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Lies, Gosh Darn Lies, 
and not enough good statistics: 
why epidemic model parameter 
estimation fails
Daniel E. Platt1*, Laxmi Parida1 & Pierre Zalloua2,3*

We sought to investigate whether epidemiological parameters that define epidemic models could be 
determined from the epidemic trajectory of infections, recovery, and hospitalizations prior to peak, 
and also to evaluate the comparability of data between jurisdictions reporting their statistics. We 
found that, analytically, the pre-peak growth of an epidemic underdetermines the model variates, 
and that the rate limiting variables are dominated by the exponentially expanding eigenmode 
of their equations. The variates quickly converge to the ratio of eigenvector components of the 
positive growth mode, which determines the doubling time. Without a sound epidemiological study 
framework, measurements of infection rates and other parameters are highly corrupted by uneven 
testing rates, uneven counting, and under reporting of relevant values. We argue that structured 
experiments must be performed to estimate these parameters in order to perform genetic association 
studies, or to construct viable models accurately predicting critical quantities such as hospitalization 
loads.

Infection1,2, transcription and replication3,4 by SARS-COV-2 involve a number of rate limiting interactions with 
host cells that are likely to be modulated by mutations in cellular as well as viral genes. At the same time, phylo-
genetic analysis shows geographic specificity5,6, indicating that geographic regions may show specific exposure 
to distinctive SNP combinations, or viral haplotypes, in SARS-COV-2. This specificity suggests a benefit to 
exploring relationships between duration of the prodromal phase, proportions of asymptomatic cases7,8, pro-
portions of severe cases, rates of recovery, among other infection attributes9, that define temporal progression 
of compartmental epidemic models, starting with SIR (susceptible–infected–recovered) models10. Beside host 
and viral genetic impacts, other aspects driving SARS-COV-2 rates are population specific and demic, such as 
the impact of age on both asymptomatic and mild cases, as well as the proportion of severe and critical cases. 
Other aspects include normal social distance, and how effectively social-distancing rules have been followed. 
Hospital survival may also reflect impacts of some genetic susceptibility, presence of comorbidities (Hyperten-
sion, Diabetes, Asthma, lung disease, obesity and others yet to be identified) as well as the level of stress on the 
region’s medical facilities and medical staff.

In this paper, we seek to identify the limitations of using compartmental models to estimate or test hypotheses 
concerning parameters governing the growth of SARS-COV-2 epidemics. We also seek to investigate what type 
of epidemic variable tracking is necessary to effectively quantify the parameters that are suitable for hypothesis 
testing at the level of environmental exposure in epidemiological studies.

Methods
Compartmental models count individuals at different stages of progression of a disease, where each stage of 
progression is marked by an event that has a well-defined rate. For example, the period from time of infection 
to the time the person can transmit disease has a distribution, that, for enough people in the compartment, will 
tend to center on an average according to the central limit theorem for large enough samples drawn from any 
given distribution.

There is evidence that individuals infected with SARS-COV-2 can have symptomatic or asymptomatic pres-
entation, with asymptomatic cases11–13 less likely to be identified and isolated14–18. There is a relatively long 
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incubation period, up to 14 days in some cases after infection, that lasts until the latent exposed individuals 
become infectious. There have been some early estimates based on confirmed cases14,19 with more evidence of 
pre-symptomatic transmission being noted as well as and some evidence of asymptomatic transmission20,21. 
Pre-symptomatic incubation to infectious status is shorter than incubation to symptomatic status since patients 
are often infectious before symptoms emerge. Some of those asymptomatic people remain asymptomatic until 
they are non-contagious12. The SARS-COV-2 incubation period may partly account for the observed lag when 
social distancing or other viral spread prevention policies are imposed. Patients may still be infectious for several 
days after symptomatic recovery. Symptomatic patients likely to be hospitalized are hospitalized more quickly 
than non-hospitalized patients recover. Hospitalized patients in Intensive Care Units (ICU) or that required 
immediate ventilation tend to experience a longer time to recovery than non-hospitalized patients. Those that 
stay on the ventilator for long periods tend to have a high mortality rate, and may stay on the ventilator for many 
weeks prior to dying9.

A compartmental model that captures the stages relevant to infectious transmissions as represented in pub-
lished staging times9,12,19,20,22,23, and durations counts susceptible population members S , latent exposed E , infec-
tious asymptomatic IA , infectious symptomatic IS , infectious people who will be hospitalized IH , those hospital-
ized who recover IHR , and hospitalized leading to mortality IHM . Recoveries are R , and mortalities are RM . The 
conversion between compartments involves a number of variables which are assumed to be uncontrolled and 
random. There will be a distribution of times that individuals remain in a compartment, assumed to yield an 
overall average rate of conversion. The time from exposed to infectious is ≈ α−1 , where α is partitioned into 
contributions to asymptomatic infectious IA , symptomatic infectious IS , and infectious that will be hospitalized 
IH , so that α = αIS + αIA + αIH . This model, dubbed SEAIRH, extends the SEAIR model24. Total removal time 
among asymptotic infectious is γ−1

IA
 , with a fraction ζ going to infectious symptomatic. Infectious symptomatic 

removal time is γ−1

IS
 . The period prior to hospitalization is 

(

αIHR + αIHM
)−1 . The rate that the proportion that 

recovers is αIHR , and that which dies is αIHM . Figure 1 graphically highlights the interactions described above, 
and outlines the equations, below, that quantify the graphically represented relationships. The ovals represent 
compartments (e.g. susceptibles S , and exposed incubators E ). The solid arrows represent conversion flows 
between compartments (e.g. expressions such as ζγIA IA ). The rectangles represent conversions due to infection 
(e.g. converting S to E due to one of the infectious groups, such as βIAS

IA
N  ). We note that, as in basic conversions 

between compartments, the infection rate includes social effects of contacts, including stochastic high impact 
super-spreader events25, the tendency for symptomatic people to isolate themselves or to be isolated, and on 
physiological aspects of transmission (sneezing and coughing). The dotted lines represent infectious groups that 
infect susceptibles leading to incubations (e.g. the IA in βIAS

IA
N ).  The model equations, reflecting an underlying 

Markov chain with R and RM being absorbing, expressing these connections and rates are:

where

dS

dt
= −βIAS

IA

N
− βIS S

IS

N

dE

dt
= βIAS

IA

N
+ βIS S

IS

N
−

(

αIS + αIA + αIH
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E

dIA

dt
= αIAE − ζγIA IA − (1− ζ )γIA IA

dIS

dt
= αISE + ζγIA IA − γIS IS

dIH

dt
= αIH E − αIHR IH − αIHM IH

dIHR

dt
= αIHR IH − γIHR IHR

dIHM

dt
= αIHM IH − γIHM IHM

dR

dt
= (1− ζ )γIA IA + γIS IS + γIHR IHR

dRM

dt
= γIHM IHM

N = S + E + IA + IS + IH + IHR + IHM + R + RM
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Figure 1.   Classifications in the compartment model. Ovals represent conditions of members of the population. 
These include: susceptible, latent exposed, infectious who have been identified or are symptomatic and isolated, 
infectious who have not been identified, and who are pre-symptomatic, asymptomatic, infectious who will be 
hospitalized as severe or critical, those who are hospitalized but will recover, those who are hospitalized who 
will succumb, those who recovered, and those who passed away. Solid arrows represent conversions from one 
state to another, with a fixed rate. Dotted arrows represent infectious interactions that promote conversion 
from susceptible to latent exposed. Each dotted arrow provides a component I

N
 to the conversion rate β I

N
 

for that particular infectious group. β is reduced for isolated individuals compared to pre-symptomatic and 
asymptomatic spreaders. Rectangular boxes reflect the flow through mediated by dotted arrow input: β I

N
S.
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Note that dNdt = 0 , indicating conversions of all individuals in the system are accounted for. Parameter values 
derived from publications are listed in Table 1.

The rate of infection for a susceptible individual depends on the probability that an infectious viral load is 
transferred, multiplied by the rate of encounters a susceptible individual has. The encounters can involve: other 
susceptible individuals, or symptomatic infectious people, which as a group tends to be isolated with a corre-
sponding depressed rate of encounters βIS , and undetected presymptomatic and asymptomatic (those who are 
infected, infectious, but never display symptoms until recovery) infectious people whose interaction rate βIA is 
substantially higher, subject to social distancing regulations, since they are never discovered and fully isolated 
(Fig. 1). The fraction of infectious symptomatic individuals that a given susceptible individual may encounter is 
βIS

IS
N , and the total number of susceptible individuals exposed to infectious symptomatic cases is βIS

IS
N S . Likewise, 

that for presymptomatic and asymptomatic cases ( IA ), the rate of symptomatic infections is βIA
IA
N S . These terms 

drive the creation of new infections in the population. The force of the symptomatic group is the coefficient of 
IS , or βIS

S
N  . The number of the susceptible group that an individual can infect over their entire period τIS =

1

γIS
 

of infectiousness is the reproduction number Rt = τIS · βIS
S(t)
N = βIS

S(t)
γIS N

 , and similarly for the asymptomatic 
infectious group Rt = βIA

S(t)
γIAN

 . If almost all of the population is susceptible so that S ≈ N , the basic reproduc-
tion numbers for symptomatic and asymptomatic individuals are R0 =

βIS
γIS

= βISτIS and R0 =
βIA
γIA

= βIAτIA , 
respectively. These are consistent with other definitions describing basic reproduction numbers. For the growth 
eigenvector, the ratios among the compartments determine an average overall R0 . Multiple mode reproduction 
numbers in COVID-19 are also noted26,27. These numbers primarily drive the rate of growth of the infection in 
the population, which early in the expansion is measured by the doubling time.

Early in the evolution of the infection, which may be defined as when N − S ≪ N , the variables immediately 
involved in the feedback loop determine the rate limiting step. Therefore, identifying

and

the equation governing the system in this regime is

X =







E
IA
IS
IH







M =







−
�

αIS + αIA + αIH
�

βIA βIS 0

αIA −γIA 0 0

αIS ζγA −γIS 0

αH 0 0 −
�

αIHR + αIHM
�







Table 1.   Published times for compartmental conversions, proportions, and derived rates.

Parameter Times Value Notes

α
5.1 (4.5–5.8) days22, 5.2 (4.1–7.0)20 5.2  
(3.78–6.78)19–3.95(3.01–4.91)19 0.196, 0.25 α = αIS + αIA + αH

ηS
30.8%23, 20.6% (23–33%)– 
40%(36–44%)13 0.3 αS = ηSα

ηA 49.2% (by total), 68.7 0.492 αA = ηAα

ηH 20%9, 1.3% 0.2, 0.013 αH = ηHα

ηHR 69%9 0.69 αHR = ηHR(αHR + αHM )

ηHM 31%9 0.31 αHM = ηHM (αHR + αHM )

αS 0.0588, 0.075, 0.172 (est) αS = ηSα

αA 0.0964, 0.123 αA = ηAα

αH 0.0392, 0.05, 0.00325 (est) αH = ηHα

αHR + αHM 7 days9 0.143

αHR 0.09867

αHM 0.04433

βIA

βIS

ζ 20.8%12 0.208

γIA 14 days9, 9.5days12 0.0714, 0.105

γIS 14 days9, 9.5days12 0.0714, 0.105

γHR 31 days9 0.0323

γHM 42 days9 0.0238
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This has solutions of the form X(t) = eMtX(0) . The M may be diagonalized by a matrix U  so that 

U−1MU = K  , for K =







κ1 0

0 κ2

0 0

0 0

0 0

0 0

κ3 0

0 κ4






 . Then eMt = UU−1eMtUU−1 = UeU

−1MUtU−1 = UeKtU−1 , and 

eKt =







eκ1t 0

0 eκ2t
0 0

0 0

0 0

0 0

eκ3t 0

0 eκ4t






 . Since MU = UK , Each of the columns of U are eigenvectors uj , where Muj = κjuj . 

This is an eigen equation, where the κJ s determine the time rate of exponential growth or decay with doubling 
time τj = ln 2

κj
 , and the eigenvectors represent the linear combinations of E , IA,IS , and IH that grow or decay with 

that eigenvalue. The combinations of eigenmodes is determined by initial conditions. The leading eigenvalue 
will dominate with exponential growth yielding fixed proportions of each of the E , IA,IS , and IH to each other. 
The other terms turn out to identify rates related to the delay time for the system to respond to changes in dis-
tancing policy due to incubation time, to imbalances between symptomatic and asymptomatic patients, and to 
the decay of IH.

Data from New York State were obtained from The COVID Tracking Project28.
Recent results indicate that some individuals may become reinfected29. Given some rate of reinfection, the 

inclusion of flow from recovered/removed back to susceptible compartments admits an eigenvector with eigen-
value κ = 0 assuming no alternative interventions.

Results
Testing in New York State, starting on 03/04/2020, labeled as day 1. On 3/13, day 10, NY State received permission 
to contract for its own SARS-COV-2 testing. Statewide “distancing” started on 3/20, day 17, with the signing of 
the “New York State on Pause” bill. Prior to that, local jurisdictions had already been imposing local ordinances 
against assembly, and started closing schools.

Figure 2 shows the cumulative total testing and positive test numbers indexed by day for New York State. 
Testing has been driven by tracking contacts of discovered cases which is reflected heavily in the close alignment 
of total tests and positive tests. On 3/13, the total number of tests increased from 308 to 3200, with surges to the 
5000 level, then 7000, then 14,000 showing rapid subsequent growth.

Early in the testing, from day 1 to 19, the rate of growth of positive cases was κ = 0.3519± 0.01390 , cor-
responding to a doubling time of 1.97± 0.08 . From day 20 to day 30, the rate of growth of positive cases was 
κ = 0.2027± 0.0076 , corresponding to a doubling time of 3.42± 0.13 . These numbers suggested very high rates 
of contagious transmission. These doubling times were reported by the New York State Governor in some of 
his earliest briefings.

If, as tracking numbers increased, testing surveillance was broad enough to pick up community spread indi-
viduals proportional to total numbers of tests applied, then the proportion of positives from the tests may reflect 
population rates. However, if rates are tightly limited to immediate known cases, then the reported positives will 
be a better estimate of underlying population, since the fraction of those seeking medical assistance should be 
proportional to the exposed number in the population. When available tests increased, the apparent rate grew 
substantially. Therefore, infected population growth may be more closely reflected in the fraction of positive 
results normalized by total number of tests applied, in spite of very highly biased sampling selection. Inclusion 
of these counts necessarily depended on the availability of test kits; yet the number of patients qualifying for 

dX

dt
= MX

Figure 2.   Levels of total testing and positive cases identified in New York State.
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testing was also increasing; information required to resolve these conditions is missing. For a given proportion 
of ill patients who seek help, this should track with the fraction of the population who is ill. However, this may 
be subject to growing awareness of the population to get help with SARS-COV-2 infections.

First, consider the idea that tests may be broad enough to sample spread across a population. When test 
numbers were low, the likelihood that targeted testing would reflect the general population was also low and 
sampling uncertainties large. Therefore, a lower bound on testing levels was applied, excluding samples prior 
to 3/20. Later, test ratios started to demonstrate a downwards bend. This shoulder was cut for samples beyond 
3/30. Figure 3a shows a regression of a primarily exponential segment in the proportion of positive cases to total 
tests. Figure 3b shows that segment in the context of the full range of the time series of the proportion of posi-
tives to total tests. New York doubling time was estimated from a χ2 regression between the log of positive test 
ratios versus time, yielding κ = 0.0471± 0.0095 with a doubling time of 14.7± 3.0 adjusting for testing counts. 
In the alternative scenario, positive samples reflect the proportion of symptomatic patients seeking medical aid, 
a possibility since the testing was so closely tied to diagnosed patients plus contact surveillance. A regression 
was performed on the cumulative positive counts shown in Fig. 3c) yielding κ = 0.1170± 0.0021 per day, with 
a doubling time of 5.9± 0.1 days.

Taking guidance from Table 1, values α = 0.25 , αIA = 0.123 , αIS = 0.172 , αIH = 0.00325 , αHA = 0.09867 , 
αHM = 0.04433 , ζ = 0.3 , γA = 0.0714 , γIS = 0.0714 , βIA = 0.4748 , and βIS = 0.1071 yield a doubling time close 
to New York State from Fig. 3c. Figure 4 presents a log-linear plot of the growth of the complete model equations 
integrated numerically using solve_ivp() employing RK45 from scipy, clearly showing that the early growth 
is dominated by a leading exponential mode. The early lead-in shows the effects of decaying modes as the 
initial conditions converge to the fixed ratios of the leading eigenmode components. The leading eigenvalue is 
κ = 0.1171 , yielding a doubling time of 5.9 days, with eigenvector u =

(

0.6457 0.4212 0.6369 0.0081
)

 . The 
component associated with incubation decay is κ = −0.483 , associated with a response to policy change delay 
half-life of 1.4 days. The actual visibility in the population is short compared to the actual patient incubation 
time. Its eigenvector is u =

(

0.8940 −0.2671 −0.3596 −0.0085
)

 . The eigenvalue κ = −0.0750 with half-life 
of 9.2 days is associated with deviations between IS and IA from the dominating growth eigenvector, and has an 

Figure 3.   Log-linear χ2 regression estimate of κ from New York State growth of fraction of positive tests. 
(a) Linear regression representing a segment of the positive test rate vs. time; (b) linear regression from a) 
represented within the entire test rate vs. time dataset; (c) is a fit to the log of the positive test count vs days 
starting at 20 days.

Figure 4.   Log-linear plot of rate-limiting variables in the full system of equations integrated numerically.
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eigenvector of u =
(

−0.0064 0.2172 −0.9761 −0.0003
)

 . This argues that the most persistent lag to distancing 
rules may be associated with equilibration between symptomatic and asymptomatic cases. The last eigenvalue is 
κ = −0.143 , associated with the decay of IH from equilibrium values with eigenvector u =

(

0 0 0 1
)

.
Figure 4 shows a log-linear plot of the rate-limiting variables for a numerical integration of the entire system 

of differential equations. The pre-peak segment shows a clear view of how the system is dominated by the leading 
exponential eigenmode of the growth, including the proportions between variables represented in the eigenvector 
of the leading eigenvalue, which determines the slope.

Figure 5 shows the evolution of the system variables in a linear–linear plot. The lags in the peak variables 
shown in Fig. 5a identify the peak pulse through the system of linear equations. The “est” entries in Table 1 for αH 
represent values commensurate with (but not a fit to) the New York hospitalization levels28. They are a factor of 
12 smaller than those fitting the Wuhan hospitalization rate9. As such, it is clear that the impact of SARS-COV-2 
and COVID-19, the disease it causes, on features such as progression to hospitalization, response to treatment 
for symptomatic patients, whether patients are identified in time to stop progression to serious or critical stages 
may impact survivability. The model predicts 3294 fatalities per million, peak recovering hospitalizations of 
3347 on day 111, and peak mortality hospitalization (primarily long-term ventilator load) of 1732 on day 114. 
Figure 5b includes susceptible S and recovered R variables. The range of variation of these variables appears to 
dwarf the fraction of the population that is latent exposed, infected, or involved with hospital load. One feature 
of the equations is that the rate of flow of individuals through a compartment may not be reflected in the total 
number in the compartments at any given time, even at their peaks. At the end, these rates would leave 24,738 
per million uninfected and susceptible, with 971,967 recovered per million.

The difficulty in understanding how the testing protocol impacts estimations of rates is illustrated in the New 
York State rates along with Lebanon’s and Australia’s rates is shown in Table 2. Considering cases as a representa-
tive sample of a fixed proportion of the infected population argues for computing a rate based on cumulative 
cases. If, on the one hand, the testing generated a random sample of the broader population, more testing would 
identify more individuals simply because there were more tests. If so, the proportion of positives to total tests may 
be a closer approximation to the population, and the total positives would be proportional to the square of the 
actual proportion of diseases, resulting in a doubling of κ . That seems to be roughly what was observed between 
the two New York State regressions. On the other hand, cumulative rates for two other jurisdictions, Lebanon and 
New South Wales, Australia, show rates similar to each of the two New York State numbers. And while the New 
York State proportional model gives an expected factor of 2 in the rate, it is the cumulative rate that more closely 
resembles the growth and peak in New York, not the relative proportion rate. More, the shifts in test availability 
and distancing initiation are all visible in the New York data, which contributes to the difficulty even of identify-
ing exponential growth regimes, much less identifying an exponential rate that constrains the available model 
parameter space. Lebanon’s rates seem comparatively low, possibly suggesting throttling based on limited test 
kit availability. However, the hospitalization rates are commensurately low which may be the result of the early 

Figure 5.   The evolution of the model given the apparent doubling time represented by the regression in Fig. 3a. 
The peaks in variables in (a) show lagging as the compartments move through their sequence. The susceptible 
and recovered variables are included in (b).

Table 2.   Exponential growth rates, corresponding doubling times for various populations and measurements 
given available data.

Region κ Td(days)

New York State21 (cumulative cases) 0.1170± 0.0021 5.9± 0.1

New York State21 (relative frequency) 0.0471± 0.0095 14.7± 3.0

Lebanon24 (cumulative cases) 0.05998± 0.00786 11.6± 1.5

Australia New South Wales25 (cumulative cases) 0.1984± 0.0153 3.5± 0.3
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confinement, schools and universities closure, and other social distancing strategies employed by the Lebanese 
government in late February, 2020. These difficulties highlight the impact of different testing between popula-
tions limiting the possibility of comparing rates obtained from testing protocols from different jurisdictions.

Discussion
One of the major goals of epidemic modeling is to predict mortality and resource load on community medical 
facilities: how many beds, how many ventilators, how much pharmaceuticals, as well as other resources will be 
needed to get through the epidemic. Early epidemic growth for this system is dominated by the largest eigen-
value of 9 coefficients governing the rate-limiting variables. This eigenvalue determines the doubling time of the 
growth, and imposes one constraint on those coefficients; the eigenvectors impose three more constraints on 
the system, leaving five coefficients undetermined. Essentially, all of the rate-limited relevant epidemic variables 
grow at the same rate maintaining fixed ratios. However, as they near peak, the variable trajectories become 
more differentiated, with lagging or leading peaks emerging as the impact of SN  filters through the system of 
equations. However, at peak, it is already too late to allow time to acquire and deploy needed resources to hos-
pitals and clinics. By itself, the trajectory of these models in pre-peak growth offers little hint as to final needs. 
Further, there are a number of combinations of parameters that would yield the same leading eigenvector and 
eigenvalue. This issue is not specific to the model presented here, but holds for almost any compartmental model 
more complicated than SIR.

More so, the parameters that govern these epidemic models tend to reflect physiological rates of how the 
disease expresses itself in individuals, as well as effects that are moderated by demic characteristics. Examples 
are age structure in the population, which impacts both asymptomatic cases12,30 and severity of disease9. Identi-
fication of asymptomatic/pre-symptomatic cases has been problematic since testing protocols tended to require 
symptoms, or contacts with known infected people. One case in California went untested for 10 days because 
she had no known contacts. Positive to test ratios for PCR vs. randomly sampled immunoglobin tests reported 
in New York State shows large differences highlighting the bias in PCR testing. Cases that advance to severe or 
critical depend on other factors, such as treatment modalities prior to development of advanced symptoms. The 
rate of transmission depends on physiological parameters as well as normal social distance and social distancing 
response to an epidemic, how public institutions such as schools are run, how grocery shopping interactions are 
handled, whether known infections are isolated and other factors specific to each community. Given how widely 
these parameters may vary from population to population, and the mechanics of how they vary: how they depend 
on the geographically specific dominating SARS-COV-2 lineages dominant within a given geography5,6, and how 
they depend on behavioral, social, age structure, and other factors of a population. It is worth seeking whether 
and how these factors relate to the expressed epidemic model rate parameters as phenotypes.

Since the problem of identifying rate limiting parameters prior to peak is underdetermined, these rates must 
be determined elsewhere. Most statistical reporting does not provide nearly enough information to extract these 
factors, even at an environmental (quasi-) epidemiological experimental design standards. Further, jurisdictions 
are applying tests to try to identify new cases that are related to other identified cases through contact. The testing 
“enrollment protocol” was not designed to understand the spread in the population, but rather to try to identify 
patients and remove them from circulation by isolating them. More and broader testing is applied as test kits 
become more available, complicating the basis for interpreting positive counts. Test kits may not be uniform with 
loss of sensitivity depending on the stage of the infection and/or the type of swab taken (Nasal, nasopharyngeal 
or sputum). From jurisdiction to jurisdiction, testing and reporting protocols vary, making it difficult to compare 
jurisdictions, or even the same jurisdiction to itself from day to day. The rate of growth and doubling time may 
reflect availability and levels of testing more than the actual disease in the population.

Perhaps the best way to acquire the necessary parameters would be a prospective longitudinal cohort study 
coordinated across multiple jurisdictions. Enrollment should be randomized, reflect regional characteristics such 
as sex and age structure, and the criteria should be shared across populations participating in the study. During 
the course of the study, status will be clearly defined (thresholds for “asymptomatic,” defining “recovery,” etc.), 
and subjects will be monitored for changes in status (a) from susceptible to latent exposed, recording dates of 
exposure (if possible), (b) to infectious (symptomatic, pre- symptomatic or asymptomatic, with a clearly defined 
standard for determining possible “infectious” condition) conversion and dates, (c1) for pre-symptomatic to 
symptomatic conversions and dates or (c2) recovery dates, (d) symptomatic to recovery conversion dates, or (e1) 
hospitalization dates, (e2) recovery from hospitalization dates, (e3) ICU admission dates, (e4) ICU recovery date, 
(e5) ventilator treatment start date, (e6) ventilator recovery date, (e7) date of death. A record of how each subject 
moves through the model compartments, together with time distributions, can provide phenotypic parameters 
that modelling alone cannot, offering insight into the biology, response of the disease to medications, comorbid 
conditions, demic characterizations (age is important in determining asymptomatic, symptomatic, hospitaliza-
tion, and mortality rates), and other features relevant to the impact of SARS-COV-2.

Further, systematically measured parameters provide a uniform basis for comparisons between populations 
necessary for complete model constructions that yield distributions of trajectories and confidence intervals for 
timing and peak loads, and which can provide a full epidemiological exploration of how individual subject phe-
notypes respond to environmental, genetic, comorbid, and behavioral factors that may yield valuable information 
for biological, clinical and pharmaceutical development. As such, these models may be used as independent 
triangulating tests and measurement verifications of physiological parameters, and to identify evidence whether 
some factors that are strong enough to generate deviations are missing.
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Conclusions
A response to an article in Nature31 stated: “A well-known lawyer, now a judge, once grouped witnesses into three 
classes: simple liars, damned liars, and experts. He did not mean that the expert uttered things which he knew 
to be untrue, but that by the emphasis which he laid on certain statements, and by what has been defined as a 
highly cultivated faculty of evasion, the effect was actually worse than if he had”. The statement was applied to 
the specific issue of expert forensic testimony, but adapted for elucidating the duties of a chemist to report their 
procedures and results adequately. The statement has been restated as “lies, damn lies, and statistics.” The mes-
sage serves as a warning that statistics collected for certain purposes may not be suited to other purposes. That 
unsuitability does not reflect any attempt at obfuscation, yet may lead to confusion. The availability of real-time 
information of testing results appeared to be a boon for epidemic modelers. But, in this case, the use of testing, 
positive test counts, etc. are tilted towards identifying patients who are likely to have specific treatment needs, and 
to try to identify contacts to stop epidemic spread. While this serves to save lives and represents the most obvious 
value for limited resources, these uses render the reported statistics problematic for modeling, or for appropriate 
epidemiological description of how the disease behaves in populations in response to demographic, dynamics, 
social, demic, and genetic factors. Physiological parameters based primarily on patients may be biased in terms 
of those patients who were identified, and the methods by which they were identified. Further, protocols shifted 
over time within jurisdictions as previously unrecognized community spread and asymptomatic individuals 
were recognized to be significant contributors to viral spread.

While population based surveillance is getting some attention32–34, the need to understand how asymptomatic 
patients transmit the virus, and whether they sustain any cryptic physiological damage has driven scientists to 
random sampling of the population to identify these subjects35,36. While the range of physiological impact is being 
expanded, most such studies are focused on staging for identifying treatment efficacy of disease37–40. Sampling 
has continued the tendency to be opportunistic, based on inpatient contact39,40. Temporal information about 
viral shedding and stage conversion times have not shown as much interest as therapeutic response studies39,41. 
Further, timing information has presented novel features, such as timing of symptoms and system physiology 
impact with overlapping time intervals rather than compartmental staging classifications39. Pediatric studies also 
required population sampling42–44 since surveillance testing protocols tended to exclude children.

Finally, modeling not only can provide important information planners need for capacity loads, but models 
can also test whether parameters, obtained from formally designed epidemiological studies, describe how the 
disease behaves in a population. Current planning to ensure funds, resources, and designs, are available for 
conducting this type of multinational study is currently lacking. The most visible impact was both underestima-
tion and overestimation in different regions of what the epidemic impact would be for COVID-19. Both types 
of failures led to expenses far larger than the cost of running well designed studies, and maintaining resources 
ready to face this continuing challenge as well as future challenges.
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