of nanoclusters was observed. The amount of silver was so large that it
resulted in a visible reduction of their diameter. Over time, this layer increased in thickness, completely
closing the tubular morphology. These studies are in accordance with the results obtained by Roguska
et al [36].
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1 
 

 
Figure 8. SEM top-view images of AgNPs/TNT platforms prepared by sputter deposition after: (a)
10 s, (b) 20 s, (c) 40 s, (d) 60 s, (e), (f) cross-sectional images of 20 target_AgNPs/TNT and histograms of
particle-size distribution for: (g) 10 target__AgNPs/TNT, (h) 20 target_ AgNPs/TNT.

The particle size distribution histograms for the 10 and 20 target_AgNPs/TNT samples
determined from the SEM images are shown in Figure 8g,h, respectively. The frequency peak
for 10 target_AgNPs/TNT electrode comes at 20 nm–25 nm, and particles, whose sizes range from
10 nm to 25 nm, account for about 80% of the total particles observed. For the 20 target_AgNPs/TNT
sample the frequency peak came at approximately 30–40 nm.

Figure 9 shows that along with the increase in process duration, there came exponential growth of
the silver content (R2 = 0.9744) and a linear growth (R2 = 0.9992) of thickness of the silver layer in the
obtained substrates.
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The table in Figure 10 shows that adding silver to the structure caused an increase in the OCP
values of created platforms. Figure 10a shows the Nyquist diagrams determined for AgNPs/TNT
platforms differing in time of sputter deposition and for reference layers TNT and Ag/TNT. When the
immersion time, and at the same time the silver weight content in the structure were increased, the
impedance module was lowered, and for a sample after 60 s of sputtering it reached the value two
times smaller than for Ag/TNT, but 60 target_AgNPs/TNT platform contained approximately 50% of
silver weight less than the reference sample. It indicates that maintaining an open tubular structure
is necessary for the efficient transport of electrons, which affects the conductivity of the platform.
However, importantly, samples 40–60 target_AgNPs/TNT should be considered TNT platforms with
silver nanoclusters, not with nanoparticles. The Bode plot (Figure 10b) shows that silver deposition
reduces the phase angle of the AgNPs/TNT samples.
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Figure 10. Summary of impedance parameters (a), Nyquist (b) and Bode (c) plots of AgNPs/TNT
platforms differing in time of sputter deposition of silver and reference layers: TNT and Ag/TNT.
Spectra were recorded in the PBS solution (0.01 M, 10 ml, pH 7.4) over the frequency range 0.1–105 Hz
with amplitude 10 mV.

The greatest advantages of the sputter deposition and electrochemical production of nanoparticles
are their ease and speed of implementation, as well as the possibility of controlling the process.
Additionally applied methods do not require the stabilizing and reducing reagents.

Each of the methods of AgNPs formation allowed to produce platforms whose impedance module
was similar to reference substrate Ag/TNT. In the case of CV, it was 25 cycles_AgNPs/TNT sample,
for CA – 120 chrono_AgNPs/TNT, and for SD – 20_target_AgNPs/TNT. 40–60 target_AgNPs/TNT
are characterized by an impedance module almost 50% lower than Ag/TNT; however, these samples
should be considered TNT platforms with silver nanoclusters, not with nanoparticles. Substrates
containing silver agglomerates generated by electroreduction methods block the nanotubes by reducing
the electrochemically active surface area and, therefore, also reduce the conductivity of AgNPs/TNT.
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In the case of sputtering, the nanoparticles agglomerate around the rings of the nanotubes without
clogging them, and therefore do not reduce the conductivity of the electrodes; the greater the content
of silver in the structure, the higher its conductivity.

In comparison to an impedance module equal to 5513 ± 223 Ω for TNT, in the case of
electroreduction and sputter deposition methods, its value was reduced by approximately 50%.
It is worth noting, however, that the aforementioned structures contained respectively 7.54 ± 0.76 % wt.
Ag (25 cycles of CV), 2.57 ± 0.18 % wt. Ag (120 seconds of CA) and 6.79 ± 1.70 % wt. Ag (20 seconds of
SD), and in the case of Ag/TNT (63.18 ± 8.60 % wt. Ag) it was 8–21 times higher content, which only
confirms significant surface development of the created electrodes.

4. Conclusions

1. Produced silver spherical and near-spherical nanoparticles were concentrated mostly in the upper
part of nanotubes around their rings and, to a lesser extent, also filled the space between the
nanotubes and permeated into them. With the increase in duration of deposition, an increase in
the spread of the size of nanoparticles, and an increase in the most frequent value of these sizes
was observed. In the case of cyclic voltammetry, there occurred a linear growth of % silver weight
content in the structure along with the increased number of cycles to 25, after which the layer
became saturated. In the case of chronoamperometry and sputter deposition exponential growth
of % wt. of Ag in time was noted.

2. Generally, the addition of silver to the structure increased the OCP value, which in turn increased
the corrosion resistance of these structures. In the case of electrodeposition it can be noticed that a
shorter duration of nanoparticles deposition/lower number of cycles results in creating platforms
whose OCP has positive values. This probably occurs because of a greater number of unreduced
silver ions in non-stabilized structures rich in agglomerates.

3. Nanoparticles caused a decrease in the impedance module (up to 50% lower when compared
to TNT) and hence increased conductivity of the created electrodes. The highest conductivity
among all samples without agglomerates was noted for the electrode after 25 cycles of AgNPs
deposition by cyclic voltammetry (25 cycles_AgNPs/TNT).
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