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Abstract: The synthesis of novel corrosion inhibitors and biocide metal complex nanoparticle surfac-
tants was achieved through the reaction of sulfonamide with selenious acid to produce a quaternary
ammonium salt. Platinum and cobalt surfactants were then formed by complexing the first products
with platinum (II) or cobalt (II) ions. The surface properties of these surfactants were then investi-
gated, and the free energy of form micelles (∆Gomic) and adsorption (∆Goads) was determined. The
obtained cationic compounds were evaluated as corrosion inhibitors for carbon steel dissolution in
1N HCl medium. The results of gravimetric and electrochemical measurements showed that the
obtained inhibitors were excellent corrosion inhibitors. The anti-sulfate-reducing bacteria activity
known to cause corrosion of oil pipes was obtained by the inhibition zone diameter method for
the prepared compounds, which were measured against sulfate-reducing bacteria. FTIR spectra,
elemental analysis, H1 NMR spectrum, and 13C labeling were performed to ensure the purity of the
prepared compounds.

Keywords: critical micelle concentration; cationic surfactant; antitumor activity; corrosion

1. Introduction

Worldwide, corrosion is one of the greatest problems that educational and industrial
divisions must solve because it has a negative effect on the economy of developing and
developed countries [1,2]. Corrosion, which results from the presence of a carbon steel in
acidic medium, can be reduced by adding corrosion inhibitors in modest amounts [3–9].
The majority of commercially available acid inhibitors are organic molecules containing
heteroatoms, such as sulfur [10], oxygen [11], nitrogen [12,13], and phosphorous. Many het-
erocyclic compounds containing nitrogen atoms have been found to be excellent inhibitors
of steel corrosion in acidic environments [14–18]. Quaternary ammonium salt (QAS) is a
famous product utilized in numerous applications of corrosion inhibition of oil pipes. Most
of the world’s QAS production involves cationic surfactants, which are widely used on
different types of industrial oil protection equipment as well as on closed cooling systems.
Synthesis and mass production of these inhibitors have been the primary focus of recent
research in science and chemical engineering [19–23]. Biocides are chemical compounds
that are capable of preventing or suppressing the growth of bacteria and fungi in different
environments. The defeating strategy against lethal microorganisms, especially in the
industrial field, involves the use of environmental biocides to protect the environment and
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living organisms [24,25]. These compounds have other important applications, such as
cutting fluids, which are used in various machining operations. Water-miscible cutting fluid
has been a recent trend towards water-based fluids. It has the advantage of low toxicity and
excellent cooling capacity, and it overcomes problems associated with mineral oil-based
products, such as unpleasant odor, oil mist formation, and fumes at high temperatures.
However, for water-based cutting fluids to offer a practical alternative, they must possess
good rust-inhibiting, anti-wear, and anti-microbial activity [26].

Obviously, in strongly acidic media, most organic inhibitors undergo protonation
and exist in their cationic (positive) forms. Conversely, metallic surfaces become nega-
tively charged in acidic solutions due to the adsorption of anionic counter ions of acids
(e.g., Cl−, SO4

2−, −NO3−) [27]. Thus, organic inhibitors initially engage with metallic
surfaces through electrostatic attraction forces (i.e., physisorption), and then interact with
metallic surfaces utilizing non-binding ions and electrons to form coordination bonds (i.e.,
chemisorption) [28]. Quaternary ammonium salts have been shown to be exceedingly
cost-effective and are frequently employed in the H2SO4 medium to prevent mild steel
corrosion. The efficiency of N-alkyl quaternary ammonium compounds with increasing
alkyl chain lengths in reducing acid corrosion of mild steel has been demonstrated [29].
In acid solution, bis quaternary ammonium compounds have also been investigated as
corrosion inhibitors [30]. Adsorption is a process in which the inhibitor is absorbed into the
body. Adsorption of inhibitors with alkyne moieties causes polymerization of the inhibitors
on the metal surface, which results in the creation of a journal pre-proof protective film
(coating) and hence, inhibitory effects [31]. Hydrophobic alkyl chains have been shown to
boost inhibitory efficiency [32]. Some of these include pyridines, pyrimidines, imidazoles,
triazoles, quinolines, naphthyridines, benzothiazoles, benzimidazoles, benzotriazoles, and
other similar groups of compounds. The presence of heteroatoms (N, S, O, etc.), bonds, and
an aromatic ring structure in these molecules allow them to coordinate with metallic sub-
strates efficiently [33,34]. The purpose of this study was to produce novel compounds that
are not hazardous to humans, have a low environmental impact, are biodegradable, and
have high inhibition efficiency at low costs. This novel product also may be characterized
as a multifunctional material that acts as a biocide, corrosion inhibitor, and emulsifying
agent in oil production systems.

2. Materials and Methods

All chemicals were produced from Sigma-Aldrich, St. Louis, MO, USA such as
selenious acid (H2SeO3); sulfonamide; ethyl alcohol (C2H5OH); diethyl ether (C2H5O);
PtCl2; CoCl4; petroleum ether; cyclodextrin oligosaccharide, carbon steel strips of following
composition (by weight, wt.%): C = 0.07, Mn = 0.19, P = 0.02, Si = 0.03, Cr = 0.05, Al = 0.02,
Cu = 0.12 and balance Fe.

2.1. Preparation of Test Samples
2.1.1. Synthesis of Sulfonamide Hydrogen Selenites IIa

To carry out the synthesis process, stoichiometric amounts of selenious acid were
mixed with sulfonamide in diethyl ether at 25 ◦C with vigorous shaking until precipi-
tation was complete. Then, products were filtered and washed with acetone and were
recrystallized by petroleum ether [35]. The products were designated as IIa and have the
general formula:

RNH3 HSeO3

where R = sulfonamide

2.1.2. Synthesis of Metal Complexes

(a) Synthesis of cobalt and platinum hydrogen selenite dehydrate [35].

PtCl2·2H2O + Na2CO3 → PtCO3·2H2O + 2NaCl
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CoCl2·2H2O + Na2CO3 → CoCO3·2H2O + 2NaCl

PtCO3·2H2O + 2H2SeO3 → Pt(HSeO3)2 +2H2O

CoCO3·2H2O + 2H2SeO3 → Co(HSeO3)2 + 2H2O

(b) Synthesis of platinum and cobalt ammonium hydrogen selenite complexes IIb,c.

Platinum or cobaltsulfonammonium hydrogen selenite complexes were prepared
by refluxing two moles of sulfonammonium hydrogen selenites (IIa) with one mole of
platinum or cobalt hydrogen selenite in ethyl alcohol for two hours. The products were
designated as (IIb,c), as shown in Figure 1.

2RNH3 (HSeO3)2 + M (HSeO3)4 → (RNH3)2M(HSeO3)4
−

where
M = Pt or Co R = sulfon
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Figure 1. CA inhibition mechanism by sulfonamides. 
Figure 1. CA inhibition mechanism by sulfonamides.

Compound IIb, Yield, 72%; m.p. 172–174 _C; IR, (KBr, cm−1): disappear of NH2
according to form quaternary salt, 3053 (CH arom.), 1370, 1155 (SO2). 1H-NMR (DMSO-d6)
δ: 4.6 (s, 1H, NH, exchangeable with D2O), 7.3–8.0 (m, 10H, Ar-H + SO2NH2, exchangeable
with D2O). MS m/z (%): 1056 (57.77), 172 (100). Anal. Calcd. For C12H22N4O16S2PtSe4
(1056.68): C, 13.68; H, 2.11; N, 5.32; O, 24.30; Pt, 18.52; S, 6.09; Se, 29.98. Found: C, 13.56; H,
2.08; N, 5.29; O, 24.24; Pt, 18.42; S, 5.99; Se, 29.78.

Compound IIc, Yield, 82%; m.p. 210-212 _C; IR, (KBr, cm−1): disappear of NH2
according to form quaternary salt, 3052 (CH arom.), 1373, 1156 (SO2). 1H-NMR (DMSO-d6)
δ: 4.5 (s, 1H, NH, exchangeable with D2O), 7.6–8.3 (m, 10H, Ar-H + SO2NH2, exchangeable
with D2O). MS m/z (%): 920 (37.16), 172 (100). Anal. Calcd. For C12H22N4O16S2PtSe4
(920.65): C, 15.71; H, 2.42; Co, 6.43; N, 6.11; O, 27.91; S, 6.99; Se, 34.43. Found: C, 15.69; H,
2.32; Co, 6.39; N, 6.09; O, 27.83; S, 6.86; Se, 34.37.

2.1.3. General Formula for the Metal Complexes

Metal complex prepared using either platinum or cobalt ([RNH3] + 2Pt[(HSeO3)−4],
[RNH3] + 2Co[(HSeO3)−]4 ) may be formulated as expected with the chemical structure
shown in (Figure 2)
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2.1.4. Green Synthesis with Solid State Reaction in Ball Mill for Complex Nanoparticles

The method of synthesizing organic compounds using a ball mill as a reactor is an
environmentally safe method for using green chemistry. By comparing this technique
with normal solution methods, it presents many advantages, such as reducing the number
of solvents used, thereby reducing the number of volatile compounds. Heavy mixing in
the solid state helps disintegration and mobility for rapid friction among molecules in a
short amount of time. For non-polar and polar solvents, mixing problems are reduced.
The energy used to complete the reaction is reduced due to the optimum use of energy in
the reaction mixture. The nano-sized particles of Co and Pt complexes were achieved by
mixing them very well with cyclodextrin oligosaccharides using ceramic mortar. Finally,
both were ground using a ball mill model PM 200 (TMAXC-Fujian, China) at 300 rpm
for 3 h.

2.1.5. Evaluation of Anti-Sulfate-Reducing Bacteria Activity

The inhibition zone diameter (Iz D) Method: a filter paper sterilized disc saturated
with a measured quantity of the sample was placed on a plate containing a solid bacterial
medium (nutrient agar broth) that had been heavily seeded with the spore suspension of the
tested bacteria. After incubation, the diameter of the clear zone of inhibition surrounding
the sample was taken as a measure of the inhibitory power of the sample against the
particular test organism. All sulfate-reducing bacteria were provided by a culture collection
of the Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University,
Cairo, Egypt.

2.2. Corrosion Inhibition Measurements
2.2.1. Weight Loss Measurements

The carbon steel specimens have a composition of (wt %): 0.21 C, 0.035 Si, 0.25 Mn,
0.082 P, and the remainder is Fe. The carbon steel sheets of 2.5 cm × 2.0 cm × 0.6 cm were
abraded with emery papers (grades 320, 500, 800 and 1200) and then washed with distilled
water and acetone. After weighing accurately, the specimens were immersed in a 250 mL
beaker containing 200 mL of 0.5 M hydrochloric acid alone or with 50, 100, 200, or 400 ppm
by weight of the inhibitors used at 25 ◦C. After different immersion time intervals of 1, 3,
6, and 24 h, the specimens were taken out, washed, dried, and weighed accurately. The
corrosion rate (K) and the inhibition efficiency (η %) were calculated using the following
equations [36].

K = (W/St)

ηw % = [{Wcorr −Wcorr(inh)}/Wcorr] × 100
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where W is the average weight loss of three parallel carbon steel sheets (one specimen
in each beaker), S is the total area of the steel specimen, and t is immersion time.
Wcorr and Wcorr(inh) are the corrosion rates obtained in the absence and the presence of
inhibitors, respectively.

2.2.2. Polarization Measurements

Electrochemical measurements are made in the traditional cylindrical cells made of
Pyrex glass with a triple electrode, the working electrode (WE) in the form of steel rods
embedded with polytetrafluoroethylene (PTFE; the Free Zone of the electrode that was
exposed to the analysis of the electrical 0.7 cm2) and saturated calomel electrode (SCE), a
platinum electrode used as auxiliary, and a standard electrode, respectively. Polarization
measurements were carried out using a potentiostat (Wenking, Wuhan, China). The
working electrode was immersed in the test solution for 45 min to reach the open circuit
potential. (The carbon steel used in the polarization measurements was identical to that
used in the weight loss measurements.) Next, the working electrode was polarized in both
cathodic and anodic directions. In terms of accuracy of the calculated slopes, the values
were compared with the obtained data from the software calculations accompanied with a
potentiostat (Wenking, Wuhan, China), and the accuracy was 4%. The values of corrosion
current density (ICorr) were calculated via extrapolation of the straight part of the Tafel
lines. A standard ASTM glass electrochemical cell was used, and the platinum electrode
was used as an auxiliary electrode. The potential increased with a speed of 2 mV min−1,
starting from −200 mV to +200 mV with respect to the open circuit potential (OCP) versus
corrosion potential (ECorr) [36].

2.2.3. Scanning Electron Microscopy (SEM)

After dipping carbon steel samples in acidic solution, corrosion of the samples was
tested with different concentrations of the corrosion inhibitor products to investigate the
optimal concentration of each inhibitor at which the corrosion decreased. Exposing the
samples for SEM also directly aided in studying the surface’s morphology.

3. Results and Discussion
3.1. Surface Properties of the Prepared Cationic Surfactants

As shown in Table 1 and Figure 3, after complexing ammonium hydrogen selenite with
Co or Pt ions, a high depression in CMC, Ycmc, Amin value was observed for compounds
designated as IIa, IIb and IIc compared to those of the complex designated as IIa. This
may be because metal complexes have specific properties in water. The complexes in the
solutions aggregate as units, which can increase the volume due to repulsion between the
hydrophobic chain of the complexes and water molecules that can occur.

Table 1. The critical micelle concentration (CMC) and surface parameters of synthesized surfactants.

Comp.
No.

CMC X
10−3

Γcmc
(mN/m)

Πcmc
(mN/m)

PC20
(Mole/L)

Γmax X 10−11

(Mole/cm2)
Amin
(nm2) ∆ Gads ∆ Gmic ∆Gads/Amin

IIa 1.2 32 40 3.9 10.4 1.5 −67.7 −34.1 −46.8
IIb 1.1 30 42 4.1 10.2 1.5 −69.9 −34.8 −49.1
IIc 0.80 29 43 4.3 11.1 1.45 −71.1 −35.3 −50.2

An increase in Pc20, ΠCMC, and Γmax value was observed for compounds designated
as IIb and IIc in comparison to the complex designated as IIa. This may be attributed to the
double chain of hydrocarbon groups in metal complexes, which by its role, increases the
hydrophobicity, thereby causing an increase in the concentration at the interface (maximum
surface excess Γmax). Froing of the great number of molecules at the interface leads to an
increase in the effectiveness of ΠCMC and a greater reduction in surface tension at critical
micelle concentration [37]. All the result values of ∆Gads and ∆Gmic were negative, which
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is considered evidence for carrying them out directly without increasing the temperature
of the reaction system.
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3.2. Antibacterial Activity of the Prepared Surfactants against Sulfate-Reducing Bacteria
Corrosion Inhibitor Activity for Oil Pipes

Sulfate-reducing bacteria (SRB) are considered reducers of sulfate, and their growth
and reproduction cause oil pipe and equipment corrosion. This can lead to the loss of
economy, and cause environmental, health, and safety hazards. Stabilized mixed culture
accumulates with sulfate reducing bacteria. In many industrial sectors such as the oil
and gas industry, it is important to minimize the evolution of hydrogen sulfide gas which
can result from SRB activity. The results of the synthesized cationic surfactants against
sulfur-reducing bacteria are recorded in Table 2.

Table 2. Inhibition zone diameter (mm/mg sample) for the synthesized cationic surfactants against
sulfate-reducing bacteria.

Sample Inhibition Zone Diameter (Iz D)
(mm/mg Sample) Sulfate-Reducing Bacteria

IIa 22
IIb 20
IIc 18

As shown from Table 2, the novel products have high antibiological activity against
SRB, while this activity also increased as we notice from the table. When products form
complexes that have two hydrocarbon groups, hydrophobicity adsorption at the bacterial
membrane increases. The protein and lipid molecules of the complex mobilize with the
hydrocarbons of the inhibitor and the membrane breaks down, inhibiting the growth of
DNA and thus no reproduction. Platinum complexes produced the best results, possibly
because platinum is an oxidizing chemical agent that acts as a reduction inhibitor, reducing
sulfide generation and slowing anaerobic growth (SRB). The specific activity of the tested
bacteria was closely related to the rate of H2S generation and the generation time was
inversely proportional to these activities. The rate of bacterial resistance to metal ions
was directly proportional to the rate of microbiologically induced corrosion (MIC) of
carbon steel.

3.3. Results of Weight Loss (Gravimeteric) Method and Effect of Inhibitor Concentration

Tables 3 and 4 describe the variations in corrosion rate (K values) of the dissolution
reaction of carbon steel in 1 M HCl solution in the presence of IIb and IIc inhibitors at
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different concentrations, respectively. It is obvious that a gradual increase in inhibitor
concentrations from 1 × 10−4 to 1 × 10−2 M by weight reduces the K values considerably.
At 1 × 10−4 M by weight of the IIb and IIc inhibitors, the K values of carbon steel were high.
In contrast, increasing the inhibitor concentration to 1 × 10−2 M by weight decreases K to
the lowest value. This is due to an increase in the number of adsorbed inhibitor molecules
on the metal surface caused by an increase in the inhibitor concentration in the medium.
In turn, this improves surface protection and slows the metal dissolution reaction. The
number of inhibitor molecules adsorbed on the metal surface increases as the inhibitor
concentration increases. As a result, this increases the surface area covered by inhibitor
molecules and consequently decreases the dissolution of metal due to the reaction of metal
by corrosive ions in the medium [37].

Table 3. Effect of cationic surfactant inhibitor concentration (IIb) at 30 ◦C temperature degrees.

Temperature
◦C

Conc. of Inhibitor
M

K
mg cm−2 h−2

ηw
%

30

0.00 1.307 -
1 × 10−4 0.838 35.86
5 × 10−4 0.643 50.80
1 × 10−3 0.402 69.26
5 × 10−3 0.298 77.16
1 × 10−2 0.241 81.54

Table 4. Effect of cationic surfactant inhibitor concentration (IIc) at 30 ◦C temperature degrees.

Temperature
◦C

Conc. of Inhibitor
M

K
mg cm−2 h−2

ηw
%

30

0.00 1.4 -
1 × 10−4 0.5 61.82
5 × 10−4 0.261 80.01
1 × 10−3 0.222 83.01
5 × 10−3 0.103 92.11
1 × 10−2 0.070 94.68

3.4. Electrochemical Evaluation
Potentiodynamic Polarization Spectroscopy

Cathodic and anodic current for carbon steel corrosion in 1 M HCl in the presence of
1 × 10−2 to 1 × 10−4 M by weight of the synthesized inhibitors IIb, IIc at 25 ◦C. Figure 4
represents the relation for (IIb) where (βc, βa): the electrochemical polarization parameter
of cathodic and anodic Tafel slopes; (Icorr): corrosion current density; (Ecorr): potential of
corrosion; (η): inhibition efficiency obtained from this figure were listed in Table 5. The
corrosion currents decreased in the presence of the inhibitors as indicated by low values,
such as 0.06, 0.04, 0.02, and 0.24 mA cm−2 for 1 × 10−4 to 1 × 10−2 M by weight of II
b respectively. Surface coverage (θ) of the carbon steel by the inhibitor molecules was
determined by using the values of the corrosion currents in the following equation [38]:

θ = (icorr(uninh) − Icorr(inh))/(Icorr(uninh))

where Icorr (uninh) is the corrosion current density with the presence of different inhibitors
and Icorr(inh) is the corrosion current density in the absence of the different inhibitors.
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Figure 4. Polarization curves of carbon steel corrosion in 1 N HCl solution containing different
concentrations of IIb inhibitor at 25 ◦C.

Table 5. Electrochemical polarization parameters of carbon steel corrosion in the presence different
concentrations of IIb and IIc inhibitors.

Inhibitor Name Conc. of
Inhibitor (M) Ecorr (mV) Icorr

(mAcm−2)
βa

(mV/Decade)
βc

(mV/Decade) θ ηP%

Without inhibitor 0.00 −487.3 2.02 208.1 202.4 - -

IIb

1 × 10−4 −499.0 0.0646 118.0 −137.4 0.72 71.55
5 × 10−4 −485.5 0.0345 114.8 −161.6 0.85 84.81
1 × 10−3 −485.4 0.0299 137.2 −194.2 0.87 86.83
5 × 10−3 −477.2 0.0280 117.6 −104.2 0.88 87.67
1 × 10−2 −504.7 0.0243 128.1 −140.3 0.89 89.30

IIc

1 × 10−4 −563.6 0.0530 116.5 −176.3 0.77 76.66
5 × 10−4 −475.7 0.0315 128.2 −112.7 0.86 86.13
1 × 10−3 −478.8 0.0277 127.6 −106.3 0.88 87.80
5 × 10−3 −509.6 0.0244 108.8 −170.1 0.89 89.26
1 × 10−2 −496.9 0.0233 125.8 −196.5 0.90 89.74

Corrosion inhibition efficiencies can be calculated from the previous values with
different concentrations of the inhibitors using the following equation [39]:

η% =(Icorr(uninh) − Icorr(inh))/(Icorr(uninh)) × 100

As shown in Table 5, at 1 × 10−2 M by weight, the value of icorr in the case of IIc
(0.020 mA cm−2) is smaller than that of IIb, while accordingly, the values of inhibition
efficiencies in the presence of IIc (94.68) is greater than that of IIb (83.01%). From the polar-
ization curves displayed in Figure 4, the decrease in the two reactions at the cathode and
anode occurs in the absence of the synthesized corrosion inhibitors but not in the presence
of them. Additionally, increasing the concentration from 1 × 10−4 M to 1 × 10−2 M by
weight increases inhibition. It may be that the presence of inhibitors in higher concentra-
tions reduced the anodic dissolution and suppressed the reduction of hydrogen ions [40,41].
As shown in Figure 4, by increasing the concentration of the synthesized product, the
cathodic current densities sharply decreased, which may be due to the formation of a
covered separation film which developed from a single layer of the synthesized product
onto the cathodic sites of the carbon steel [42]. The corrosion current densities increased
slowly at the start of anodic polarization, and the anodic polarization was mostly facilitated
by the positive shift in polarization potential. This indicates that the adsorption rate of the
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inhibitor molecules on the carbon steel surface is greater than their desorption rate and
that the adsorption process controls the anodic reaction (as in Figure 5). The polarization
behavior was comparable, implying that the inhibitor molecules are fully adsorbed from
the solution to the carbon steel surface and that increasing the concentration increases their
inhibition action [43]. When the inhibitor concentration increases, corrosion decreases. With
increasing inhibitor concentrations, the protective coating adsorbed onto the metal surface
tends to be more complete. This is supported by the increase in corrosion current densities
and the increase in η%. When the corrosion potential shifts to values greater than 85 mV
(compared to the corrosion potential without inhibitors), the inhibitors are categorized as
cathodic or anodic [44]. However, for all the inhibitors tested, the Ecorr displacement is less
than 85 mV. As a result, these inhibitors are known as mixed-type inhibitors [45,46].
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Figure 5. Image of the surface appearance of immersed samples in 1 M HCl by Scanning Electron
Microscope (a) without inhibitor; and (b–d) in the presence of 1 × 10−1 10, 1 × 10−2, 1 × 10−3 M IIb
inhibitor, respectively.

3.5. Docking Study

Docking investigations based on potent–protein interactions are used to explain the
biological results. Figure 6 shows all of the docking computations. Protein data library was
used to obtain the X-ray crystal structures of the following bacterial strains: A. fumigatus
(ID [47]; 5HWC), G. Candidum (ID [48]; 4ZZt), S. Pneumoniae (ID [49]; 5LJI), and E.
Coli (ID [50]; 3t88), respectively. The following are the essential backbone amino acid
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residues retrieved via X-rays analysis: Tyr27, Asp38, Arg55, Ile57, and Tyr83 for 5HWC;
Arg339, Arg251, Glu212, and Asp259 for 4ZZW; Gly 60, Glu97, Cys99, Asp92, Thr15, Asn14,
Ser90, and Thr58 for 5LJI; Tyr57, Asn42, Thr203, Arg188, and Glu213 for 3t88. These
amino acid residues hindered microbial action through chelating with reference inhibitors.
Ag/TNTs-P400 was the most effective at docking into kinase receptors. MOE-scoring for
the most stable docking model was used to evaluate the binding affinity of complexes
(inhibitor-kinase) (Figure 6). With an MMFF94 force field, the complexes were energy-
minimized until the gradient for the restricted convex was minimized to 0.05 kcal/mol.
IIb was the most effective at docking onto kinase receptors. MOE-scoring was used to
identify the most stable docking model used to evaluate the binding affinity of complexes
(inhibitor-kinase) (Figure 6). For all kinases, the studied sample was successfully docked
onto active sites. In Figure 6, the hydrogen bond interactions between the ligand and the
receptor were discovered in the construction of active nanocomposites. The hydrophobic
cation-π interactions at a distance >6 Å are not shown in Figure 7. In the absence of H-
bond interactions, IIa docked onto the active sites 5HWC, 4ZZt, 5LJI, and 3t88, which
gave insignificant binding energies (Figure 7). The sample has the greatest binding score
(G =~ −4 Kcal/mol) against the 4ZZt active site.
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of the ligand from a given conformer; Int.: Affinity binding energy of hydrogen bond interaction Figure 6. Docking energy scores (kcal/mol) for investigated compounds. ∆G: Free binding energy of
the ligand from a given conformer; Int.: Affinity binding energy of hydrogen bond interaction with
receptor; H.B.: Hydrogen bonding energy between protein and ligand; Eele: Electrostatic interaction
with the receptor; Evdw: Van der Waals energies.

The kinase reset inhibition potency assumed the following pattern: 5LJI>3t88 >5HWC,
with promising binding score values (Figure 7). Amino acid residues interact with samples
by forming significant E.H.B of H-bonds with energies ranging from ~ −8 to −5 kcal/mol.
Against the 4ZZt binding pocket, the studied materials had the highest stabilization energy
(Eint = −8.267 kcal/mol). On the other hand, those found at the 3t88 active site had the
lowest stabilization energy (Eint =−2.140 kcal/mol). In comparison to 5LJI binding pockets,
5HWC binding pockets yielded less stabilization energy (Figure 7).
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4. Conclusions

This work aimed to synthesize novel antibiotic quaternary ammonium salt nano-
surfactants based on sulfonamide with selenious acid and complexed with platinum
and cobalt surfactant. We used FTIR spectra, elemental analysis, H1 NMR spectrum,
and 13C labeling to investigate the surface behaviors of these surfactants as free energy
to form micelles (∆Gomic) and adsorption (∆Goads). In 1N HCl media, we assessed the
generated cationic compounds as corrosion inhibitors for carbon steel. Gravimetric and
electrochemical studies revealed that the studied inhibitors are excellent corrosion inhibitors.
The anti-sulfate-reducing bacteria activity, which causes the corrosion of oil pipes, was
obtained by the inhibition zone diameter method for the prepared compounds, which
measured against sulfate-reducing bacteria. Particle size scaled into the nano-range, which
required investigation via transmitted electron microscope (TEM). Finally, the DFT using
B3LYP and the 6-311G* correlation function was applied for the investigated probes. DFT
and MEPs were also used to identify the interaction compound’s behavior over heavy
metal for water formation.
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